
Operating System Level Trace Analysis for Automated
Problem Identification

Gabriel N. Matni and Michel R. Dagenais
Department of Computer and Software Engineering

Ecole Polytechnique de Montreal
C.P. 6079, Station Downtown, Montreal, Quebec

Canada, H3C 3A7
Tel. +1 514 340 4711/4029

Fax +1 514 340 3240
{gabriel.matni, michel.dagenais}@polymtl.ca

ABSTRACT
Performance bottlenecks, malicious activities, programming
bugs and other kinds of problematic behavior could be accu-
rately detected on production systems if the relevant events
were being monitored. This could be achieved through ker-
nel level tracing where every time a relevant event occurs,
the information is analysed or saved in a trace file to be in-
spected during post-mortem analysis. While collecting the
information from the kernel has a very low impact, the offline
analysis is typically performed remotely with no overhead on
the system whatsoever.

This article presents an automata-based approach for ana-
lyzing traces generated by the kernel of an operating system.
Some typical patterns of problematic behavior are identified
and described using the State Machine Language. These
patterns are fed into an offline analyzer which efficiently and
simultaneously checks for their occurrences even in traces of
several gigabytes. The analyzer achieves a linear perfor-
mance with respect to the trace size. The remaining factors
impacting its performance are also discussed. The main in-
terest of the proposed approach is the efficiency obtained
in monitoring such extensive and detailed execution traces
for a very large number of simultaneous possible patterns of
problematic behavior.

General Terms
Performance, Security, Languages, Verification

Keywords
Finite State Machines, Kernel Tracing, Trace Analysis, Pat-
tern Matching, Performance Debugging

1. INTRODUCTION

By carefully examining execution traces of a computer sys-
tem, experts can detect problematic behavior caused by soft-
ware design defects, inefficiencies as well as malicious activ-
ities. Kernel tracing can often reveal the main source of
such problems. Tracing consists in instrumenting the ker-
nel code to precisely record its behavior at execution time.
Typical kernel events traced include all system calls from
processes, scheduling events, interrupts, I/O operations and
may include locking operations.

It is now possible to achieve low overhead, low disturbance
tracing of multi-core Linux systems with the Linux Trace
Toolkit next generation (LTTng). It provides precise, low
impact, highly reentrant tracing and is used for efficiently
debugging large clusters [7] as well as narrowing time con-
straints problems in real-time embedded applications [13].
The information about the filesystem, inter-process commu-
nication, system calls, memory management and networking
is efficiently collected, precisely time stamped and saved at
runtime. This information is used to debug the monitored
system and a large class of problems may be detected, such
as excessive disk swapping, excessive threads migration, fre-
quent writes of small data chunks to disk, locking problems,
security problems and many others. Once the execution
trace is available, the objective is thus to automatically val-
idate it against a pool of predefined problematic patterns.

The novelty of the approach lies in the application of pow-
erful patterns to detailed operating system level traces. The
applications run unmodified, with a minimal overhead im-
posed by the operating system level tracing. A particular
emphasis was placed on performance, given the detailed level
of the traces (their size potentially in tens of gigabytes), the
increasing number of parallel cores in systems, and the mul-
tiple patterns to be checked simultaneously.

Motivations and Goals. Execution traces can either be
analysed on the fly in memory or offline (on a different sys-
tem or a posteriori on the same system). On the fly analysis
may obviate the need to store on disk the execution trace
and may be interesting from an overhead point of view if
a small number of simplem patterns are searched for; in
that case the pattern searching may be faster than storing
the trace. For many applications, however, it is interesting



to store the trace anyway. The stored trace may indeed be
used to dig into an issue further when a problem is detected.
Moreover, in many cases, it may be desirable to search for a
large number of complex patterns without impacting much
the performance of the studied system. For these reasons,
an offline system was implemented. It should be noted, how-
ever, that the algorithms presented in this article work in a
single pass and would thus be just as well applicable to on
the fly analysis.

The most popular kernel trace analysis tools that help sim-
plify the debugging task provide offline event filtering and
trace visualization. These tools include LTTV [17], QNX
Momentics [2] and Windriver Workbench [4]. Offline filters
are used to highlight the events of interest satisfying a set
of constraints. Visualizers, such as the Gantt chart of the
control flow view (e.g. LTTV [17]), help the developer seek
throughout the trace and determine visually any sort of un-
expected behavior. Even when these tools are used, validat-
ing the existence of a set of problematic patterns in one or
several large traces remains a manual and time consuming
task. This motivated the development of an automated ap-
proach to represent patterns of problematic behavior and to
automatically and simultaneously check for their existence
in one or several large traces.

1.1 Related Work
Frequent pattern mining for kernel trace data [16] is a recent
work aiming at the detection of recurring runtime execu-
tion patterns, such as inter-process communication patterns.
The work finds the set of all temporally proximal events that
occurred frequently in a trace. This helped identify the pro-
cesses that are heavy consumers of system resources but still
remain invisible to traditional tools such as top. This ap-
proach is interesting but doesn’t allow validating the trace
against a set of predefined patterns which may occur very
rarely in the trace.

Systemtap [15] and DTrace [8] provide scripting languages
resembling C that are used to enable probe points in the
kernel (instrumentation sites) and to implement their asso-
ciated handlers. These handlers could be used to perform
run-time checking and to generate warnings when something
bad happens. The script file is translated into C code and
then compiled into a binary kernel module. These C-like
scripting languages do not provide a simple way to describe
complex patterns at a high level of abstraction. While this
approach implements the basic instrumentation mechanism,
it does not provide a framework to either perform pattern
searching or to store the event data in an execution trace
for later analysis.

In parallel computing, many tools exist that are able to au-
tomatically detect performance problems in MPI, OpenMP
or hybrid applications. These tools include Paradyn [18]
and EXPERT [21]. EXPERT instruments the application’s
source code so that a trace file in the EPILOG format is
generated upon running the program. The performance pat-
terns are supplied to the tool and are written as Python
classes implementing a common interface, making them ex-
changeable from the perspective of the tool. These pattern
classes register callback functions for every event of interest
and are capable of accessing additional events by retrieving

the updated state information or by following some event
dependencies. In the system that we propose, the patterns
coded using the State Machine Language can similarly ac-
cess the updated system state maintained by the LTTng
Viewer.

Using Finite State Machines to describe patterns is found
in the field of network based Intrusion Detection, particu-
larly in misuse detection systems or scenario-based systems.
The State Transition Analysis Technique (STAT) [14], de-
veloped at University of Santa Barbara, is used to model
computer penetrations with Finite State Machines (FSM)
patterns called attack scenarios. Each scenario is composed
of states and transitions. Transitions are triggered by the
occurrence of particular events on the network and can take
the system from an initial safe state to a final compromised
state. The main features of the STAT language such as tran-
sition guards and actions are also found in the State Machine
Language [3] which we will be using in our work because of
its open-source implementation. By the time the article [14]
was written, around 35 attack scenarios were described using
the STAT language, and the authors claim that no limit in
the expressiveness of the language was found. Furthermore,
recent work has been done to automatically translate the
large collection of rules written for SNORT - a popular in-
trusion detection system - into STATL scenarios. We believe
the STAT approach could be very well applicable to kernel
traces for many reasons. First the objective is quite simi-
lar; in both cases, patterns are composed of a sequence of
events that could be used to describe either security threats
or performance problems. Secondly, the automata-based ap-
proach provides an easy way to describe complex patterns
from multiple simple ones, through the creation of synthetic
events.

Ragel [19] is a popular state machine compiler used mainly
to generate lexical analyzers and to validate user input. The
generated code tries to match patterns to the input, favoring
longer patterns over shorter ones. The Ragel language pro-
vides four types of transition actions. They allow the FSM
developer to execute a particular action whenever the state
machine transitions from one state to another. However,
none of the provided actions allow us to explicitly assign
different actions for different transitions, from any state in
the FSM.

2. FAULTY BEHAVIOR
While the system will be easily extensible at a later time,
it was important to start by collecting a representative set
of problematic patterns touching on several fields such as
security, software testing and performance debugging. For
sake of brevity, a representative subset is described here.

2.1 Security
The SYN flood attack is a denial of service attack that con-
sists in flooding a server with half-open TCP connections.
Signs of a SYN flood attack may be found in a kernel trace
if the relevant events were instrumented. It would be very
inefficient to manually look for patterns caused by such an
attack, thus the interest in automating the lookup process.

Escaping the chroot jail is another attack type that can be
caught on a system: a privileged process (euid=0) may want



to confine its access to a subtree of the filesystem by calling
the chroot() system call, immediately followed by the call
chdir(“/”) to setup the chroot jail. If a process ever tries to
open a file after the call to chroot(), without a chdir(“/”),
then this is considered to be a security vulnerability [9]. In-
deed, a malicious user can trick the program to open the
system file ../../../../../etc/shadow, for example.

Even though they are rare, Linux viruses do exist and they
could be detected on a traced system. The approach we
propose is different from the ones used in anti-virus soft-
ware. An instrumented Linux kernel records all interactions
with the operating system. This interaction, consisting in
a sequence of system calls, includes the behavior of possi-
ble viruses, to search for when analyzing traces generated
from production systems. For example, in [12], the virus
Linux.RST.B was observed generating the following actions:
it executes a temporary file “.para.tmp” which creates three
other processes; it opens and lists the current directory and
modifies the binary files in /bin. By analyzing a kernel trace,
it should be possible to detect a viral behavior automatically,
while diagnosing at the same time some other security and
performance problems.

2.2 Software Testing
Shared resources often require locks to be held before ac-
cessing them, to avoid race conditions. In the Linux kernel,
locking is more complex than in user-space, due to the dif-
ferent states the kernel could be in (preemption enabled,
disabled, servicing an irq, etc.). Validating each and every
lock acquire has already been implemented in lockdep, the
Linux kernel lock validator [1]. For instance, it makes sure
at run-time that any spinlock being acquired when inter-
rupts are enabled has never been acquired previously in an
interrupt handler. The reason is that the interrupt could
happen at any time, in particular when the spinlock is al-
ready held, deadlocking therefore the corresponding CPU.
Activating this option requires recompiling the kernel and
adds a continuous overhead on the system. Instead, using
a kernel trace and a posteriori analysis, the same kind of
validations may be performed.

Another detectable programming bug consists in accessing
a file descriptor after it was closed. This illustrates a more
general class of programming errors where the usage spec-
ifications state that two particular events are logically and
temporally connected.

2.3 Performance Debugging
Some inefficiencies in software could be detected from I/O
events. For instance, frequent writes of small data chunks to
disk would impact the overall system performance and are to
be avoided. Similarly, reading the data that was just written
to disk, or reading twice the same data, or even overwriting
the data that was just written, are all signs of inefficiencies
that are visible in a kernel trace.

Multimedia applications, and more generally soft real-time
applications, are characterized by implicit temporal con-
straints that must be met to provide the desired QoS [5].
Assuming that tracing the kernel scheduler has a negligi-
ble impact on the system, we can verify that temporal con-
straints are satisfied for one or multiple real-time applica-

Figure 1: Detecting half-open TCP connections

tions, and whenever they are not, we can show what the
system was doing at that time.

3. AUTOMATA-BASED APPROACH
We first describe in 3.1 the state machine language and we
show how it was used to model the three following scenar-
ios: chroot jail escape, locking validation and real-time con-
straints checking.

3.1 SM Language
Describing the various patterns using the SM Language [3]
is straightforward. Even though many existing languages
are capable of expressing the different scenarios described
in section 2, a state-transition language was selected for the
following reasons:

1. Simplicity and expressiveness: the language is easy
to use and provides enough features to express new, yet
to be defined, scenarios [14].

2. Domain independent: the language may be tailored
to support a wide range of patterns that relate to dif-
ferent fields. In the Intrusion Detection field, state-
transition language is widely used to model attack sig-
natures [20], [14]. In model checking and Software Se-
curity, it is equally used for scenario-oriented modeling
to examine security properties [10], [11] or to verify and
validate software use cases [6].

3. Synthetic events: the state-transition approach lets
us easily generate synthetic events from lower level pri-
mary events [14]. Consider for instance the SYN flood
attack detection. We first model a half-open TCP con-
nection using the state machine shown in Figure 1.
When the server receives a connection request, the sys-
tem moves to state S1. The server sends the acknowl-
edgment and a timer is started. If the client sends
back the acknowledgment, the system returns to state
S0. Otherwise, when the timeout occurs, the system
moves to S2 and a synthetic event is generated called
“halfopentcp”. Frequent occurrences of this synthetic
event would probably mean that an attack is taking
place. Synthetic events are very useful when describ-
ing even more complex patterns.

The State Machine Language supports the declaration of a
state and the transitions originating from it. Each transition
has a name, an optional argument list, an optional transi-
tion guard, a destination state and a transition action. The
guard is a boolean expression written in the target language
source code and copied verbatim into the generated output.
As such, the guard can do much more than simply associate
the transition with an event type, it can contain arbitrarily



Figure 2: Escaping the chroot jail

Table 1: SM Code Snippet

complex logic like testing properties of the event or of the
system state. If the expression is evaluated to true, then
the transition is triggered and the transition action is ex-
ecuted. The destination state could be defined in another
state machine declared in another file for simplicity. The
transition actions are functions implemented in the target
language and could have a regular argument list. Similarly,
every state can have on-entry actions as well as on-exit ac-
tions than could be useful to start/stop a timer or update
some internal data structures.

3.2 Escaping a chroot jail
An automaton showing the sequence of system calls that
may result in a security violation is shown in Figure 2. The
vulnerability is explained in 2.1. A call to chroot() brings the
system to state S1 and saves the process id. Furthermore, a
new FSM is forked in case a new chroot() call is issued by
another process. The FSM fork is initiated by the transition
action fork fsm(). Any process issuing a successive call to
chdir(“/”), brings back the corresponding FSM to state S0,
whereas a call to open() brings it to S2 and generates a
warning. The machine transitions to a fourth Exit state,
not shown here, and it happens whenever the exit() call is
issued by the process.

We show in table 1 a self explanatory code snippet of the
language describing state S1 from Figure 2. From state S1,
two transitions are possible, chdir() and open(). If the en-
countered event is a call to chdir, then the transition guard
(between square brackets) is evaluated. In this case, if the
functions same pid() and check new dir() return true, then
the transition is triggered and the system moves back to
state S0. It is also possible to have a transition action (be-
tween braces). In our example, the call to the function warn-
ing() occurs only if the corresponding transition guard is
evaluated to true.

3.3 Locking Validation
We generate in Figure 3 an automaton that will validate
a subset of the kernel locking rules. The event irq entry()
brings the system to state Irq Handling and event irq exit()
brings it back to its normal state. Any lock could either

Figure 3: Locking Validation

be acquired from the normal state (S0 or Holding Lock) or
the Irq Handling state. If a lock being acquired when in-
terrupts are enabled has been previously acquired from the
Irq Handling state, the system transitions to state Poten-
tial Deadlock. The reason is that once this lock is taken
and before it gets released, if the code is interrupted by the
same handler which tries to acquire the same lock, then a
deadlock occurs. Similarly, if a lock previously taken when
irqs were on, is now being acquired from an irq handler,
then the system should also transition to the state Poten-
tial Deadlock.

Suppose the system is in state Holding Lock on a particular
processor, where a lock is being held on behalf of a certain
process. If this process gets scheduled out, then there is
another potential deadlock due to the fact that some other
process may require the same lock.

Nested locks, taken on behalf of the same process could
deadlock the system if they are not taken in the right order.
When the system is in the state Holding Lock, the arrival
of a new event lock acquire would trigger the corresponding
transition. This results in a call to a function that generates
trees of lock dependencies implemented in a hashing table.
At the end of the analysis, if a cycle is found, then there is
a potential deadlock and the involved locks are shown. The
return address, which is a traced event argument, can help
identify the code section responsible for holding the lock.

During our experiments, an interesting case was found in
function copy pte range(), in mm/memory.c in the Linux
kernel, which generated a cycle in our analysis. The suspi-



Table 2: Suspicious Code Sequence

Figure 4: Real-Time Constraints Checking

cious code sequence that caused the problem is abstracted
in Table 2. The function receives pointers to two mm struct
structures and always locks the destination page table lock
spinlock, followed by the source lock. If another CPU is do-
ing the copy but with the reversed parameters, then the locks
would be taken in the opposite order and a deadlock can oc-
cur. After further investigation, we noticed that a call to
this function is initiated by a call to copy process() in fork.c
which is called when forking a process. This function calls
dup mm() which allocates memory for a new mm struct be-
coming the dst mm shown in Table 2. Since no other pro-
cessor could be using the newly initialized structure as being
the src mm in function copy pte range(), there is no poten-
tial deadlock. However, this shows how our approach was
useful to identify suspicious code sequences.

3.4 Real-time Constraints Checking
To support soft real-time applications, the kernel should re-
spect the application’s temporal constraints and therefore a
predictable schedule is desired [5]. Such applications may
require periodic scheduling where the period is derived from
the frame rate of an audio/video stream, for example. We
show in Figure 4 a detailed state machine that enables us
to check if the application’s execution period has been re-
spected throughout the life of the trace. Whenever it’s not,
we show the list of events that hindered the application’s
scheduling.

From state Sleeping, the transition schedule in() brings the
FSM to the Running state and saves the event time stamp; it
also computes the difference between every two consecutive
schedule in() events. If the result is greater than a user
specified threshold, a warning is generated. The event time
stamp displayed by the warning() call, can then be used
to reach and scrutinize the preceding events once the trace
is opened using the Linux Trace Toolkit Viewer (LTTV).

From the Running state, the event schedule out() brings
the FSM back to the Sleeping state. The time stamp of
this event is also used to compute the assigned time slice
for the application so that the transition could also trigger
a warning when the time slice is less than expected.

4. IMPLEMENTATION
We used the Linux Trace Toolkit LTTng, a low-impact,
open-source kernel tracer, to instrument the kernel events
required by the patterns description. We used the SMC
compiler to generate C code for the state machines written
in the SM language. The compiler is an open-source java
program that supports code generation in 14 different lan-
guages.

For every event required by a given pattern, the analyzer reg-
isters callback functions with the trace reader and visualizer
program LTTV. The program reads the trace sequentially
in one pass. When a registered event is encountered, the
analyzer calls the corresponding transition for every related
state machine. There, if the transition guard is evaluated
to true, the transition action is executed before entering the
destination state and returning control to the analyzer.

In some cases, when a transition is triggered, a new FSM of
the same type needs to be forked. This is referred to as a
non-consuming transition type in STATL terminology (see
example in 3.2). Whenever required, a transition action can
request a fork from the analyzer, generating therefore a new
instance of the FSM.

In other cases, such as the locking validation pattern, one
finite state machine per CPU is enough. There, the analyzer
determines on which CPU the event occurred, and only calls
the transition of the FSM for that particular CPU.

The FSM approach offers great flexibility to model, up-
date and optimize one or several patterns. When we in-
strumented the events of interest for the locking validation
pattern, we noticed that the irq entry and exit events are not
needed because the information could be determined from
the lock acquire() event. At this point, we simply eliminated
the Irq Handling state from our FSM.

5. PERFORMANCE
The performance of the proposed trace analysis procedure
should depend on the number of events in a trace (i.e. trace
size) and the number of possible transitions to evaluate in
simultaneous active finite state machines (the number of co-
existing finite state machines and the frequency of relevant
events that may trigger a transition). We instrumented the
Linux kernel version 2.6.26 using LTTng and the tests were
performed on a Pentium 4 with 512 MB of RAM. For the
tests, several paremeters were varied independently in order
to evaluate their effect on performance.

In the first test, three different patterns were searched in
traces of varying size (500MB, 1GB, 1.5GB, 2GB). Table
3 presents the execution time of our analyzer to look up 3
different patterns: real-time constraints, file descriptors and
the chroot patterns. These results show that the execution
time is linear with respect to the trace size. The number of
coexisting finite state machines depends on the pattern in



Table 3: Performance Results

question. For instance, checking the file descriptors usage
required one FSM per process accessing one file descriptor,
whereas the chroot pattern needs one FSM per process, the
locking validation pattern needs one FSM per CPU, and
the real-time checking requires just one FSM for the Movie
Player (mplayer) process.

Interestingly, the execution time for searching each pattern
does not vary much and even checking for all three patterns
simultaneously is only slightly longer. This is explained by
the fact that reading through the whole trace, to find rel-
evant events, already takes a significant amount of time.
Then, depending on the patterns searched, additional exe-
cution time is required to run relevant events through the
simultaneous FSMs.

Thus, if the time to read through the 500MB trace is C and
the time to search in FSMs is respectively for patterns real-
time, RT, file descriptors, FD, and chroot, CH, we can iso-
late each component using the results for searching each pat-
tern and then for searching simultaneously for all patterns.
Given, from the first column of Table 3, that C + RT =
55s, C+FD = 57s, C+CH = 55, C+RT +FD+CH = 67,
we can deduce that C = 50s,RT = 5s, FD = 7s, CH = 5s.

We could have expected that the file descriptor pattern, re-
quiring one FSM per process accessing one file descriptor,
would be significantly more costly than the real-time con-
straint, requiring a single FSM. However, the execution time
is similar due to the fact that event sched schedule() (rela-
vant for the real-time pattern) was occurring much more
frequently than events read() and write() (relevant for the
file descriptor pattern).

Table 4 presents the performance of the analyzer when val-
idating the file descriptor pattern against traces of different
sizes, and compares it with the analyzer’s performance with-
out invoking the FSMs, but only registering empty callback
functions for the 6 events of interest. This is useful to isolate
the time required to check the patterns from the time needed
simply to get the relevant events from the trace. In addi-
tion, two interesting metrics are provided with this test, the
number of relevant events and the number of simultaneously
active FSMs.

The traces used for this test were generated using two dif-
ferent loads. The first 4 traces were generated while running
dbench as a server for 1 client. Dbench is a widely used file
oriented benchmark. It recreates the file operations required
on a typical file server to serve desktop clients. The last
trace was generated while the GNU C Compiler, gcc v.4.2.0,
was compiling itself. The relevant events for the file descrip-
tor pattern are the following system calls: close(), open(),
read(), write() and dup(), as well as the process exit() kernel
event. The slowdown for each test is computed by compar-

Figure 5: Fixing trace size to 500MB, varying the
number of dbench clients

ing the execution time between the two configurations of the
analyzer (empty callbacks on relevant events versus checking
the patterns using the relevant events).

The analysis time for the same trace length differs signifi-
cantly between the two tests, dbench vs gcc. Indeed, the
slowdown was much higher for the gcc trace, even though
it contained fewer relevant events than the other traces of
similar size. The computed slowdown suggests a direct cor-
relation with the maximum number of coexisting finite state
machines handled by the analyzer. For instance, the gcc
compilation generated much more (around 50 times) coex-
isting FSMs than running one dbench client, due to the nu-
merous processes (accessing different file descriptors) gener-
ated by the compilation makefile. This resulted in a larger
impact on the analyzer’s performance.

In the third test, the trace size was fixed to 500 MB and the
number of dbench clients varied from 1 to 20. The number
of clients is directly proportional to the maximum number of
coexisting FSMs during the analysis. The results in Figure 5
show the slowdown percentage with respect to the maximum
number of coexisting FSMs in the analyzer, for traces of the
same size. The slowdown is directly proportional to the
maximum number of FSMs handled by the analyzer. This
is expected because the analyzer invokes sequentially all the
FSMs in the list for every relevant event, whether the event
is needed at the FSM’s current state or not.

In a separate test, the performance of the pattern checker,
the code generated from the State Machine Language de-
scription, was evaluated using the locking validation pattern.
The locking validation pattern is indeed most demanding
because of its complexity and very high frequency of lock-
ing and unlocking events. A hand-written locking valida-
tion pattern checker was written in C. It stores the locking
state and updates it at each locking and unlocking event.
Its algorithmic complexity is expected to be the same as
the checker generated from a higher level SML description.
However, being hand-written and statically linked as a ded-
icated application, it avoids some of the indirection caused
by the more generic pattern checking machinery.



Table 4: Slowdown of the analyzer due to FSM invocation with respect to its performance with empty
callbacks

Interestingly, the performance of the generated FSM checker
was only 4.5% slower than the dedicated hand-written ver-
sion for the locking validation pattern, a worst-case most
demanding pattern. It was expected that a hand-written
checker would be faster, especially for the locking validation
pattern. However, the small difference is, in our opinion,
easily offset by the gain provided by the ability to model
patterns at a higher level.

6. CONCLUSION
We presented an automata-based approach to describe some
generic patterns of problematic behavior that might occur on
production systems. The generated finite state machines can
be easily maintained, expanded or even be used as synthetic
events to model more complex scenarios. We implemented
an analyzer that validates the existence of such patterns
simultaneously in large traces and in one pass.

The main contribution of this work was to design, imple-
ment and demonstrate a working system capable of obtain-
ing a low overhead detailed execution trace of a production
server, and efficiently check the resulting trace for numerous
patterns in near real-time. This is possible because of the
extremely efficient algorithms used both for the low over-
head tracing and for the pattern detection. The proposed
architecture and pattern language are efficient and simple
to use, and have been demonstrated with a number of real
and highly representative patterns.

The analyzer’s performance depends greatly on the nature
of the patterns being validated. When dealing with a large
number of FSM instances of the same pattern, the analy-
sis time is directly proportional to the number of coexisting
FSMs and the number of relevant events. By carefully select-
ing which events to trace, it may be possible to optimise the
execution time. For instance, the first version of the lock-
ing validation pattern required the events enable irq() and
disable irq() to deduce in which context a given lock was
acquired. It turned out that this information is available at
the site where the lock is being acquired. This reduced the
number of events to trace, resulting in a smaller trace and
a faster analysis.

Another factor impacting the performance of the analyzer
is the following; consider the locking validation pattern in
Figure 3. Even when the current FSM state is S0, every
encountered sched schedule() event would result in calling
the corresponding transition which is irrelevant in state S0.
This will call a default transition which maintains the cur-

rent state and returns control to the analyzer. Instead,
the analyzer could have skipped this step since, from the
current state, there is no transition sensitive to the event
sched schedule(). This could be achieved by dynamically
adjusting the definition of relevant event depending on the
current state for a FSM; the analyzer would compute before-
hand the list of events leading to state transitions for each
state.

The proposed approach is highly parallelizable. It could be
used for online near real-time pattern matching of an ex-
tensive set of patterns, for monitoring very sensitive servers
(e.g. high security applications, extensive test procedures).
Further explorations would be useful to support the defini-
tion and use of synthetic events. This will allow synthesizing
more complex scenarios from multiple simple ones.

7. ACKNOWLEDGEMENTS
The financial support of NSERC is gratefully acknowledged.

8. REFERENCES
[1] The kernel lock validator.

http://lwn.net/Articles/185666. Retrieved on
2009-03-10.

[2] Qnx. http://www.qnx.com. Retrieved on 2009-03-12.

[3] The state machine compiler.
http://smc.sourceforge.net. Retrieved on 2009-01-22.

[4] Windriver.
http://www.windriver.com/products/workbench.
Retrieved on 2009-03-12.

[5] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole.
A measurement-based analysis of the real-time
performance of linux. In Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and
Applications Symposium, 2002.

[6] M. Barnett, W. Girieskamp, and Y. Gurevich.
Scenario-oriented modeling in asml and its
intstrumentation for testing. In Foundations of
Software Engineering, 2003.

[7] M. Bligh, M. Desnoyers, and R. Schultz. Linux kernel
debugging on google-sized clusters. June 2007.

[8] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic
instrumentation of production systems. In USENIX
Annual Technical Conference, 2004.

[9] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of c code. In Proceedings of the 11th
Annual Network and Distributed System Security
Symposium, 2004.



[10] H. Chen and D. Wagner. Mops: an infrastucture for
examining security properties of software. 2002.

[11] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. In
Proceedings of the 12th USENIX Security Symposium,
2003.

[12] M. Desnoyers and M. Dagenais. Tracing for hardware,
driver, and binary reverse engineering in linux.
CodeBreakers Jounal, 1, 2006.

[13] M. Desnoyers and M. R. Dagenais. Low disturbance
embedded system tracing with linux trace toolkit next
generation. In Embedded Linux Conference 2006, 2006.

[14] S. T. Eckmann, G. Vigna, and R. A. Kemmerer. Statl:
An attack language for state-based intrusion detection.
Journal of Computer Security, 10:71–103, 2002.

[15] F. C. Eigler. Problem solving with systemtap. In
Ottawa Linux Symposium, 2006.

[16] C. LaRosa, L. Xiong, and K. Mandelberg. Frequent
pattern mining for kernel trace data. In Proceedings of
the 2008 ACM symposium on Applied computing,
2008.

[17] LTTng. http://lttng.org. Retrieved on 2009-03-10.

[18] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,
R. B. Irving, K. L. Karavanic, K. Kunchithapadam,
and T. Newhall. The paradyn parallel performance
measurement tool. In IEEE Computer magazine, 1995.

[19] RAGEL. http://www.complang.org/ragel. Retrieved
on 2009-03-07.

[20] G. Vigna, S. T. Eckmann, and R. A. Kemmerer. The
stat tool suite. In DARPA Information Survivability
Conference & Exposition, 2000.

[21] F. Wolf, B. Mohr, J. Dongarra, and S. Moore.
Efficient pattern search in large traces through
successive refinement. In Lecture Notes in Computer
Science, 2004.


