
Accurate Offline Synchronization of Distributed Traces
Using Kernel-Level Events

Benjamin Poirier
École Polytechnique de

Montréal
benjamin.poirier@polymtl.ca

Robert Roy
École Polytechnique de

Montréal
robert.roy@polymtl.ca

Michel Dagenais
École Polytechnique de

Montréal
michel.dagenais@polymtl.ca

ABSTRACT
Tracing has proven to be a valuable tool for identifying func-
tional and performance problems. In order to use it on dis-
tributed nodes, the timestamps in the traces need to be pre-
cisely synchronized. The objective of this work is to improve
synchronization of traces recorded on distributed nodes. We
aim for high precision and low intrusiveness. In this pa-
per, we present an offline trace synchronization algorithm
that can report strict bounds on accuracy, an efficient im-
plementation of this algorithm, and an experimental study
of parameters that affect synchronization accuracy.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
tracing ; C.2.4 [Computer-Communication Networks]:
Distributed Systems; G.1.6 [Numerical Analysis]: Opti-
mization—linear programming

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Offline synchronization, time synchronization, trace synchro-
nization, synchronization, timestamp, convex hull, events,
kernel

1. INTRODUCTION
Event tracing has proven its worth. It is used in research
and in industry[2]. It has helped to identify race conditions,
functional problems in IO schedulers, performance problems
in device drivers and more. Tracing consists in recording
certain events during program execution. These events are
made of an identifier, a timestamp and optional parameters.
A tracing statement may be seen as a high performance
printf statement.

The benefits of tracing can be extended to distributed sys-
tems: client-server applications, RPC (Remote Procedure

Call)-based clusters or HPC (High Performance Comput-
ing) applications. A scalable approach is to record a trace
individually on each node and to analyze the merged traces
afterwards. For this to be meaningful, however, the event
timestamps will have to be precisely synchronized across the
machines of the distributed system. This is not without its
challenges. Tracing can record events with nanosecond pre-
cision while network latency is well into the microseconds.

The objective of this work is to improve the synchroniza-
tion of traces recorded on distributed nodes. The goal is
to achieve high precision and low intrusiveness. A preferred
approach in this case is to use a system that analyzes events
in a post-processing step (”after the fact”). This is called
offline synchronization.

The precision of distributed trace synchronization is affected
by four factors:

1. communication latency, for example, network latency

2. timestamping latency, the difference in time between
the occurrence of an event and its timestamping

3. synchronization algorithm precision

4. communication patterns, for example, the distribution
of packets in time

This paper presents a method to improve the second factor
and give strict bounds on the third.

In the next section we outline previous work in the area
of trace synchronization, especially, various offline synchro-
nization algorithms that have been proposed. We look at
the guarantees they provide and their performance. In sec-
tion 3, we present an efficient synchronization algorithm that
can report strict accuracy bounds at any point in the trace.
We also present the details of an open source implementa-
tion that uses kernel-level tracing to reduce timestamping
latency. In section 4, we report the results of experimenta-
tion including long running and large traces. These contain
millions of events recorded on real systems in various con-
ditions. We outline factors that influence synchronization
accuracy and discuss on actual precision versus guaranteed
accuracy and the validity of the assumptions made. We then
conclude by looking back at the significance of what was pre-
sented and suggest some theoretical and practical areas to
investigate in the future.

2. PREVIOUS WORK
A seemingly simple approach for precise synchronization of
distributed systems is to physically distribute a clock to each
node. Not only would this require specialized hardware but
it would also mean that what was initially a distributed sys-
tem would now be dependent upon a central clock. A soft-
ware solution is desirable.

2.1 Clock Model
A preliminary step to the conception and comprehension of
synchronization algorithms is the modelization of what we
are trying to correct: the inaccuracies in computer clocks.
The difference in reading at a time t between a real (physi-
cal) clock and a perfect clock can be modelled as[8]:

∆(t) = α (t0) + β (t0) (t− t0) + δ (t− t0)
2 + ε (t) (1)

In our case, t0 can be considered to be the time at which
tracing is started. Different sources use different names for
each parameter, we will use the following (with other com-
monly used terms in parenthesis):

∆ (t) Time offset to a perfect clock

α (t0) Initial offset

β (t0) Frequency offset (skew, drift, time offset rate)

δ Frequency drift (drift, drift fluctuation, frequen-
cy offset rate, frequency change rate)

ε (t) Other factors, including random perturbations

Equation 1 shows that clock inaccuracies are a compound of
different factors. Over relatively short intervals, many algo-
rithms consider that only the initial offset and the frequency
offset are significant. We will refer to this as the“linear clock
approximation”. Under it, equation 1 can be simplified as:

∆(t) = α (t0) + β (t0) (t− t0) (2)

Finding the time offset between a node’s clock and a virtual
perfect clock becomes a matter of identifying two factors in
a linear equation. It follows that the offset between two real
clocks can also be modelled as a linear function. For the rest
of this paper, we shall designate an estimate of the function
that maps the time on clock A to the time on clock B as:

tiB ≈ CB (tA) = a0 + a1tA (3)

Quartz oscillators (found in commodity computer clocks)
have typical frequency drift that results in an error between
.3 and 30 ns over 10minute integration intervals[8]. Notably
longer intervals can be modelled using a succession of linear
functions.

2.2 Online Synchronization
An often used method for computer time synchronization is
NTP, the network time protocol. NTP is very stable on the
long term, however, it is rather jittery on the short term[13,
14]. Moreover, it works by constantly making adjustments
to the local clock. In order not to disturb the system that is
being measured, one of the objectives of tracing is to be as
least intrusive as possible. The use of a system that sends
messages and alters the clock during tracing is not desirable.
This rules out online synchronization.

HPC systems, where performance is of the essence, have had
tracing for a long time[3]. The tracing frameworks available
are usually centered around the messaging library in use
(for instance, the Message Passing Interface, MPI). In the
best cases, synchronization is based on rounds of message
exchanges (i) around (before and/or after) or (ii) during
the tracing interval[6]. In other cases it is simply left up to
the user. Approach (i) cannot scale to long tracing intervals
(for the reasons outlined in section 2.1) and approach (ii) is
intrusive.

2.3 Offline Synchronization
Another solution is to use a system that analyzes events
in a post-processing step. The events to look at are those
that occur naturally in the traces and that can be linked
in multiple traces with a strict ordering relationship. The
best example is network packets: a packet is always received
after it was sent. From this analysis, it is possible to esti-
mate the difference between the clocks of the traced systems.
Effectively, it is possible to synchronize the traces.

The seminal work in this area consists in the linear regres-
sion and the convex hull algorithms proposed by Duda et
al.[7]. These algorithms are used to estimate a conversion
function between a pair of traced nodes. They are based
on a graphical representation (fig. 1) of the messages ex-
changed between the two nodes. Message i, traced at time
tAi by node A and time tBi by node B, is represented as
the point (tAi, tBi). Under the linear clock approximation,
the conversion function (which, in practice, is unknown) ap-
pears as line (1) on fig. 1. Because of positive network
latency τi (which is also unknown), messages sent from A
to B always appear above the conversion function and mes-
sages sent from B to A, below. This results in an empty
“corridor” around the conversion function.

Since the conversion function is a line (eq. 3), the natural
approach to estimate it is to use a linear regression. This is
easily implemented with O(n) run time order (in regards to
the number of traced events) but it is a fairly weak synchro-
nization. Beyond the question of effective precision achieved
(which is reportedly low[1]), the fact is that this algorithm
provides no guarantee against message inversions. It is pos-
sible for traces synchronized with such a function to show
messages travelling backwards in time. This is clearly an
undesirable situation: users of a tracing tool must be able
to rely on the data it reports.

In order to avoid message inversions, the estimated conver-
sion function must lie below messages going to B and above
messages going to A - it must stay in the empty corridor.
There are usually many lines that respect these constraints.

Figure 1: Message representation

The convex hull algorithm identifies the two lines with the
minimum and maximum slope. As for the linear regression,
it is possible to implement the whole algorithm in O(n) run
time order[9]. In contrast however, this algorithm guaran-
tees no message inversion and provides strict bounds on the
values of a0 and a1.

Algorithms based on the graphical representation in fig. 1
only apply to pairs of systems. A separate factor-propa-
gation step is needed when synchronizing more than two
nodes[7, 10].

Further refinements upon the convex hull algorithm have
been proposed. It is possible to adjust the message points
according to the minimum message latency for the network
in use[1]. This has the effect of narrowing the empty corridor
and improving the accuracy.

Sirdey et al. have described a variant targeted towards a
specific application where it is sufficient to synchronize the
frequency of two systems[18]. This variant is particularly
interesting because it uses the same geometric interpretation
of the problem as the convex hull algorithm but estimates
the conversion function by using a linear programming (LP)
approach. The estimate of α (t0) is used to formulate the
objective function and each message point is a constraint.
This linear program can be solved in O(n) run time order.

Linear programming has also been used to synchronize traces
based on broadcast messages[17]. This method is based on
the observation that a broadcast message sent on a local
network will be received by each node at almost the same
time: the differential broadcast delay of synchronized traces
should be low. A maximum likelihood estimator is used
to find correction function estimates for a group of nodes
at once. Although this algorithm does not benefit from a
strictly linear run time it has been applied to traces con-
taining a total of 105 events and 100 nodes. This algorithm
does not provide guarantees against message inversions.

3. METHODOLOGY
The method proposed by Duda to find the boundary values
of a0 and a1 is illustrated in fig. 2. The method consid-
ers each message as belonging to one of two sets according
to the message direction, MAB for messages going to node
B and MBA for messages going to node A. The conversion
function estimate has to lie below any message point belong-
ing to MAB and above any belonging to MBA to guarantee
no message inversion. The first step is to find the set HAB ,
the points that form the lower half of the convex hull of the
points in MAB , and HBA, the upper half of the convex hull
of the points in MBA. The points in each hull are then used
to find the conversion function with the maximum slope,
Cmax

B (tA) = amin
0 +amax

1 tA, and the one with the minimum
slope, Cmin

B (tA) = amax
0 + amin

1 tA. Duda suggests to use
the bisector of the angle formed by these two lines as the
estimation of the conversion function, CB (tA).

Figure 2: Elements of the convex hull method

The half-convex hulls can be formed using Graham’s scan
algorithm. It is natural to record messages in the trace in
such a way that the message points are already sorted. In
this case, the time to run the scan is O(n). Each of the
two lines can then also be found in linear run time, with
respect to the number of points in HAB and HBA, using a
specialized algorithm described by Haddad[9].

3.1 Accuracy-Reporting Convex Hull Algori-
thm

As mentioned in section 2.3, the convex hull algorithm guar-
antees that there will be no message inversion and provides
bounds on a0 and a1, the parameters of eq. 3. Unfortu-
nately, these bounds are not sufficient to provide bounds on
a time conversion:

tB ∈ [CB (tA)−∆2..CB (tA) + ∆1] (4)

It may be tempting to use amax
0 and amax

1 to evaluate ∆1.
However, using these two parameters in eq. 3 would yield
a conversion function that does no respect the constraints

imposed by the message points. This is because a0 and
a1 are not independent, fixing one to a certain value re-
stricts the possible range of the other. This is illustrated by
line (1) in fig. 3. This conversion function uses parameters
within the bounds but it generates many message inversions.
Furthermore, the knowledge of Cmin

B (tA) and Cmax
B (tA) is

not sufficient to evaluate ∆1 at every point. For example,
at tAm in fig. 3, the conversion function estimate (2) that
yields the largest estimate of tBm is neither Cmin

B (tAm) nor
Cmax

B (tAm), it is nevertheless a valid conversion function.
Moreover, it can be seen that at this point there are many
valid conversion function estimates that yield the same tBm

estimate. The same set of remarks apply to ∆2. The method
that follows builds upon the convex hull algorithm to iden-
tify ∆1 and ∆2 at any point.

Figure 3: Finding a suitable function for accuracy
calculation

To begin with, just as Sirdey et al. did to estimate β (t0), it
is possible to use a linear program to find Cmax

B (tA):

Maximize a1

Subject to

a0 + a1tAi ≤ tBi, (tAi, tBi) ∈ HAB

a0 + a1tAj ≥ tBj , (tAj , tBj) ∈ HBA

a0 free

(5)

Solving this linear program yields amin
0 and amax

1 . Like-
wise, the parameters of function Cmin

B (tA) can be found by
inverting the optimization direction.

Only two variables are involved in this program. This guar-
antees that it can be solved in linear run time in regards
to the number of points in the half-convex hulls[18]. Solv-
ing this linear program obviates the need to use Haddad’s
specialized algorithm.

Linear program 5 can be modified to identify the conversion

function with the maximum value at a point of interest,
tAn, rather than the one with the greatest slope. Only the
objective function has to be modified, it becomes:

Maximize a0 + a1tAn (6)

We will designate the values of a0 and a1 found using this
program lmax

0,n and lmax
1,n . By inverting the optimization direc-

tion, lmin
0,n and lmin

1,n can be found. From these and CB (tA),
the estimator suggested by Duda, found using Haddad’s al-
gorithm or linear program 5, we have:

∆1 = lmax
0,n + lmax

1,n tAn − CB (tAn) (7)

∆2 = CB (tAn)− lmin
0,n + lmin

1,n tAn (8)

We are therefore able to directly convert the time with a
guaranteed accuracy between the clocks of two traced nodes.
The assumptions underlying this result are the linear clock
approximation and the availability of sufficiently fine-grained
timestamps[9]. In practice, the timestamp resolution on
modern computers is much better than the message latency
and so the second assumption is always satisfied. Section 4.5
will provide experimental data that evaluates the validity of
the first assumption.

3.1.1 Algorithmic Complexity
The run time of finding ∆1 and ∆2 for one point is com-
posed of the time needed to construct the half-convex hulls
and the time needed to solve linear programs 5 and 6. To
repeat the accuracy calculation for more points, it is only
necessary to repeat the solving of LP 6. We have seen that
the time to find the convex hulls is linear in regards to the
number of message points and that the time to solve the
linear programs is linear in regards to the number of con-
straints.

Sirdey et al. use every message point to generate the con-
straints of their linear program. This is not necessary. It
is sufficient to use the points on the two half-convex hulls
to generate the constraints. To their credit, Sirdey et al.’s
approach avoids having to implement and run a convex hull
algorithm. If an LP problem like 5 or 6 only has to be
solved once, either strategy is equivalent in terms of result
and run time order. In our case however, LP problem 6
has to be solved more often, twice for each point where ac-
curacy information is desired. Therefore, we construct the
two half-convex hulls and use only their points to generate
the constraints. Section 4.6 will show that, in practice, this
greatly reduces the number of constraints.

Do we really need to solve LP problem 6 for every point in
the trace where accuracy information is desired? No. The
values of ∆1 and ∆2 vary throughout the trace as polygonal
curves. Because the objective function and the constraints
of LP 6 are the same, the vertices of the polygonal curves
are a subset of the half-convex hull points. It is therefore
possible to calculate accuracy information for every event
in the trace by solving LP 6 for each half-convex hull point
and interpolating linearly everwhere else. The algorithmic
complexity of calculating strict accuracy bounds for every
messages point can then be expressed as O

(
n+ h2

)
where

n = |MAB | + |MBA| and h = |HAB | + |HBA|. This is

quadratic in the worst case. It is possible to create con-
trived examples where every message point is part of the
half-convex hulls. In practical use however, h � n (see tab.
6) and so the average run time is effectively linear.

This section showed a method to synchronize distributed
traces with guaranteed accuracy. The next section shows a
method for improving timestamping latency.

3.2 Kernel-Level Event Tracing
In order to perform offline trace synchronization, traces must
be recorded during application execution. For scalability,
those traces are recorded individually on each node. To syn-
chronize the traces in a post processing step using the algo-
rithms described previously, the traces must contain events
that have a strict ordering relationship. In our case, those
events are network packets. In most cases however, in order
to be useful, the traces should also contain events related
to the operating system or a particular application. Typical
MPI tracing tools, for example, will record every call to a
function of the MPI library, as well as programmer-defined
events.

Goal 1 Record as much useful information as possible about
system execution. This facilitates analysis of applica-
tion behavior (core kernel, driver or user-level code).

One primary concern of a tracing tool is to have a low over-
head. Tracing should not modify the application behavior
or else some problems, such as race conditions, might not
be reproducible. Sometimes error conditions only show up
after extended periods or under heavy load. It should be
possible to use tracing in a “production” environment.

Goal 2 Reduce the computational demand of tracing and
therefore reduce its intrusiveness.

These goals are applicable to tracing in general. Trace syn-
chronization brings extra concerns. One of the key compo-
nents influencing synchronization accuracy is the width of
the empty corridor on fig. 2. This width is modulated in
part by the timestamping delay: the lapse of time between
(i) the timestamping of a message and its emission and (ii)
the arrival of a message and its timestamping. These la-
tencies reduce the precision of the timestamp and in turn
reduce the accuracy of the synchronization.

Goal 3 Timestamp a packet as late as possible before its
emission and as soon as possible after its reception.

The timestamping delay will vary according to the point at
which the event is generated. Various choices are available.
Generally, the journey of data to be encapsulated into a
packet and emitted onto the network is as follows: from user-
level application code to a support library, handed to the
kernel, through the network stack to the network interface
card (NIC) driver and finally to the NIC hardware.

Goal 4 Do not require specific hardware or modifications
to the traced application.

Supporting only a type of application or a group of network-
ing cards would severely limit the applicability of a tracing
framework.

In light of these goals, we chose to use the Linux Trace
Toolkit Next Generation (LTTng)[5]. This tracer operates
mainly at the kernel-level and records events related to many
parts of the operating system (OS) (process scheduling, mem-
ory management, file system operations, interrupt handling,
. . .) This yields information on much of the internals of
a system but also on the state of an application and its
interaction with the OS. The LTTng tracer also supports
inserting custom new event generation statements (“trace-
points”) at the kernel and the application level. LTTng uses
the timestamp counter (TSC) processor register as a time
source. It is precise and fast to read. It is also unaffected
by NTP time correction. Using such a tracer combines the
broad capabilities of custom application tracing code, OS
tracing, system-call reporting, network traffic analysis and
more while reducing tracing framework code duplication.

Does this flexibility impact performance negatively? The
LTTng tracer keeps a low overhead by being based mostly
on static tracepoints, inserted in the code before compila-
tion. It also uses in-place code modification and efficient
synchronization primitives. Average kernel-level events are
benchmarked at 119ns on an Intel Core2 Xeon 2GHz[5].

LTTng’s support for network tracing had to be extended
with new tracepoints to suit the needs of offline synchroniza-
tion. Goal 3 alone dictates placing the network tracepoints
at a level as low as possible. Certain network cards support
hardware timestamping. Although using this feature would
reduce timestamping latency, it would also go against goal
4. The next level up is to timestamp a packet in the NIC
driver. However, this would require modifying every driver,
an unwieldy task, or supporting only certain drivers, which
also goes against goal 4.

In order to conciliate the third and fourth goals, we generate
events at the lowest possible point in the network stack,
just before the interface with the NIC driver. Using kernel-
level event tracing allows us to timestamp a packet emission
after data is handed from an application to the operating
system and after it has been processed by the networking
stack. This reduces the timestamping delay compared to
recording messages at the application level and it means that
every combination of application and hardware is supported.
Linux libpcap-based traffic analyzers use the same tracing
point[12]. Since trace events are recorded locally, there is
no need to modify the packets. This contributes to keep the
intrusiveness of tracing low.

Further conciliation was necessary, between goals 1 and 2.
Now that we have chosen where to record events, we have
to choose what to record. An area of practical concern that
is often glossed over in the description of synchronization
algorithms is how to identify that a transmission event and
a reception event in two unsynchronized traces correspond
to the same packet[16]. Recording entire packets provides as
much information as is available. However, this can amount
to recording the entire stream of data of a NIC operating
at line speed, a task that no common hard drive (because

of transfer rate) and no in-memory buffer (because of size)
can sustain for a long time. It is too intrusive. We sought
to reduce the quantity of information recorded about each
packet to the minimum needed to support event matching.

The approach taken to match events is to record and com-
pare a total of 31 bytes out of the TCP/IP headers. IP
address and port fields uniquely identify a connection while
TCP sequence numbers and flags provide a high probabil-
ity of uniquely identifying a segment within the connection.
A consequence of this is that synchronization is limited to
using TCP messages. We believe that this is an acceptable
tradeoff, considering the ubiquity of this protocol. If record-
ing distributed traces between nodes that do not exchange
TCP traffic, a user may run a simple application that gen-
erates some extra traffic. Section 4.3 will show that the
synchronization can work with a wide range of packet rates.

The LTTng project also includes a trace viewer, LTTV. This
program can show graphical views of the state of every pro-
cess and resource on the system throughout the trace. It
can also filter and display raw event listings. The accuracy-
reporting synchronization algorithm described in section 3.1
has been implemented and contributed to LTTV. The linear
programming problems are solved using an open source LP
solver, glpk[11]. This implementation of the synchronization
algorithm has been used to perform the experimentation in
the next section.

Figure 4 is a screenshot of two synchronized traces in LTTV.
Trace 0 was recorded on a machine where wget, a simple
command line web client, was run. Trace 1 was recorded on
another machine running the Apache HTTP server. This
view shows the state of each process as the client initializes
and makes its request to the server. One apache2 process
receives the request and dispatches it to a worker thread
before the data is sent back to the client which writes it to
disk and terminates. It is possible to analyze the state of
each process and operating system as well as the timing of
every event in a single view.

4. REAL WORLD EXPERIMENTS
The following section shows the results of running our syn-
chronization algorithm on groups of traces recorded on a
pair of systems on a local network. Each node is equipped
with dual quad core Intel E5405 processors at 2.00GHz, 8GB
of main memory and can be accessed via two network in-
terfaces: a 100Mbps Fast Ethernet interface and a Giga-
bit interface. During the experiments, a traffic generator
was used to send messages at regular intervals between the
nodes. One message corresponds to a pair or related send
and receive events. In our case, one message is a single TCP
segment sent between two nodes. Our results are presented
in terms of messages per second because the algorithm is
agnostic with regards to the type of events that generate
messages.

4.1 Synchronization Evaluation
Most of the following experiments evaluate the influence of
different factors on synchronization precision and accuracy.
While our algorithm can report accuracy, the real time offset
between the two nodes is unknown. We do not know the true
value of what we are trying to estimate. This is a common

problem when evaluating synchronization algorithms. Some
authors use simulated traces. This is an indisputable way of
comparing the estimated value against a known reference.
However, the truthfulness of the simulation becomes an ex-
tra concern. Since the algorithm will ultimately be applied
to real traces, we sought to perform our experimentation us-
ing real traces as well. Others have also followed this path.
This is the case of Ashton who proposed some metrics to
compare different synchronization algorithms[1].

We followed the same approach and chose three types of
metrics to evaluate the synchronization precision. These
metrics have the bonus that they can also be helpful to users
of the algorithm in a practical context. The first type of
metrics is based on messages. We reuse two of Asthon’s
metrics: message inversions and messages running too fast.
The calculations are performed on the synchronized trace
set. In the first case, the number of packets that appear to
be received before they are sent is identified. In the second
case, the number of packets that exhibit a message latency
smaller than the minimum network delay is identified.

The number of message inversions will always be null when
using the convex hull algorithm. This is a guarantee it pro-
vides.1 The number of messages running too fast on the
other hand should be as small as possible. To evaluate this
metric the minimum network delay, τmin, has to be known.
Several tools can estimate the minimum Round Trip Time
(RTT) between two nodes. We considered the network to
be symmetric, therefore τmin = 1/2RTTmin. We compared
the output of ping, which takes a measure at the ICMP
level, netperf running a test at the UDP level and nuttcp

running a test at the TCP level. The results obtained were
consistently increasing in that order, which is also the or-
der of increasing protocol complexity. As each of the nodes
was using two network interfaces, the tests were repeated
between each address of each node so as to use the value ap-
propriate to each packet. Measures were also taken in both
directions, exchanging the node initiating the command or
the role of client and server were applicable. The τmin val-
ues obtained are presented in table 1. We chose to use the
ICMP values to perform our measures, they should be the
ones closer to the “true” minimum network delay.

Table 1: Minimum Network Delay (ms) (n0: node
0, n1: node 1, FE: 100Mbps Ethernet, GE: 1Gbps
Ethernet)

Source Destination ICMP UDP TCP

n0-FE n1-FE 0.103 0.125 0.180
n1-FE n0-FE 0.084 0.131 0.180
n0-GE n1-GE 0.023 0.053 0.055
n1-GE n0-GE 0.031 0.054 0.055

The second type of metrics was inspired by the synchro-
nization algorithm based on broadcast messages described
at the end of section 2.3. An extra node was used to send
UDP broadcast datagrams at the same interval as the TCP
segments. Events were recorded for those messages in the

1If there are no linear conversion functions that can provide
this guarantee, a practical tracing tool should be able to
fallback to a best efforts approximation. Section 5 explores
this topic.

Figure 4: LTTV displaying traces from a web client and server

traces. They were not used to perform the synchronization
but only as an independent indication of its precision. Once
the traces are synchronized, the difference in apparent ar-
rival time of the same broadcast on each node is measured.
The better the synchronization of the traces is, the smaller
the broadcast differential delays should be.

The third type of metrics is based on the accuracy reported
by our algorithm. We find the best, worst and average ac-
curacy range throughout the trace duration.

4.2 Variation of Network Type
The first group of traces was recorded for a duration of
120 seconds during which UDP and TCP packets were ex-
changed at the rate of one per second on the Fast Ethernet
interfaces.

The algorithm first identifies CB (tA), the clock conversion
function estimate. Because of the scale of the network mes-
sage latency compared to the duration of the traces, the
convex hulls are not discernible at a scale suitable for print
when using a representation similar to fig. 1. Instead, fig.
5 shows a zoomed-in view of the area around the very first
message points. This figure contains TCP message points,
half-convex hull outlines, conversion function estimate and
synchronization accuracy. More than one message point ap-
pears in an interval of less than a second. This is because
each node is sending TCP segments at the rate of one per
second and because TCP acknowledgments are sent auto-
matically in response to data.

The novelty of our algorithm is to be able to calculate ac-
curacy bounds at any point in the trace. In the area shown
on fig. 5 the accuracy bounds correspond to the minimum
and maximum conversion function estimates. This is not the
case throughout the trace duration. Figure 6 uses a differ-
ent representation to show the accuracy bounds calculated
by our algorithm as well as the differential delay of each
UDP broadcast for the entire trace duration. The graph
can be interpreted as follows:

• at time tA = 100 s for example,
tB ∈

[
CB (tA)− 3.56× 10−5..CB (tA) + 3.41× 10−5

]
so, at tA = 100 s on fig. 6, the “Synchronization accu-
racy” area extends from −3.56× 10−5 to 3.41× 10−5

• a broadcast timestamped at time tA = 85.8 s was times-
tamped with a clock value 2.41×10−5 s smaller on node
B so a “Broadcast differential delay” point appears at(
85.8,−2.41× 10−5

)
We recorded a second pair of traces in the same conditions
except that the traffic circulated on the Gigabit Ethernet
network. Figure 7 shows the accuracy bounds and broad-
cast differential delays for this case. The peculiar diagonal
pattern apparent on figures 6 and 7 is caused by an adaptive
interrupt moderation algorithm associated with the NICs in
use, Intel PRO/1000[15]. The synchronization evaluation
metrics for the Fast Ethernet and Gigabit Ethernet traces
are reported in table 2. As expected, there are no message
inversion.

We may first notice that there is a notable asymmetry appar-
ent in the trace group recorded on Gigabit Ethernet. Look-
ing at the message metrics in table 2, messages seemed to be
travelling faster than the network’s minimum delay in only
one direction, to node B. This condition suggests that the
synchronized timestamps on node B are too early. Look-
ing at the broadcast differential delay metrics, these indi-
cate that broadcasts were, on average, received by node B
1.26 × 10−5 s before node A. Once again, the timestamps
recorded by node B were “too small”. The two metrics are
in agreement. This does not imply an asymmetric network
however. As Haddad pointed out[9]:

“Considering two nodes with linear clocks in a distributed
system, it is impossible to tell the difference between clock
offset and minimum network delay asymmetry. This uncer-
tainty is bounded by the sum of the minimum network delay
in each direction.”

 78.1738

 78.174

 78.1742

 78.1744

 78.1746

 78.1748

 78.175

 78.1752

 78.1754

 78.1756

 7
8
.1

2
5

 7
8.

1
2
5
2

 7
8.

1
2
5
4

 7
8.

1
2
5
6

 7
8.

1
2
5
8

 7
8
.1

2
6

 7
8.

1
2
6
2

C
lo

ck
 B

 (
s)

Clock A (s)

Synchronization accuracy
Sent messages

Received messages
Lower half-hull
Upper half-hull

Minimum conversion
Maximum conversion

Middle conversion

Figure 5: Conversion function (detail); 120 s, 1msg/s,
Fast Ethernet

The average broadcast differential delay, which is an indica-
tion of clock offset after synchronization, is indeed smaller
than the sum of the minimum network delay in each direc-
tion as found in table 1.

We may then notice, by looking at fig. 6 and 7, that the
spread of broadcast differential delay values is smaller on
Gigabit Ethernet. Table 2 confirms this. Delay range and
standard deviation are smaller, which suggests a lower net-
work jitter.

Table 1 shows that the Gigabit network has a lower latency.
This has the effect of reducing the width of the empty corri-
dor on fig. 1 and therefore improving the accuracy. Indeed,
all three accuracy metrics in table 2 are better in the case
of the Gigabit network.

We may notice in all accuracy graphs that many of the
broadcast differential delay values are outside of the strict
accuracy bounds reported by the algorithm. While this may
seem contradictory at first, the cause is that synchronization
precision is only one factor affecting broadcast differential
delays. These delays are also modulated by the network
latency and timestamping latency.

Finally, looking once again at the average broadcast differ-
ential delay, we notice that it is smaller in the case of Fast
Ethernet. This suggests that synchronization precision is
better with the trace set recorded on Fast Ethernet than
with the trace set recorded on Gigabit Ethernet. On the
other hand, the overall number of messages running too fast

-0.00025

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 80 100 120 140 160 180 200

T
im

e
d
if
fe

re
n
ce

 (
s)

Clock A (s)

Synchronization accuracy
Broadcast differential delays

Figure 6: Synchronization accuracy; 120 s, 1msg/s,
Fast Ethernet

is smaller with Gigabit Ethernet. This suggests the preci-
sion is better on the Gigabit network. This time, the two
metrics disagree. Upon repeating this experiment we did
notice that the number of messages running too fast was
consistent whereas the average broadcast differential delay
had a large variance. The unexplained variance of the later
suggests that there is another parameter, which we did not
control, that has a measurable impact on trace synchroniza-
tion precision, perhaps clock non-linearity.

In summary, the message metrics indicate that synchroniza-
tion precision is better on the Gigabit network and the accu-
racy metrics indicate that accuracy is also better on this net-
work. This network has a lower latency and jitter but shows
some asymmetry in the synchronized traces. The metrics
based on messages are more consistent than those based on
broadcast differential delay.

4.3 Variation of Message Rate
We repeated the experiment, this time by using Gigabit Eth-
ernet exclusively but increasing the rate at which TCP and
UDP packets were sent to 16 messages per second. Com-
pared to the previous case with 1msg/s, the accuracy area
was again reduced, to slightly better than an almost con-
stant ±20 us. In order to seek out the best accuracy achiev-
able, the message rate was further increased in an exponen-
tial fashion by doubling it successively up to 1024 messages
per second. The total tracing duration was kept constant at
120 s. The results are presented in table 3.

As can be seen in table 3, increasing the message rate im-
proves the average accuracy bounds. We theorize that this
is because increasing the overall number of messages trans-
mitted increases the number of messages sent and received
with a latency close to τmin. This has the effect of narrow-
ing the empty corridor between the two half-convex hulls.
This, in turn, has the effect of improving the accuracy. The
number of messages with a higher latency will also increase.

-7e-05

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 100 120 140 160 180 200 220

T
im

e
d
if
fe

re
n
ce

 (
s)

Clock A (s)

Synchronization accuracy
Broadcast differential delays

Figure 7: Synchronization accuracy; 120 s, 1msg/s, Gi-
gabit Ethernet

However, because the convex hulls will be formed predom-
inantly with messages of low latency, this does not have a
negative impact on accuracy.

As was the case in section 4.2, the broadcast differential
delay averages do not show a clear trend. Once again, the
percentage of messages running too fast is a more consistent
metric. It shows that as the message rate increases, so does
the precision.

In summary, increasing the message rate improves the accu-
racy and the precision. This was theorized by Duda which
stated that, as the number of messages increases, amax

1 −
amin
1 → 0 and amax

0 − amin
0 → 2τmin.

4.4 Variation of Trace Duration
As the previous experiments have shown, increasing the
number of messages through an increase in message rate
improves the accuracy and precision. Do we get the same
benefits if we increase the number of messages through an
increase in trace duration? We repeated the experiment in
the following conditions: Gigabit network, keeping a fixed
1024msg/s rate and trace duration doubling successively from
30 s to 960 s. The results are presented in table 4.

The number of messages increases with the trace duration.
As was the case in section 4.3, increasing the overall num-
ber of messages improves the accuracy bounds. However, in
this case, it is misleading. Indeed, the number of messages
running too fast also increases, which indicates a loss in pre-
cision. The broadcast differential delay averages also point
towards a loss in precision. This is because the longer the
trace duration, the farther we stray from the linear clock
approximation. Since the convex hull algorithm depends on
this assumption, it is expected that its results are biased
when the assumption is violated.

In summary, as the trace duration lengthens, the increasing

Table 2: Synchronization evaluation metrics, varia-
tion of network type

120 s, 1msg/s,
Fast Ethernet

120 s, 1msg/s,
Gigabit
Ethernet

Messages
Inversion 0 0

Too Fast (A to B) 11.3% 13.9%
Too Fast (B to A) 14.3% 0.0%
Too Fast (Overall) 12.8% 6.9%

Broadcast Diff. Delay

Minimum (s) −2.40× 10−4 −6.17× 10−5

Maximum (s) 2.27× 10−4 3.75× 10−5

Average (s) −1.08× 10−5 −1.26× 10−5

Standard Deviation (s) 1.03× 10−4 1.81× 10−5

Accuracy (∆1 −∆2)

Best (s) 6.39× 10−5 4.00× 10−5

Worst (s) 8.93× 10−5 6.11× 10−5

Average (s) 6.88× 10−5 4.66× 10−5

Table 3: Synchronization evaluation metrics, varia-
tion of message rate

Rate
(msg/s)

Messages
Running
Too Fast

Broadcast
Differential

Delay Average
(s)

Accuracy
Average

(s)

16 7.09% −7.17× 10−6 3.74× 10−5

32 6.44% −8.76× 10−6 3.69× 10−5

64 6.23% −9.31× 10−6 3.53× 10−5

128 6.12% −9.03× 10−6 3.46× 10−5

256 6.28% −9.02× 10−6 3.43× 10−5

512 6.14% −8.43× 10−6 3.19× 10−5

1024 5.86% −8.57× 10−6 3.07× 10−5

importance of clock frequency drift causes the hulls to get
closer and artificially improves accuracy. It is possible to
detect this by looking at the metrics that reflect synchro-
nization precision.

4.5 Long Trace Duration
In the previous section, we have seen that the error com-
mitted by using the convex hull algorithm grows as the du-
ration of the trace increases. With some algorithms, like
linear regression-based ones, the precision of the estimation
will keep on degrading as the non-linear components of the
clock equation become more important. With convex hull-
based algorithms however, a situation will be reached where
it is impossible to produce an estimation. This will happen
when the two half-convex hulls intersect each other.

Figure 8a shows the accuracy bounds calculated by our al-
gorithm and the broadcast differential delays during the 960
seconds trace duration from section 4.4. With careful obser-
vation, we can already discern a non-linearity in the broad-
cast differential delays. Nevertheless, the convex hull algo-
rithm can complete. In contrast, fig. 8b shows the broadcast
differential delays for a pair of traces running for 15360 sec-
onds (4:16 hours). The trace was recorded on the Fast Eth-
ernet network, with a message rate of 1msg/s. In this case,

Table 4: Synchronization evaluation metrics, varia-
tion of trace duration

Duration
(s)

Messages
Running
Too Fast

Broadcast
Differential

Delay Average
(s)

Accuracy
Average

(s)

30 5.64% −9.95× 10−6 3.29×10−5

60 5.96% −8.97× 10−6 3.19×10−5

120 6.14% −9.37× 10−6 3.14×10−5

240 6.13% −8.88× 10−6 3.07×10−5

480 6.01% −1.05× 10−5 2.96×10−5

960 6.93% −1.37× 10−5 2.48×10−5

the non-linearity of the clocks causes the two half-hulls to
intersect each other. It is not possible to fit a linear function
in between them. Thus, we cannot use the formal definition
of the convex hull algorithm.

(a) 960 seconds (b) 15360 seconds

Figure 8: Long trace durations

With this situation in mind, Ashton suggests a “fallback”
mode, derived from the convex hull algorithm. We added
this mode to our implementation, as well as a variation of
Duda’s linear regression algorithm[4]. Neither of these two
algorithms provides a guarantee against message inversions.
Table 5 shows the synchronization evaluation metrics for
these two modes.

Table 5: Synchronization evaluation metrics, long
trace duration

Fallback mode Linear
regression

Messages
Inversion 4.06% 9.57%
Too Fast 14.17% 18.47%

Broadcast Diff. Delay

Minimum (s) −4.70× 10−4 −5.05× 10−4

Maximum (s) 2.60× 10−4 1.91× 10−4

Average (s) −6.72× 10−5 1.38× 10−4

Standard Deviation (s) 1.20× 10−4 1.18× 10−4

The broadcast differential delay ranges are about the same
regardless of the synchronization algorithm. This is also
the case for the standard deviation. This strengthens the
point that those metrics reflect characteristics of the network
rather than the synchronization. Compare them to table 2
for the Fast Ethernet case.

Looking at the messages metrics, this trace group stands out
as the only one that presents message inversions after syn-
chronization. The percentage of inversions and of messages
running too fast favors the fallback mode of the convex hull
algorithm. This is confirmed by the broadcast differential
delay average which is lower.

In summary, the convex hull algorithm cannot be used as-is
when the non-linear components of the clocks are impor-
tant. Section 4.4 showed that this first manifests itself as
a reduction of precision coupled with an artificial increase
in accuracy. This section showed that the convex hull al-
gorithm will fail after a certain point. It is possible to use
some alternative algorithms with varying degrees of preci-
sion. Others have also suggested to segment the traces in
sub-intervals of limited duration.

4.6 Algorithmic Performance
We verified experimentally the run time characteristics of
our convex hull implementation, needed to find the clock
correction factors, and the subsequent step needed to report
the accuracy.

We tested the run time of our algorithm on groups of traces
including those collected in the previous experiments. The
results are presented on fig. 9. Note that the figure is in
logarithmic scale. The measures were taken on the same
type of machine used to record the traces. The algorithm
implementation is single threaded.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000
 1

00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
e+

08

A
n
al

y
si

s
ti

m
e

(s
)

Combined number of network events

Convex hull
Accuracy-reporting convex hull

Figure 9: Analysis time for synchronization

The sample points for the convex hull analysis in fig. 9 con-
firm that our implementation scales linearly with the num-
ber of network events in the traces, even with large traces.
We should expect nothing less, given that a linear time im-
plementation strategy is available. The different analysis
times for the same number of network events are due to the
fact that traces with different traffic patterns were used.

The synchronization algorithm itself can be applied to any
type of trace that includes events happening in distinct tra-
ces with a strict ordering relationship. To distinguish be-
tween the time consumed by the tracing framework from
the time needed by the synchronization algorithm, the mea-
sures in fig. 9 only include the latter. In practice, some
extra time is needed to read the events out of the trace files
on disk. This is dependent on the tracing framework in use
but can also be implemented in linear time, as is the case
for LTTV.

Figure 9 also shows the time needed to calculate the synchro-
nization accuracy information needed to generate figures like
6. As stated in section 3.1.1, the run time complexity of our
algorithm is O

(
n+ h2

)
. Although it is quadratic in terms

of h, the number of convex hull points, we expected that
the actual run time would be dominated by the linear part,
dependent on n, the number of message points. In practice,
even when n increases to millions, h stays well under 100.
This is shown in table 6. The actual run time of the accu-
racy reporting synchronization algorithm is shown in fig. 9
and confirms our expectations, it closely follows that of the
regular convex hull algorithm.

Table 6: Number of points in convex hulls
Message points Convex hull points Ratio

7690 25 0.325%
14295 23 0.161%
26926 20 0.074%
54019 20 0.037%
108530 28 0.026%
215714 31 0.014%
430429 32 0.007%
860032 26 0.003%
1718787 33 0.002%
3441245 46 0.001%

5. CONCLUSION
It is quite remarkable that any unmodified application ex-
changing TCP traffic on any hardware is sufficient to per-
form trace synchronization. The accuracy reporting con-
vex hull algorithm performs offline synchronization of dis-
tributed traces. It guarantees no message inversion and gives
strict bounds on accuracy at any point in the trace. Its run
time is quadratic in the worse case but it scales almost lin-
early on practical traces.

We have described how to record network events at the ker-
nel level with low intrusiveness. We have also studied prac-
tical factors that affect offline synchronization. Accuracy is
improved by using a network with lower latency and by us-
ing a higher message rate. We have shown experimentally
the effects of the linear clock assumption. With a constant
message rate, lengthening the trace duration reduces pre-
cision and gives a false impression of improving accuracy.
This is detected using metrics based on messages running
too fast and broadcast differential delays. During our ex-
periments, we have achieved a synchronization accuracy of
±15 us and an estimated precision of 9 us on a network with
an estimated minimum latency of 39 us.

An accuracy-reporting synchronization algorithm can be used

to study parameters that affect synchronization. It is also es-
sential to validate the partial ordering of events when causal-
ity alone is not sufficient to do so. This is needed to confirm
the observations made by users of a tracing tool. It can also
be used to confirm assumptions from automated analysis
tools.

Our algorithm could be extended to long running and stream-
ing traces by considering sub-intervals. It could also be ex-
tended to systems of more than two nodes. Algorithms to
propagate the factors efficiently while adjusting the accuracy
bounds are needed to do this.

From an applicability perspective, the synchronization al-
gorithm here described can be extended to other types of
traces that include events with a strict ordering relationship
recorded by distinct clocks. This can be the case of systems
with different network types, user-level traces of certain ap-
plications or network packet captures.

From a practical perspective, some analysis tools have been
developed to analyze the interactions of processes within a
single system. These could be extended to work over dis-
tributed systems by integrating the accuracy information
made available by the accuracy-reporting convex hull algo-
rithm.

6. ACKNOWLEDGMENTS
The authors would like to thank Pierre-Marc Fournier and
Mathieu Desnoyers of the DORSAL laboratory at École
Polytechnique de Montréal for interesting discussions and
helpful feedback as well as Francis Gagnon and Jean-Marc
Chevalier for their technical support during trace collec-
tion. The support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), Ericsson Software
Research and Defence Research and Development Canada
(DRDC) is gratefully acknowledged.

7. REFERENCES
[1] P. Ashton. Algorithms for off-line clock

synchronisation. Technical report, University of
Canterbury, Department of Computer Science, Dec.
1995.

[2] M. Bligh, M. Desnoyers, and R. Schultz. Linux kernel
debugging on google-sized clusters. In Proceedings of
the Linux Symposium, 2007.

[3] S. Browne, J. Dongarra, and K. London. Review of
Performance analysis tools for MPI Parallel Programs.
NHSE Review, 1998.

[4] E. Clément and M. Dagenais. Traces synchronization
in distributed networks. Journal of Computer
Systems, Networks, and Communications, 2009, 2009.

[5] M. Desnoyers. Low-Impact Operating System Tracing.

PhD thesis, École Polytechnique de Montréal, 2009.

[6] J. Doleschal, A. Knüpfer, M. S. Müller, and W. E.
Nagel. Internal timer synchronization for parallel
event tracing. In Proceedings of the 15th European
PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, pages 202–209, Berlin, Heidelberg, 2008.
Springer-Verlag.

[7] A. Duda, G. Harrus, Y. Haddad, and G. Bernard.

Estimating global time in distributed systems. In
Proc. 7th Int. Conf. on Distributed Computing
Systems, Berlin, volume 18, 1987.

[8] C. Ellingson and R. Kulpinski. Dissemination of
system time. Communications, IEEE Transactions on,
21(5):605–624, May 1973.

[9] Y. Haddad. Performance dans les systèmes répartis:
des outils pour les mesures. Master’s thesis, Université
de Paris-Sud, Centre d’Orsay, Sept. 1988.

[10] J. Jezequel and C. Jard. Building a global clock for
observing computations in distributed memory
parallel computers. Concurrency: Practice and
Experience, 8(1), 1996.

[11] A. Makhorin. GLPK (GNU Linear Programming Kit).
Free Software Foundation, 2009.

[12] S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
Proceedings of the 1993 Winter USENIX Technical
Conference. USENIX, Jan. 1993.

[13] D. Mills. Precision synchronization of computer
network clocks. ACM SIGCOMM Computer
Communication Review, 24(2):28–43, 1994.

[14] D. Mills. Computer network time synchronization: the
network time protocol. CRC, 2006.

[15] R. Prasad, M. Jain, and C. Dovrolis. Effects of
interrupt coalescence on network measurements.
Lecture Notes in Computer Science, pages 247–256,
2004.

[16] B. Scheuermann and W. Kiess. Who said that?: the
send-receive correlation problem in network log
analysis. ACM SIGMETRICS Performance
Evaluation Review, 37(2):3–5, 2009.

[17] B. Scheuermann, W. Kiess, M. Roos, F. Jarre, and
M. Mauve. On the time synchronization of distributed
log files in networks with local broadcast media.
Networking, IEEE/ACM Transactions on,
17(2):431–444, April 2009.

[18] R. Sirdey and F. Maurice. A linear programming
approach to highly precise clock synchronization over
a packet network. 4OR: A Quarterly Journal of
Operations Research, 6(4):393–401, 2008.

