AUTOMATA-BASED APPROACH FOR KERNEL TRACE ANALYSIS

Gabriel Matni

Ecole Polytechnique de Montréal
Department of Computer Engineering
gabriel. matni@polymtl.ca

ABSTRACT

This paper presents an automata-based approach for analyz-
ing traces generated by the kernel of an operating system. We
identified a list of typical patterns of problematic behavior, to
look for in a trace, and selected an appropriate state machine
language to describe them. These patterns were then fed
into an off-line analyzer which efficiently and simultane-
ously checks for their occurrences even in traces of several
gigabytes. The checker achieves a linear performance with
respect to the trace size. The remaining factors impacting its
performance are discussed.

I. INTRODUCTION

By carefully examining execution traces of a computer
system, experts can detect problematic behavior caused by
software design defects, inefficiencies as well as malicious
activities. It is now possible to achieve low overhead, low
disturbance tracing of multi-core Linux systems with the
Linux Trace Toolkit next generation (LTTng). It provides
precise, low impact, highly reentrant tracing and is used for
efficiently debugging large clusters [1] as well as narrowing
time constraints problems in real-time embedded applica-
tions [2]. So far, the available tools that can simplify the
debugging task consist of filters and visualizers such as QNX
momentics and LTTV. In this paper, we present an automata-
based approach to represent patterns of problematic behavior
and to automatically check for their existence in one or
several large traces.

Similar work exists in the field of network based Intrusion
Detection, in particular with the misuse detection systems or
scenario-based systems. The State Transition Analysis Tech-
nique (STAT) [3], is used to model computer penetrations as
sequences of actions that result in transitions in the security
states of a system. The STAT run-time core loads and
processes multiple scenario plug-ins encoded into finite state
machines (FSMs), by going over the audit trails in one pass.
The main features of the STAT language such as transition
guards and actions are also found in the State Machine
language that has an accessible, open-source compiler [4].
Similarly, Microsoft Research has developed the Abstract
State Machine Language [5] to model software use cases
and scenarios for validation and verification.

Michel Dagenais

Ecole Polytechnique de Montréal
Department of Computer Engineering
michel.dagenais @polymtl.ca

In the kernel tracing field, Systemtap [6] and DTrace
provide a scripting language resembling C that is used to
enable probe points in the kernel (instrumentation sites)
and to implement their associated handlers. These handlers
could be used to perform run-time checking and to generate
warnings when something bad happens. The script file is
translated into C code and then compiled into a binary
kernel module. While this approach is interesting, it does not
allow off-line analysis, and any attempt to perform complex
analysis at run-time may considerably slow down the system.

We will describe in section II a set of typical patterns
to be looked for in a trace, and then discuss how they
were described using deterministic FSMs in section III. In
section IV, the checker implementation is explained, and its
performance analyzed in section V. We conclude with a brief
discussion of future work.

II. PATTERNS

While the system is easily extensible at a later time, it was
important to start by collecting a large representative set of
patterns, in order to find a most adequate pattern description
language. This representative set touches on several fields
such as security, software testing and performance debug-
ging. For sake of brevity, a representative subset is described
here.

II-A. Security

The SYN flood attack is a denial of service attack that
consists in flooding a server with half-open TCP connections.
Signs of a SYN flood attack may be found in a kernel trace
if the relevant events are instrumented. It would be very
inefficient to manually look for patterns caused by such an
attack, thus the interest in automating the look-up process.

Escaping a chroot jail is another attack type that can be
caught on a system: a privileged process (euid=0) may want
to confine its access to a subtree of the filesystem by calling
the chroot() system call. If this process ever tries to open a
file after the call to chroot(), then this is considered to be
a security violation [7]. Indeed, a malicious user can trick
the program to open the system file ../../../../../etc/shadow
for example. The right way to proceed would be to call



chdir(*/”) right after the call to chroot(), preventing the user
from ever escaping the chroot jail.

II-B. Software testing

Shared resources often require locks to be held before
accessing them, to avoid race conditions. In the Linux kernel,
locking is more complex than in user-space due to the
different states the kernel could be in (preemption enabled,
disabled, servicing an irq, etc.). Validating each and every
lock acquisition has already been implemented in lockdep,
the Linux kernel locks validator. For instance, it makes
sure at run-time that any spinlock being acquired when
interrupts are enabled has never been acquired previously in
an IRQ handler. The reason is that the interrupt could happen
at any time - in particular when the spinlock is already
held - and when the IRQ handler tries to acquire it, the
corresponding CPU will spin forever. Activating this option
requires recompiling the kernel and adds a slight overhead
to the system. Instead, using a kernel trace and a posteriori
analysis, the same kind of validations may be performed.

Another detectable programming bug consists in accessing
a file descriptor after it has been closed. This illustrates a
more general class of programming errors where the usage
specifications state that two particular events are logically
and temporally connected.

II-C. Performance debugging

Multimedia applications, and more generally soft real-
time applications, are characterized by implicit temporal
constraints that must be met to provide the desired QoS [8].
Assuming that tracing the kernel scheduler has a negligible
impact on the system, we can verify that temporal constraints
are satisfied for one or multiple real-time applications, and
whenever they are not, we can show what the system was
doing at that time.

III. AUTOMATA-BASED APPROACH

Even though many existing languages are capable of
expressing the different scenarios described in section II,
a state-transition language was selected for the following
reasons:

o Simplicity and expressiveness: the language is easy to
use and provides sufficient features to express new, yet
to be defined, scenarios [3] .

o Domain independent: the language may be tailored to
support a wide range of patterns that relate to different
fields. In the Intrusion Detection field, state-transition
language is widely used to model attack signatures [3].
In model checking and Software Security, it is equally
used for scenario-oriented modeling to examine security
properties [7] or to verify and validate software use
cases (AsmL [5]).

« Synthetic events: the state-transition approach lets us
easily generate synthetic events from lower level pri-
mary events [3]. Consider for instance the SYN flood
attack detection. We first model a half-open TCP con-
nection using the state machine shown in Figure 1.
When the server receives a connection request, the
system moves to state S1. The server sends the ac-
knowledgment and a timer is started. If the client sends
back the acknowledgment, the system returns to state
S0. Otherwise, when the timeout occurs, the system
moves to S2 and a synthetic event is generated called
“halfopentcp”. Frequent occurrences of this synthetic
event would probably mean that an attack is taking
place. Synthetic events are very useful when describing

even more complex patterns.

SYN timeout

ACK

Fig. 1. Half open TCP connection

We now describe how the three following scenarios were
modeled using FSMs: chroot jail escape, locking validation
and real-time constraints checking.

III-A. Escaping a chroot jail

An automaton showing the sequence of system calls that
may result in a security violation is shown in Figure 2. The
vulnerability is explained in II-A. A call to chroot() brings
the system to state S1 and saves the process id. Furthermore,
a new FSM is forked in case a new chroot() call is issued by
another process. The FSM fork is initiated by the transition
action fork_fsm(). Any process issuing a successive call to
chdir(“/””), brings back the corresponding FSM to state SO,
whereas a call to open() brings it to S2 and generates a
warning. The machine transitions to a fourth Exit state, not
shown here, and it happens whenever the exit() call is issued
by the process.

open()
[same_pid()]

chroot()

{fork_fsm();
save_pid();}

{warning("...");}

chdir(*/")
[same_pid()]

Fig. 2. Escaping the chroot jail.



III-B. Locking validation

We generate in Figure 3 an automaton that will validate
a subset of the kernel locking rules. The event irq_entry()
brings the system to state Irq_Handling and event irq_exit
brings it back to its normal state. Any lock could be acquired
either from one of the normal states (SO or Holding_Lock)
or from the Irq_Handling state. If a lock being acquired
when interrupts are enabled has previously been acquired
from the Irq_Handling state, the system transitions to state
Potential Deadlock. The reason is that once this lock is
taken and before it gets released, if the code is interrupted
by the same handler which tries to acquire the same lock,
then a deadlock occurs. Similarly, if a lock previously taken
when irqs were on, is now being acquired from an irq
handler, then the system should also transition to the state
Potential_Deadlock.

Suppose the system is in state Holding_Lock on a par-
ticular processor, a lock being held on behalf of a certain
process. If this process gets scheduled out, then there is
another potential deadlock due to the fact that some other
process may require the same lock.

Potential_
Deadlock

lock_acquire()
lock_release()

lock_acquire()

Holding_
Lock

lock_release()

irq_exit() irq_entry() irg_entry

sched_shedule()

Sleeping
while holding
lock

Irq_
Handling

lock_acquire()
lock_release()

Fig. 3. Locking Validation

III-C. Real-time constraints checking

To support soft real-time applications, the kernel should
respect the application’s temporal constraints and therefore
a predictable schedule is desired [8]. Such applications may
require periodic scheduling where the period is derived from
the frame rate of an audio/video stream for example. We

show in Figure 4 a detailed state machine that enables
us to check if the application’s execution period has been
respected throughout the life of the trace. Whenever it is not,
we show the list of events that hindered the application’s
scheduling. From state Sleeping, two schedule_in() transi-
tions bring the FSM to the Running state and save the event
time stamp. The guarded transition has a higher execution
priority than the other one. It computes the time difference
between every two consecutive schedule_in() events. If the
result is greater than a user specified threshold, a warning is
generated. The event time stamp displayed by the ’warning’
can then be used to determine all the preceding events once
the trace is opened using the Linux Trace Toolkit Viewer
(LTTV). From the Running state, the event schedule_out()
brings the FSM back to the Sleeping state. The time stamp
of this event is also used to compute the assigned time slice
for the application, so that the transition could also trigger
a warning when the time slice is less than expected.

schedule_in()

[ts2-ts1>threshold]
{warning('...’, ts2); save_ts()}

schedule_in()

{save_ts()}

Sleeping

schedule_out()

[timeslice<...]
{warning("...");}

Fig. 4. Real-time constraints validation

IV. IMPLEMENTATION

In order to trace the relevant events for our analysis, we
instrumented the kernel using the Linux Trace Toolkit, a low
disturbance kernel and user space tracer. The information
about the filesystem, inter-process communication, system-
calls, memory management and kernel locking is efficiently
collected, precisely time-stamped and saved at run-time.
To implement the FSMs, we used the open source State
Machine Compiler (SMC) that converts input files written
in the state machine language into C, C++ or Java code,
(other languages are supported). We show in table I a self
explanatory code snippet of the language describing state S1
from Figure 2. From state S1, two transitions are possible,
chdir() and open(). If the encountered event is a call to
chdir, then the transition guard (between square brackets)
is evaluated. In this case, if the functions same_pid() and
check_new_dir() return true, then the transition is triggered
and the system moves back to state SO. It is also possible to
have a transition action (between braces). In our example,
the call to the function warning() occurs only if the corre-
sponding transition guard is evaluated to true.



Table I. sm language snippet
S1{
chdir(pid: int, newdir: char *)
[same_pid(pid) && check_new_dir(newdir)]
SO

open(pid: int)
[same_pid(pid)]
S2
{ warning(pid);destroy_fsm();}
}

The transition guards and actions are implemented in C
and linked to the checker. The checker is a shared library
that is dynamically linked to the trace reader and visualizer
program called LTTV (Linux Trace Toolkit Viewer). The
checker works as follows: it instantiates one FSM per
pattern. For every event of interest, it registers callback func-
tions with LTTV. When a relevant event is encountered, the
checker first calls the transition(s) registered for this event
and then, if needed, forks new state machine instances and
adds them to its state machines list (see example in III-A).
In some cases, such as the locking validation pattern, one
FSM per CPU is enough. There, the checker determines on
which CPU the event occurred, and only calls the transition
of the FSM for that particular CPU.

Furthermore, when we instrumented the events of interest
for this pattern, we noticed that the irq entry and exit events
are not needed because the information could be determined
from the lock_acquire() event. At this point, we simply
eliminated the irq_handling state from our FSM.

We study the performance of the checker and we compare
the performance of the automata-based approach with that
of a dedicated implementation in section V.

V. PERFORMANCE

We used the SMC compiler to generate C code from
the state machines described using the SM language. We
instrumented the Linux kernel version 2.6.26 using LTTng
and the tests were performed on a Pentium 4 with 512 MB of
RAM. In table II we show the execution time of our checker
to look up 3 different patterns: real-time constraints, file
descriptors and the chroot patterns in traces of different sizes.
Our results show that the execution time is linear with respect
to the trace size. In fact, the performance of the checker
depends on three other factors: the number of coexisting
FSMs, their complexity (i.e. memory usage per state and
transition) and the frequency of relevant events triggering
a transition. The number of coexisting FSMs depends on
the pattern in question. For instance, the fd checker has one
FSM per process accessing a file descriptor whereas the real-
time checker worked on just one FSM for the Movie Player
(mplayer) process. We obtained similar execution times due
to the fact that event sched_schedule() was occurring more
frequently than events read() and write().

Table II. execution times

500MB 1GB 1.5GB 2GB

rt checking 55s 117s 168s 252s
fd checking 57s 119s 166s 266s
chroot checking 55s 108s 166s 266s
all 67s 123s 184s 279s

The performance of the FSM checker was 4.5% slower
than the dedicated version when validating the locking
pattern. This was expected because it dealt with frequently
occurring events leading to frequent FSM invocations. How-
ever, our approach is more generic and the overhead is often
acceptable in offline analysis.

VI. CONCLUSION AND FUTURE WORK

Being able to validate a trace against a collection of pre-
defined problematic patterns is the goal of our work. We im-
plemented a few representative patterns using the automata-
based approach and a framework that checks for their
existence in kernel traces. The implemented FSM checker
is slower than the dedicated version but is more generic,
allowing patterns to be easily described and maintained. We
would like to extend our framework to support generating
synthetic events and therefore be able to simplify the task
of representing large and complex scenarios.

VII. REFERENCES

[1] Martin Bligh, Mathieu Desnoyers, and Rebecca Schultz,
“Linux kernel debugging on google-sized clusters,” June
2007.

[2] Mathieu Desnoyers and Michel R. Dagenais, “Low
disturbance embedded system tracing with linux trace
toolkit next generation,” in Embedded Linux Conference
2006, 2006.

[3] Steven T. Eckmann, Giovanni Vigna, and Richard A.
Kemmerer, “Statl: An attack language for state-based
intrusion detection,” Journal of Computer Security, vol.
10, pp. 71-103, 2002.

[4] Charles W. Rapp, “http://smc.sourceforge.net/,” .

[5] Mike Barnett, Wolfgang Girieskamp, and Yuri Gure-
vich, “Scenario-oriented modeling in asml and its
intstrumentation for testing,” in Foundations of Software
Engineering, 2003.

[6] Frank Ch. Eigler, “Problem solving with systemtap,” in
Ottawa Linux Symposium, 2006.

[7] Hao Chen and David Wagner, “Mops: an infrastucture
for examining security properties of software,” 2002.

[8] Luca Abeni, Ashvin Goel, Charles Krasic, Jim Snow,
and Jonathan Walpole, “A measurement-based analysis
of the real-time performance of linux,” in Proceedings of
the Eighth IEEE Real-Time and Embedded Technology
and Applications Symposium, 2002.



