
Combined Tracing of the Kernel and Applications with LTTng

Pierre-Marc Fournier
École Polytechnique de Montréal

pierre-marc.fournier@polymtl.ca

Mathieu Desnoyers
École Polytechnique de Montréal

mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

Increasingly complex systems are being developed and
put in production. Developers therefore face increas-
ingly complex bugs. Kernel tracing provides an ef-
fective way of understanding system behavior and de-
bugging many types of problems in the kernel and in
userspace applications. In some cases, tracing events
that occur in application code can further help by pro-
viding access to application activity unknown to the ker-
nel.

LTTng now provides a way of tracing simultaneously
the kernel as well as the applications of a system. The
kernel instrumentation and event collection facilities
were ported to userspace. This paper describes the ar-
chitecture of the new LTTng Userspace Tracer and how
it can be used in combination with the kernel tracer.
Results of some early performance tests are also pre-
sented.

1 Introduction

Technologies such as multi-core, clusters and embedded
systems are used to build increasingly complex systems,
which results in developers facing increasingly complex
bugs. These bugs may for example occur only in pro-
duction, disappear when probed, occur rarely or have
for only symptom a slowdown of the system. These
characteristics make traditional debugging tools ineffec-
tive against them. New debugging tools are therefore
required.

The impact of these tools on system performance must
be as small as possible, so they can run on systems in
production, whose hardware is chosen to match the pro-
duction load (and not debugging tools), or on which

adding debugging tools may render certain bugs unre-
producible.

Kernel tracing is one of these tools. It may be used to
understand a great variety of bugs. Quite often, the ker-
nel is aware of all the important activities of an appli-
cation, because they involve system calls or traps. In
certain cases however, kernel tracing is not sufficient.
For example, the execution of applications that process
a large number of requests or that have a large num-
ber of threads may be more difficult to follow from a
kernel perspective. For this reason, applications need
to be traceable too. It is moreover highly desirable that
userspace trace events be correlatable with kernel events
during the analysis phase.

LTTng[3], while providing a highly efficient kernel
tracer, lacks a userspace tracer of equal performance.
In this paper, the LTTng Userspace Tracer, a work in
progress to fill this gap, is described. In the next sec-
tions, its architecture is presented. Afterward, perfor-
mance results are shown, followed by proposals for fu-
ture work.

2 Related Work

The classic strace tool provides a primitive form of
userspace tracing. It reports system calls and signals in
a process. Unfortunately, its usage induces a significant
performance penalty. It is moreover limited to tracing
system calls and signals, both of which are nowadays
obtainable at a much lower cost through kernel tracing.

DTrace has statically defined tracing (SDT) that can be
used inside userspace applications[6]. This implementa-
tion uses special support inside the runtime linker. Upon
activation of an instrumentation point, NOP instructions

1



placed by the linker are replaced by an instruction that
provokes a trap. Probes are limited to 4 arguments.

SystemTap has an implementation of SDT[2] that seems
to be very similar to that of DTrace.

LTTng has offered several different userspace tracing
technologies over the years. The first is called "system
call assisted" userspace tracing. It declares two new sys-
tem calls. The first is used to register an event type;
it returns an event ID. The second is used to record an
event; it requires an event ID and a payload to be passed
as arguments.

The second, called "companion process" userspace trac-
ing, requires no kernel support. Processes write their
events in buffers in their own adress space. Each thread
had a "companion" process, created by the tracing li-
brary, that shares the buffers (through a shared mem-
ory map). The companion consumes the buffers using a
lockless algorithm.

After some refactoring of the LTTng core, these two
approaches were dropped. Eventually, a quick replace-
ment was devised, which consists in a simple system call
taking a string as argument. Calling it produces an event
whose argument is the string. The event always has the
same name; an indication of the application generating
the event needs to be prepended to the string.

Eventually, the feature was moved from a system call
to a file in DebugFS (/debug/ltt/write_event).
Writing a string to this file generates an event called
userspace_event whose argument is the string.

Ftrace[7], another kernel tracer, has a similar feature us-
ing a file called trace_marker.

3 Architecture

The LTTng Userspace Tracer (UST) is a port of the
LTTng static kernel tracer to userspace. This section
describes the architecture of the UST, insisting on the
particularities of the userspace implementation. Figure
1 shows an overview of the UST architecture.

Here are some of the important design goals of the UST,
that influenced its architecture.

• It should be completely independant from the ker-
nel tracer. Kernel and userspace traces should be
correlated at analysis time.

• It should be completely reentrant, supporting
multi-threaded applications and tracing of events
in signal handlers.

• There should be no system call in the fast path.

• The trace data should never be copied.

• It should be possible to trace code in shared li-
braries as well as the executable.

• The instrumentation points should support an un-
limited number of arguments1.

• No special support from the linker or compiler
should be required.

• The trace format should be compact.

3.1 Tracing Library

Programs that must be traced are linked with the
tracing library (libust). They must also be
linked with the Userspace Read-Copy-Update library
(liburcu)[4], which is used for lockless manipula-
tion of data structures. They must finally be linked with
libkcompat[5], a library that provides a userspace
version of some APIs available in the Linux kernel
(atomic operations, linked list manipulation, kref-style
mechanism, and others).

3.2 Time

There are no dependencies between the kernel and
userspace tracers of LTTng. However, in order to do
a combined analysis of a kernel trace and of userspace
traces, timestamps of all traces must be coherent (e.g.
they must come from the same time source).

An appropriate tracing time source must have a high res-
olution in addition to being coherent across cores. The
cost of accessing this time source must be low in ker-
nel space, but also in userspace (making a system call
is too costly). Work is needed in the Linux kernel to
make such a time source with all these characteristics
available in all architectures.

The UST code currently works only on x86 (32 and 64
bits). Until a suitable time source is provided by the ker-
nel, the TSC is read directly with the rdtsc instruction.
This is the same time source used by the kernel tracer. It
is quick to read and synchronized across cores in most
variants of the architecture.

1The only constraint is that an event must fit in a sub-buffer.

2



ustd

Consumer
daemon

Trace Buffers

Shared memory
segment

Tracing library
communication

thread

Created only
when needed

Traced
application

Socket

Disk

Path of trace data (zero copy)

Network
ust

Trace control program
Tracing commands

Consumer synchronization

Figure 1: Overview of the LTTng Userspace Tracer architecture.

3.3 Instrumentation Points

Instrumentation points consist in ports of the two kernel
instrumentation technologies LTTng uses: markers and
tracepoints. Their usage is the same as in the kernel.

Inserting a marker is as simple as adding a single line
of code at the point where the event must be recorded.
Figure 2 shows an example of a marker. Markers include
a format string that resembles printf format strings;
they include the name of each argument, the format of
the event in the trace and the type of the variable passed
to trace_mark.

Tracepoints are designed to be more elegant and pro-
vide type checking. An example is shown in Figure
3. They do not include a format string in the call, but
necessitate some declarations, typically in seperate C
and header files. This makes them more suitable for
permanent instrumentation. Markers are best suited for
quickly adding instrumentation while debugging.

Markers and tracepoints list information about them-
selves in a special section of the executable or dynamic
object. Each library and each executable that contains
instrumentation must therefore register its markers/tra-
cepoints section via a call to the tracing library. This is
done by invoking a macro that adds a constructor that
automatically does this, in one of the source files of ev-
ery executable and every dynamic object.

Each of the instrumentation points may be enabled or
disabled by the user, even while the trace is active. Each
time the control flow passes on an instrumentation point,
a global variable is tested to verify whether it is enabled.

3.4 Buffering Mechanism

The buffering mechanism is a port of the lockless LTTng
algorithm. Its design reuses many ideas from the K42
operating system and the Linux kernel Relay[8] system.

Events are written in a circular, per-process buffer,
which is divided in sub-buffers. By default, when a sub-
buffer is full, it is consumed by a consumer daemon. In
another operating mode called flight recorder, the circu-
lar buffers are constantly overwritten, until the buffers
are flushed, either by the user or by a program. This
is useful to wait until an infrequent bug occurs in the
application.

Each event is associated with a channel. Each process
has a distinct buffer for each channel. Having several
channels allows to choose the size of sub-buffers per
channel. It also allows to keep some events for a longer
period of time by putting them in a low-rate buffer when
operating in flight recorder mode.

The buffers are allocated inside System V shared mem-
ory segments so the consumer daemon can map them in
its address space.

Writes to the buffers are done using a lockless algorithm
whose correctness was formally verified. It is therefore
reentrant and thread- and signal-safe.

3.5 Trace Control

There needs to be a way to command an application to
start or stop tracing, to enable, disable or list instrumen-
tation points and to control trace parameters such as sub-
buffer size and count.

3



trace_mark(main, myevent, "firstarg %d secondarg %s", v, st);

Figure 2: Example of a marker. The first argument is the channel and the second is the event name. The third is
the format string of the event arguments while the last are the event arguments. In the format string, each argument
name is followed by its format.

trace_main_myevent(v, st);

Figure 3: Example of a tracepoint.

A helper application called ust is used for this purpose.
It communicates with the traceable application through
a Unix socket. Communications are handled by a spe-
cial thread in the traced process.

In order for the UST to be as minimally invasive as pos-
sible, this thread is not launched automatically when
the application starts. Instead, the tracing library con-
structor registers a signal handler for a particular signal.
When that signal is received, a listener thread is started.
This thread creates a named socket in a predefined di-
rectory. The name of the socket is the process ID.

For now, the SIGIO signal is used. Although this sig-
nal is used for other purposes on occasion, the siginfo_t
structure allows to determine whether the signal was
sent by a process or the kernel.

3.6 Data Collection

A single process collects trace data for all processes be-
ing traced on the system. This process is called ustd.
It opens a named socket, called ustd and located in the
same directory as the applications’ sockets. Through it,
ustd can be commanded to collect the trace data of a
certain buffer of a given PID.

Upon receiving this command, ustd creates a new
thread that connects to the socket of the tracing process,
first sending it the SIGIO signal if the socket is not yet
available. It then requests the shared memory segment
IDs for the buffers and maps them.

Still using the socket of the traced application, this con-
sumer thread sends a command requesting access to the
next sub-buffer. When the next unconsumed sub-buffer
is full, a reply is sent, and the consumer thread writes its
data to the trace file, reading from the shared memory
segment. Because the memory area passed to write()

is in the shared memory segment, no copying in RAM
occurs.

3.7 Early and Late Tracing

A few complicating factors must be taken into account
when tracing very early or late in the program lifespan.

3.7.1 Tracing from program start

Sometimes, it is important to trace the program from its
beginning. One can try to start the program, and then
enable tracing. But chances are by the time the SIGIO
signal is sent and received, and the command to start
tracing is sent through the socket, some events will have
been lost. In some cases, the program may have already
ended.

Therefore the UST has a special mechanism for trac-
ing from the beginning of the program execution. To
trace a program from its beginning, the user can run the
program with two environment variables defined. These
variables are parsed by the tracing library constructor.
Defining both these variables guarantees that by the time
the program enters its main() function, tracing will
have started.

UST_TRACE=1 Automatically activate tracing on pro-
gram start.

UST_AUTOPROBE=1 Automatically enable all instru-
mentation points.

3.7.2 Tracing until the end of the program

Things are also slightly more complicated when tracing
near the end of a program. The program can crash and

4



be unable to notify ustd that its last sub-buffer should
be consumed. Worse, it may end before ustd is able
to map its buffers. In the former case, the end of the
trace will be lost. In the latter, the full trace is lost, since
the kernel deallocates shared memory segments when
their last user disconnects from them. The following
describes how the UST deals with these issues.

When a program crashes, its socket connections are
closed by the kernel. ustd can detect this and run a
crash recovery procedure on the buffer. The recovery
procedure identifies which sub-buffers contain data that
is not yet consumed, and how much data can be recov-
ered in each one of them. This data is appended to the
trace file. The procedure guarantees that all the events
up to the last that is recovered are valid and that none
was skipped (provided there are no lost events in the
buffer due to overflow). It is possible to determine what
data in each sub-buffer is valid, because some counters
used in the atomic algorithm are mapped along with the
buffer in the shared memory segment.

When the program lifetime is too short for ustd to have
time to map its memory, a different problem is encoun-
tered. Although the UST does not yet support this case,
it is planned to use a destructor to handle this case. If the
destructor of the trace library detects that a trace is being
recorded and that its buffers have not yet been mapped,
it will extend the life of the process slightly to give time
to ustd to map them.

4 Trace Analysis

LTTV[1], the LTTng Viewer, is a graphical trace viewer
for LTTng traces. LTTV provides a number of graph-
ical, statistical and text-based views for traces. Fur-
thermore, it has the ability to display concurrently the
events of several traces that were recorded simultane-
ously. This is useful for viewing traces recorded in vir-
tual machines at the same time as a trace of the host
system.

This feature can also be used to display a kernel trace
at the same time as userspace traces. In the event list,
the events of all the traces are then interleaved. This al-
lows to get a better grasp of problems that involve both
the userspace and kernel side. The usage of a precise
and common time source ensures events in the list are
correctly ordered even if they are produced on different
cores or on different sides of the kernel/userspace bor-
der.

5 Performance

This section presents some early performance measure-
ments for the UST, as well as a comparison with the
performance of DTrace SDT for an equivalent tracing
task.

The tests were run cache-hot on a dual quad-core Xeon
2GHz with 8GB of RAM. DTrace was run under
OpenSolaris. The test consisted in running 60 times
the command find /usr -regex ’.*a’. This
regular expression was chosen arbitrarily to provoke
malloc/free activity.

The calls to malloc and free made by find were
instrumented. This was done by intercepting the calls to
them using a shared library loaded with LD_PRELOAD.
The intercepting functions contained the actual instru-
mentation points and called the real version of the func-
tion. The malloc/free interception was active for all
tests, even when not tracing. The malloc/free ar-
guments and return values were recorded by the instru-
mentation.

Event counts vary between DTrace and UST tests be-
cause the /usr directory contained more files in the
Linux system (for UST tests) than in the OpenSolaris
system (used for DTrace tests).

The DTrace performance (Table 1) was first measured
with tracing disabled. Then, it was measured with trac-
ing enabled, with two different scripts. One (printing
probe) printed the function name (malloc or free),
its arguments and its return value. The output was redi-
rected to a file. The other (simple probe), only counted
the number of events. Its aim was to verify how much
time is due to the actual printing operation. The cost per
event was obtained by taking the time in excess of the
time with tracing disabled and dividing it by the number
of events.

The UST performance (Table 2) was measured first with
the instrumentation not compiled in and then compiled
in. The difference between these two measures was not
significant. In fact, in these tests, the execution time di-
minished when compiling in the instrumentation. With
probes connected but tracing not active, the execution
time was slightly higher. In this mode of operation, a
function call is made upon hitting an instrumentation
point, but the function returns almost immediately, af-
ter finding out tracing is disabled. Finally, with tracing

5



Test Exec. time Nb. of events Cost / event
Not tracing 53.29 s – –
Tracing, simple probe 251.81 s 44,085,780 4.5 µs
Tracing, printing probe 274.51 s 44,085,780 5.0 µs

Table 1: DTrace results.

Test Exec. time Nb. of events Cost / event
Not tracing, instrumentation not compiled in 92.61 s – –
Not tracing, instrumentation compiled in 92.18 s 145,168,560 ≈ 0
Not tracing, probes connected 99.25 s 145,168,560 46ns
Tracing 193.94 s 145,168,560 698ns

Table 2: LTTng Userspace Tracer results.

enabled, a cost per event of 698ns was obtained. The
cost per event was calculated by taking the time in ex-
cess of the time with instrumentation not compiled in
and dividing it by the number of events.

The LTTng UST had a cost per event more than 7 times
lower than DTrace. This difference is explained by the
method used by each tracer to record events. While
DTrace executes a trap at each event, the UST writes
the event in a buffer in the program memory, saving a
round-trip to the kernel.

The UST has a low per event cost, while having no ap-
parent impact while disabled. This makes it particularly
useful in production systems, and other systems where
affecting performance as little as possible is critical. Its
compact trace format further limits its impact by limit-
ing the disk and network usage.

As the UST becomes more mature, it is likely that new
optimizations will result in an even lower cost per event.
The Future Work sections mentions a few possibilities to
this effect.

6 Future Work

The current per-process buffers were a simple first step
for a port. However, this approach has an important lim-
itation. It induces cacheline bouncing on multi-threaded
applications. Using per-thread buffers would fix this
problem.

In the kernel, the most optimized variant of the markers
uses immediate values, a technique that modifies an in-
struction at the instrumentation point site when enabling

or disabling markers. This code modification consists in
changing the immediate value in a load immediate in-
struction. This instruction is immediately followed by a
test of the register in which the value was loaded. De-
pending on the result of the test, the event is recorded
or not. Although this approach is faster than the cur-
rent test of a global variable, is much more architecture-
dependant.

UST_AUTOPROBE should allow the specification of a
list or pattern of markers. Its current limitation of ac-
tivating all of them at once may cause a performance
penalty that is higher than necessary on programs where
markers encountered extremely often are compiled in
but not needed for the specific problem being debugged.

Complex programs that necessitate userspace tracing
are often written in high-level languages. Therefore the
UST should be available to these languages. For ex-
ample, a Java API using the JNI to interface the C API
would be straightforward to implement.

Work is currently in progress to enhance the daemon so
it can send traces over a network. This is particularly
useful on special purpose systems with little or no disk
space available.

References

[1] LTTV. http://lttng.org.

[2] Systemtap static probes.
https://fedoraproject.org/wiki/
Features/SystemtapStaticProbes.

[3] Mathieu Desnoyers and Michel R. Dagenais. The
LTTng tracer: A low impact performance and

6



behavior monitor for GNU/Linux. In Linux
Symposium, Ottawa, Ontario, Canada, June 2006.

[4] Mathieu Desnoyers and Paul E. McKenney.
Userspace Read-Copy-Update Library.
http://ltt.polymtl.ca/cgi-bin/
gitweb.cgi?p=userspace-rcu.git.

[5] Pierre-Marc Fournier and Jan Blunck. libkcompat.
http://git.dorsal.polymtl.ca/?p=
libkcompat.git.

[6] Frank Hofmann. The DTrace backend on Solaris
for x86/x64. http://opensolaris.org/
os/project/czosug/events_archive/
czosug2_dtrace_x86.pdf.

[7] Steve Rostedt. ftrace.
http://lwn.net/Articles/290277/.

[8] Karim Yaghmour, R Wisniewski, R Moore, and
M Dagenais. relayfs: An efficient unified approach
for transmitting data from kernel to user space. In
Linux Symposium, Ottawa, Ontario, Canada, 2003.

7


