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SUMMARY

To effectively trace an operating system, a performance monitoring and debugging infrastructure needs
the ability to trace various execution contexts. These contexts range from kernel running as a thread to
NMI (Non-Maskable Interrupt) contexts.

Given that any part of kernel infrastructure used by a kernel tracer could lead to infinite recursion if
traced, and because most kernel primitives require synchronization unsuitable for some execution contexts,
all interactions of the tracing code with the existing kernel infrastructure must be considered in order to
correctly inter-operate with the existing operating system kernel.

This paper presents a new low overhead tracing mechanism andmotivates the choice of synchronization
sequences suited for operating system kernel tracing, namely local atomic instructionsas main buffer
synchronization primitive and the RCU(Read-Copy Update) mechanism to control tracing. It also proposes
a wait-free algorithm extending the time-base needed by thetracer to 64-bit on architectures that lack
hardware 64-bit time-base support. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As computers are becoming increasingly multi-core, the need for debugging facilities that will
help identify timing related problems, across execution layers and between processes, is rapidly
increasing [1, 2, 3]. Such facilities must allow information gathering about problematic workloads
without affecting the behavior being investigated in orderto be useful for problem analysis purposes.
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2 M. DESNOYERS AND M. R. DAGENAIS

The variety of execution contexts reached during kernel execution complicates efficient exportation
of trace data out of the instrumented kernel. The general approach used to deal with this level
of concurrency is to either provide good protection againstother execution contexts, for instance
by disabling interrupts, or to adopt a fast, but limited mechanism by shrinking the instrumentation
coverage (e.g. by disallowing interrupt handler instrumentation). This trade-off often means that either
performance or instrumentation coverage is sacrificed. However, as this paper will show, this trade-off
is not required if the appropriate synchronization primitives are chosen.

We propose to extend theOS1 kernel instrumentation coverage compared to other existing tracers
by dealing with the variety of kernel execution contexts. Our approach is to consider reentrancy
from NMI2 execution context, which presents particular constraintsregarding execution atomicity due
to the inability to create critical sections by disabling interrupts. In this article, we show that in a
multiprocessorOS, the combination of synchronized time-stamp counters, cheap single-CPU atomic
operations and trace merging, provides an effective and efficient tracing mechanism which supports
tracing inNMI contexts.

Section3 will first present the synchronization primitives used by the state-of-the-art open source
tracers. In Section4, we outline theLTTng3 design requirements which aim at high scalability and
minimal real-time response disruption.

Recursion between the tracer probe and the kernel will be discussed in Section5, where the reasons
why a kernel tracer cannot call standard kernel primitives without limiting the instrumentation coverage
will be illustrated by concrete examples in Sections5.1 and5.2. We then propose an algorithm that
synchronizes data structures to provide a 64-bit tracer clock on architectures that lack hardware 64-bit
time-base support in Section5.3.

In Section 6 we show how to achieve both good performance and instrumentation coverage
by choosing primitives that provide the right reentrancy characteristics and high performance.
Overhead measurements comparing theRCU4 [4] mechanism andlocal atomic operationsprimitives
to alternative synchronization methods will support this proposal.

This opens a wide perspective for the design of fully reentrant, wait-free, high-performancebuffering
schemes.

2. INTRODUCTION TO TRACING

This section introduces to the background required to understand the following state of the art. The
tracer impact on real-time response is first discussed, followed by a description of tracer concepts.

Real-time impact of algorithms can be categorized following the guarantees they provide. The terms
used to identify such guarantees evolved through time in literature [5, 6]. The terminology used in
this article will follow [6]. The strongest non-blocking guarantee is wait-free, which ensures each
thread can always make progress and is therefore never starved. A non-blocking lock-free algorithm

1OS: Operating System
2NMI: Non-Maskable Interrupt
3LTTng : Linux Trace Toolkit Next Generation
4RCU: Read-Copy Update.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 3

only ensures that the system as a whole always makes progress. This is made possible by ensuring
that at least one thread is progressing when concurrent access to a data structure is performed. An
obstruction-free algorithm offers an even weaker guarantee than lock-free: it only guarantees progress
of any thread executing in isolation, meaning that all competing concurrent accesses may be aborted.
Finally, a blocking algorithm does not provide any of these guarantees.

This article specifically discusses operating system kernel tracers. A tracer consists in a mechanism
collecting an execution trace from a running system. A traceis a sequence of event records, each
identifying that the kernel executed a pre-identified portion of its code.

Mapping between execution sites and events is made possibleby instrumentation of the kernel.
Instrumentation can be either declared statically at the source-code level or dynamically added to the
running kernel. Statically declared instrumentation can be enabled dynamically.

A tracer probe is the tracer component called when enabled instrumentation is executed. This probe
is responsible for fetching all the data to write in the eventrecord, namely an event identifier, a time-
stamp and, optionally, an event-specific payload. Time-stamps are monotonically increasing values
representing the time-flow on the system. They are typicallyderived from an external timer or from a
TSC5 register on the processor.

To amortize the impact ofI/O 6 communication, event records are saved in memory buffers. Their
extraction through anI/O device is therefore delayed. To ensure continuous availability of free buffer
space, a ring buffer with at least two sub-buffers can be used. One is used by tracer probes to write
events while the other is extracted throughI/O devices.

3. STATE OF THE ART

This section reviews the synchronization primitives used in the state-of-the-art open source tracers
currently available, namely: the original LTT tracer [7], the wait-free write-side tracing solution found
in K42 [8, 9], a highly-scalable research operating system created by IBM, DTrace [2] from Sun’s
OpenSolaris,SystemTAP [10] from RedHat, providing scripting hooks for the Linux kernel built
as external modules,KTAU [11] from University of Oregon andFtrace , started by Linux kernel
maintainer Ingo Molnar. The following study details the synchronisation mechanisms used in each of
these projects.

The originalLTT (Linux Trace Toolkit) [7] project started back in 1999. Karim Yaghmour, its
author, aimed at creating a kernel tracer suitable for the Linux kernel with a static instrumentation set
targeting the most useful kernel execution sites.LTT uses the architecture time-stamp counter register
when available to interpolate the time between the time-stamps taken at sub-buffer boundaries with
do gettimeofday(). This leads to problems withNTP (Network Time Protocol) correction, where the
time-base at the sub-buffer boundaries could appear to go backward. Regarding synchronization, the
do gettimeofday()function uses a sequence counter locking on the read-side for ensuring time-base
data consistency, which can cause deadlocks ifNMI handlers were instrumented. One of the early
buffering scheme used was based on spin lock (busy-waiting lock) disabling interrupts for buffers

5TSC: Time-Stamp Counter
6I/O : Input/Output
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4 M. DESNOYERS AND M. R. DAGENAIS

shared between the CPUs. Per-CPU buffers support, providedby RelayFS , uses interrupt disabling
to protect from interrupt handlers. Karim worked, in collaboration with Tom Zanussi and Robert
Wisniewski from IBM, on the integration of some lockless buffering ideas from theK42 tracer into
RelayFS .

K42 [8, 9] is a research operating system developed by IBM, mostly between 1999 and 2006.
According to the authors, its code-base should be considered as a prototype. It focuses on large multi-
processor machine scalability and therefore uses data structures and operations local to each CPU as
much as possible. It brings some very interesting ideas for tracing synchronization, namely the use of
atomic operations to synchronize buffer space reservation. The tracing facility found inK42 is built
into the kernel. It uses per-CPU buffers to log tracing data and limits the consumption of data to user-
space threads tied to the local CPU. This first design constraint could be problematic in a production
OS, because if the workload is not equally shared amongst allCPUs, those with the most idle time will
not be able to collaborate with the busier CPUs to help them extract the trace streams to disk or over
the network. It uses a wait-free algorithm based on theCAS(compare-and-swap) operation to manage
space reservation from multiple concurrent writers. It adds compiler optimisation restriction barriers to
order instructions with respect to the local instruction stream, but does not add memory barriers, since
all data accesses are local. Once the space reservation is performed, the data writes to the buffer and
the commit count increments are done out-of-order. Abuffers producedcount and abuffers consumed
count are updated to keep track of the buffers available for consumption by the user-space thread. For
time-base synchronization,K42 only supports architectures with 64-bit time-stamp counters (PowerPC
and amd64) and assumes that those counters are synchronizedacross all CPUs. Therefore, a simple
register read is sufficient to provide the time-base at the tracing site, and no synchronization is required
after system boot.

TheDTrace [2] tracer has first been made available in 2003, and formally released as part of Sun’s
Solaris 10 in 2005 under theCDDL7 license. It aims at providing information to users about their
system’s behavior by executing scripts at the kernel level when instrumentation sites are reached. It has
since then been ported to FreeBSD and Apple Mac OS X 10.5 Leopard. A port to the Linux kernel is
under development, but involves license issues betweenCDDLandGPL8.

The DTrace tracer9 disables interrupts around iteration on the probe array before proceeding to
their invocation. Therefore, the whole tracer site execution is protected from interrupts coming on the
local CPU. Disabling interrupts also serves as a means to mark a RCUread-side critical section. Trace
control synchronization is based on aRCU-like [4] mechanism which waits for a grace period before
tracing sites can be considered having reached a quiescent state. This is performed by executing a
thread on every CPU waiting for all the currently active tracing sites to complete. Given that such
threads are not allowed to execute while interrupts are disabled, this permits detection of tracing sites
quiescent states.

DTrace also uses a per-thread flag,T DONTDTRACE, ensuring that critical kernel code dealing
with page mappings does not call the tracer. It does not seem,however, to apply any thread flag to
NMI handler execution. In OpenSolaris,NMIs are primarly used to enter the kernel debugger, which

7CDDL: Common Development and Distribution License.
8GPL: General Public License.
9Version reviewed: OpenSolaris 20090330.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 5

is not allowed to run at the same time asDTrace . Therefore, the following discussion applies to a
situation where the same algorithms and structures would beused in an operating system like Linux,
whereNMIs can execute code contained in various subsystems, including the Oprofile [12] profiler.

DTrace calls thedtracegethrtime()primitive to read the time source. On the x86 architecture,
this primitive uses a locking mechanism similar to the sequence lock in Linux. A sequence lock is
a type of lock which lets the reader retry the read operation until the writer exits its critical section.
The particularity of the sequence lock found inDTrace is that if it spins twice waiting for the lock,
it assumes that it is nested over the write lock, so a time value previously copied by the time-base
tick update will be returned. This shadow value is protectedby its own sequence lock. In the x86
implementation, this leaves room for a 4-way deadlock on 2 CPUs involving theNTPcorrection update
routines,tsc tick() and two nestingdtracegethrtime()calls in interrupt handlers.

Although this deadlock should never cause harm due to specific and controlled use ofNMIs in
OpenSolaris, porting this tracer to a different operating system or loading specific drivers usingNMIs
could become a problem. Discussion with Bryan Cantrill, author of DTrace , with Mike Shapiro and
Adam Leventhal, led to notice that an appropriateNMI-safe implementation based on two sequence
locks taken successively from asingle thread already exists indtracegethrestime(), but is not used in
the lower-level x86 primitive. It requires that only a single execution thread takes the two sequence
locks successively. Using it in the lower-level code would require modification of theNTPadjustment
code10. This example taken from a widely distributed tracer shows that it is far from trivial to design
tracing clock source synchronization properly, especially for a flexible open source operating system
like Linux.

Considering real-time guarantees, a sequence lock should be categorized as a blocking algorithm. If
an updater thread is stopped in the middle of an update, no reader thread can progress. Therefore,
a sequence lock does not provide non-blocking guarantees. This means real-time behavior can be
affected significantly by the execution ofDTrace .

The SystemTAP [10] project from Redhat, first made available in 2006, aims at letting system
administrators run scripts connected at specific kernel sites to gather information and statistics about
the system behavior and investigate problems at a system-wide level. It aims at providing features
similar to DTrace 11 in the Linux operating system. Its first aim is not to export the whole trace
information flow, but rather to execute scripts which can either aggregate the information, perform
filtering on the data input or write data into buffers along with time-stamps. The focus is therefore
not to have a very high-performance capable data extractionmechanism, given this is not their main
target use-case.SystemTAP uses a heavy locking mechanism at the probe site. It disablesinterrupts
and takes a global spin lock12 twice in the write path. The first critical section surrounded by interrupt
disabling and locking is used to manage the free buffer pool.The second critical section, similar to the
former but using a distinct lock, is needed to add the buffer ready for consumption to aready queue.

10Based on review of theDTrace code-base, we recommend using a standard mutex to ensure mutual exclusion around
the two write sequence locks should allow to permit using thesame locking mechanism for bothdtrace gethrestime()and
dtrace gethrtime(), which would allow updates fromNTPand from thetsc tick() routine.
11According tohttp://sourceware.org/systemtap/wiki/SystemtapDtrac eComparison .
12A spin lock is a type of busy-waiting lock in the Linux kernel.
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6 M. DESNOYERS AND M. R. DAGENAIS

SystemTAP assumes it is called fromKprobes [13], a Linux kernel infrastructure permitting
connection of breakpoint-based probes at arbitrary addresses in the kernel. Kprobes disables interrupts
around handler execution. Therefore,SystemTAP assumes interrupt disabling is done by the caller,
which is not the case for static instrumentation mechanismslike the Linux Kernel Markers and
Tracepoints . In those cases, if events come nested over the tracing code,caused by recursion
or coming fromNMIs, SystemTAP will consider this as an error condition and will silently discard
the event until the number of events discarded reaches a threshold. At that point, it will stop tracing
entirely.SystemTAP modules can use thegettimeofday()primitive exported by the Linux kernel as
time source. It uses a sequence lock to ensure the time-base coherency. This fails in aNMI context
because it would cause a deadlock if a probe in aNMI nests over a sequence writer lock. Therefore,
SystemTAP ’s internals disallows instrumentation of code reached from NMI context. It also depends
on interruptions being disabled by the lower-level instrumentation mechanism.

TheKTAU(Kernel Tuning and Analysis Utilities) [11] project, available since 2006, allows to either
profile or trace the Linux kernel on a system-wide or per-process basis. It allows detailed per-process
collection of trace events to memory buffers, but deals withkernel system-wide data collection by
aggregating performance information of the entire system.The motivation for using aggregation to
deal with system-wide data collection is that exporting thefull information flow into tracing buffers
would consume too much system resources. Conversely, the hypothesis theLTTng approach is trying
to verify is that it is possible to trace a significant useful subset of operating system’s execution in a
detailed manner without prohibitive impact on the workloadbehavior. Therefore, we have to consider
if the KTAUprocess-centric tracing approach would deal with system-wide tracing appropriately.

Some design decisions indicate that detailed process tracing is not meant to be used for system-wide
tracing.KTAUkeeps buffers and data structures local to each thread, which can lead to significant
memory usage on workloads containing multiple threads. Workloads consisting of many mostly
inactive threads and few very active threads risk overflowing the buffers if they are too small, or
consuming a lot of memory if all buffers are made larger.KTAUallows tweaking the size of specific
thread’s buffers, but it can be difficult to tune if the threads are short-lived. We can also notice that the
kernel idle loop, which includes swap activity, and all interrupts and bottom halves nested over this
idle loop, are not covered by the tracer, which silently drops the events.

For synchronization,KTAUpermits choosing at compilation time betweenIRQ or bottom half (lower
priority interrupts) disabling and uses a per-thread spin lock to protect its data structures. The fact that
the data can stay local to each thread ensures that no unnecessary cache-line bouncing between the
CPUs will occur. Those spin locks are used therefore mainly to synchronize the data producer with
the consumer. This protection mechanism is thus not intended to traceNMIs because the handler could
deadlock when taking a spin lock if it nests over code alreadyholding the lock.

Regarding kernel reentrancy,KTAUusesvmalloc (kernel virtual memory) to allocate the trace
buffers. Given that the Linux kernel populates theTLB (Translation Lookaside Buffer) entries of those
pages lazily on x86, the tracing code will trigger page faults the first time those pages are accessed.
Therefore, the page fault handler should be instrumented with great care.KTAUonly supports x86
and PowerPC and uses the time-stamp counter register as a time source, which does not require any
synchronization per se. On the performance impact side, allocation of tracing buffers at each thread
creation could be problematic on workloads consisting of many short-lived threads, because thread
creation is normally not expected to be slowed down by multiple page allocations, since threads usually
share the same memory pages.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–20
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 7

Ftrace, a project started in 2009 by Ingo Molnar, grew from the IRQ tracer, which traces long
interrupt latencies, to incrementally integrate the wake up tracer, providing information about the
scheduler activity, the function tracer, which instruments the kernel function entry at low-cost and an
actively augmented list of tracers. Its goal is to provide system-wide, but subsystem-oriented tracing
information primarily useful to kernel developers. It usestheTracepoint mechanism, which comes
from theLTTng project, as primary instrumentation mechanism.

Ftrace , in its current implementation, disables interrupts and takes per-buffer (and thus per-
CPU) spin locks. The advantage of taking a per-CPU spin lock over a global spin lock is that it
does not require to transfer the spin lock cache-line between CPUs when the lock has to be taken,
which improves the scalability when the number of CPUs increases.Ftrace , as of its Linux 2.6.29
implementation, does not handleNMIs gracefully. If instrumentation is added in a code path reached
by NMI context, a deadlock may occur due to the use of spin locks.Ftrace relies on the scheduler
clock for timekeeping, which does not provide any locking against non-atomicjiffies13 counter updates.
Although this time source is statistically correct for scheduler purposes, it can result in incorrect timing
data when the tracer races with thejiffies update. Dropping events coming from nestedNMI handlers
will be the solution integrated in the 2.6.30 kernels. Improvement is expected in a near future regarding
tracing buffer ability to handleNMIs gracefully using a lock-free kernel-specific buffering scheme
submitted for U.S. and international patent in early 2009 bySteven Rostedt14.

4. LINUX TRACE TOOLKIT NEXT GENERATION

The purpose of the study presented in this paper is to be used as a basis for developing theLTTng
kernel tracer. This tracer aims at tracing the Linux kernel while providing these guarantees:

• Provide a wide instrumentation coverage.
• Provide probe reentrancy for all kernel execution contexts, includingNMIs andMCE(Machine

Check Exception) handlers.
• Record very high-frequency kernel events.
• Impose small overhead to typical workloads.
• Scale to large multiprocessor systems.
• Change the system real-time response in a predictable way.

Earlier work presented an overview of theLTTng tracer design [14] and industry use-case scenarios
in the industry [1, 15, 16, 17]. That work presents an in-depth analysis of synchronization primitives
and new algorithms required to deal with some widely used 32-bit architectures.

The LTTng tracer probe needs, as input, a clock source to provide timestamps, trace control
information to know if tracing is enabled or if filters must beapplied, and the input data identified
by the instrumentation. The result of its execution is to combine its inputs to generate an event written
to a ring buffer.

13The jiffies counter increments at each timer tick, at a frequency typically between 100 and 1000 HZ.
14As stated in theFtrace presentation at the Linux Foundation Collaboration Summit2009.
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8 M. DESNOYERS AND M. R. DAGENAIS

In order to provide good scalability when the number of CPU increases,LTTng uses per-CPU
buffers and buffer management counters to eliminate cache misses and false-sharing. It diminishes the
impact of the tracer on the overall system performance. Nevertheless, cross-CPU synchronization is
still required when information is exchanged from a producer to a consumer CPU.

This paper will justifyLTTng ’s use of theRCUmechanism to synchronize control information read
from the probe, localCASand proper memory barriers to synchronize ring buffer output and present a
custom trace clock scheme used to deal with architectures lacking 64-bit hardware clock source.

5. TRACING SYNCHRONIZATION

In this section we describe theatomic primitivesandRCUmechanisms used byLTTng [14, 18] to deal
with the constraints associated withsynchronizationof data structures while running in anyexecution
context, avoidingkernel recursion. We then present anRCU-like trace clock infrastructure required
to provide 64-bit time-base on many 32-bit architectures. The associatedperformance impactof the
synchronization primitives will be studied thereafter, which will lead to the subsequent benchmark
section.

5.1. ATOMIC PRIMITIVES

This section presents synchronization considerations forkernel data read from the tracing probe,
followed by inner tracer synchronization for the control data structures read usingRCUand buffer
space reservation performed with atomic operations.

Because any execution context, includingNMIs, can execute the probe, any data accessed from the
probe must be consistent when it runs. Kernel data identifiedby the instrumentation site is expected
to be coherent when read by every execution contexts associated with the given site. It is therefore the
instrumentation site’s responsibility to correctly synchronize with those kernel data structures.

Data read by the probe can be classified into two types. The first type contains global and static
shared variables read from kernel memory. The second type includes data accessed locally by the
processor, contained either in registers, on the thread or interrupt stack, or in per-CPU data structures
when preemption15 is temporarily disabled.

Synchronization of shared data structures is ensured by static instrumentation because the data input
identification is located within the source code which carries the correct locking semantic. Conversely,
dynamic instrumentation offers no guarantee that global orstatic variables read by the probe will
be appropriately synchronized. For instance, Kprobes [13] do not export specific data at a given
instrumentation site. Therefore, it does not guarantee locking other than what is being done in the kernel
around the breakpoint instruction. Given that there are notnecessarily any data dependency between
the instruction being instrumented and the data accessed within the probe, subtle race conditions may
occur if locking is not performed appropriately within the probe.

15User space preemption naturally occurs when the scheduler interrupts a thread executing in user space context and replaces it
by another runnable thread. At kernel-level, with fully-preemptible Linux kernels (CONFIG PREEMPT=y), the scheduler can
preempted threads running in kernel context as well.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 9

Local data accessed by its owner execution context, however, do not have such locking requirement
because it is normally modified only by the local execution context. The probe which accesses this data
executes either in the same execution context owning this data or in a trap generated by instructions
within the owner context. However, compiler optimizationsdo not guarantee to keep local variables
live at the probe execution site with Kprobes. Static instrumentation can make sure that the compiler
keeps the data accessed live at a specific instruction.

Information controlling tracing behavior is accessed directly from the probe, without any
consideration regarding the context in which it is executed. This information includes the buffer
location, produced and consumed data counters and a flag to specify if a specific set of buffers is active
for tracing. This provides flexibility so users can tune the tracer following their system’s workload.

LTTng uses theRCUmechanism to manage trace-control data structure. This synchronization
mechanism provides very fast and scalable data structure read access by keeping copies of the protected
data structure when a modification is performed. It gradually removes an outdated data structure by first
replacing all pointers to it by pointers to the new version. It keeps all data copies in place until a grace
period has passed, which identifies a read-side quiescent state and therefore permits reclamation of the
data structure. ARCUread-side is wait-free, but the write-side can block if no more free memory is
available. Moreover, the write-side may either block waiting for a grace period to end, or queue memory
reclamation as aRCUcallback to execute after the current grace period. In this latter case, reclamation
is performed in batch after the current grace period ends. Ittherefore provides very predictable read-
side real-time response. Given that the trace control data structure updates are rare, this operation can
afford to block.LTTng marks the read-side critical sections by disabling preemption because this
technique is self-contained (it does not use other kernel primitives) and due to its low overhead. The
LTTng trace-control write-side waits for readers to complete execution to provide guarantees to the
trace-control caller. Therefore, when the operationstart tracecompletes, the caller knows all current
and new tracer probes are seeing an active trace. The opposite applies when tracing stops.

The tracing information is organized as aRCUlist of trace structures, and is only read by the probe
to control its behavior. Since the probe is executed with preemption disabled, updates to this structure
can be done on a copy of the original while the two versions arepresented to the probes when the list
is updated: probes holding a pointer to the old structure still use the old one, while the newly executing
probes use the new one. A quiescent state is reached when all processors have executed the scheduler.
It guarantees that all preemption-disabled sections holding a pointer to the old structure finished their
execution. It is thus safe, from that point, to free the old data structure.

With theRCUmechanism, the write-side must use preemptible mutexes to exclude other writers and
has to wait for quiescent states. Luckily, such trace data structure updates are rare (e.g. starting a trace
session), so update performance is not an issue.

Because theRCUmechanism wait-free guarantees apply only for the read-side, LTTng cannot
leverageRCUprimitives to deal with reentrancy coming from any execution context to synchronize
memory buffer space reservation, which includes updating adata structure. Primitives, allowing
protection from concurrent execution contexts performingbuffer space reservation on the local CPU,
need to execute atomically with respect to interrupts andNMIs, which implies thatatomic operations
must be used to perform atomic data accesses.

Given that the cross-CPU synchronization points are clearly identified and occur only when sub-
buffers can pass from a producer CPU to a consumer CPU at sub-buffer boundaries, the performance
impact of synchronization primitives required for each event should be characterized to find out which
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10 M. DESNOYERS AND M. R. DAGENAIS

set of primitives are adequate to protect the tracer data structures from use in concurrent execution
contexts.

On modern architectures such as Intel Pentium and above, AMD, PowerPC and MIPS, using atomic
instructions, synchronized to modify shared variables in aSMP(Symmetric Multi-Processor) system,
incurs a prohibitive performance degradation due to the synchronized variant of the instructions
used (for Intel and AMD) or to the memory barriers which must be used on PowerPC, MIPS and
modern ARM processors. Given that several atomic operations are often required to perform the
equivalent synchronization of what would otherwise be doneby disabling interrupts a single time,
the latter method is often preferred. The wait-free write-side tracing algorithm used inLTTng16 needs
a singleCASoperation to update the write count (amount of space reserved for writing) and an atomic
increment to update the commit count (amount of informationwritten in a particular sub-buffer).

Given that the tracing operations happen, by design, only onper-CPU data, their single-CPU
atomic primitives can be safely used. This means Intel and AMD x86 do not needLOCK prefix to
synchronize these atomic operations with concurrent CPU access, while PowerPC, MIPS and modern
ARM processors do not require them to be surrounded by memorybarriers to ensure correct memory
order, since the only order that matters is from the point of view of a single CPU. Therefore, those
lightweight primitives, faster than disabling interruptson many architectures, can be used. Section6
will present benchmarks supporting these claims.

5.2. RECURSION WITH THE OPERATING SYSTEM KERNEL

The instrumentation coverage depends directly on the amount of interaction the probe has with the rest
of the kernel. In fact, the tracer code itself cannot be instrumented because it would lead to infinite
probe recursion. The same applies to any kernel function used by the probe17.

In the Linux kernel, the x86 32 and 64-bit architectures relyon page faults to populate the page table
entries of the virtual memory mappings created withvmalloc()or vmap(). Since the kernel modules
are allocated in this area, any access to module instructions and data might cause a minor kernel page
fault. Care must therefore be taken to call thevmallocsyncall() primitive which populates all the
kernel virtual address space reserved for virtual mappingswith the correct page table entries between
module load and use of this module at the tracing site. This ensures that no recursive page fault will be
triggered by the page fault handler instrumentation.

In the context of the probe, the most important limitation regarding operating system recursion is
the inability to wake up a process when the buffers are ready to be read. Instrumenting thread wake-
ups provides very useful information about the inner scheduler behavior. However, instrumentation
of this scheduler primitive forbids using it in the tracer probe. This problem is solved by adding a
periodic timer which samples the buffer state and wakes up the consumers appropriately. Given that
the operating system already executes a periodic timer interrupt to perform scheduling and manage its
internal state, the performance impact of this approach is in the same order of magnitude as adding a
callback to the timer interrupt. The impact on low power-consumption modes is kept small by ensuring

16LTTng kernel tracing algorithm with wait-free write-side will bepresented in a forthcoming paper.
17A particularly unobvious example is the page fault handler instrumentation.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 11

that these per-processor polling timers are delayed while the system is in these low-power modes.
Therefore, polling is only performed when the system is active, and thus generating trace data.

As a general guideline, the probe site only touches its own variables atomically, so it requires
absolutely no higher-level synchronization with the OS. Onthe OS side, any operation done on those
shared variables is also performed atomically. It results in an hermetic interface between the probe and
the kernel which makes sure the probe calls no OS primitive.

Because preemption must be disabled around probe execution, primarily to allow theRCU-based
data structures reads, care must be taken not to use an instrumented version of the preemption disabling
macros. It can be done by using the untraced implementationpreemptdisablenotrace().

5.3. TIMEKEEPING

Time-stamping must also be done by the probe. It therefore has to read a time-base. In the Linux kernel,
the standardgettimeofday()or other clock sources are synchronized with a sequence lock(seqlock),
which consists of a busy loop on the read-side, waiting for writers to finish modifying the data structure
and checking for a sequence counter modification prior to andafter reading the data structure. However,
this is problematic whenNMIs need to execute the read-side, because nesting over the write lock would
result in a deadlock; theNMI would wait endlessly for the writer to complete its modification, but would
do so while being nested over the writer. Normal use of this synchronization primitive requires interrupt
disabling, which explains why it is generally correct, except in this specific case. Another issue is that
the sequence lock is a blocking synchronization algorithm,because the updater threads have the ability
to inhibit reader progress for an arbitrarily long period oftime. Therefore, the CPU time-stamp register,
when available, is used to read the time-base rather than accessing any kernel infrastructure.

Some architectures provide a 64-bit time-base. This is the case for the cycle counter read withrdtsc
on x86 32 and 64-bit [19], the PowerPC time-base register [20] and the 64-bit MIPS [21]. A simple
atomic register read permit reading a full 64-bit time-base. However, architectures like the 32-bit MIPS
and ARM OMAP3 [22] only provide a 32-bit cycle counter. Other architecture which lack proper cycle
counter register support must read external timers. For instance, earlier ARM processors must read the
time-base from an external timer through memory mapped I/O.Memory-mapped I/O timers usually
overflow every 32-bit count or even more often, although someexceptions, like the IntelHPET[23],
permits reading a 64-bit value atomically in some modes.

The number of bits used to encode time has a direct impact on the ability of the time-base to
accurately keep track of time during a trace session. A 64-bit time-base is guaranteed not to overflow
for 3 thousand years at 4 GHz, which should be enough for any foreseeable use. However, at a 500 MHz
frequency, typical for embedded systems, 32-bit overflows occur every 8 seconds.

Tracing-specific approaches to deal with time-stamp overflow has been explored in the past,
all presenting their own limitations. The sequence lock inability to deal with NMI context has
been presented above, although one could imagine porting the DTrace double-sequence lock
implementation to address this problem. This approach is however slower than theRCUread-side and
implies using a blocking sequence lock, which fails to provide good real-time guarantees.

Alternatively, an approach based on a posteriori analysis of the event sequence presented in the
buffers could permit detecting overflows, but this requiresa guaranteed maximum time delta between
two events, which could be hard to meet due to its dependency on the workload and events traced. Low-
power consumption systems with deep sleep states are good examples of such workloads. Periodically
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12 M. DESNOYERS AND M. R. DAGENAIS

writing a resynchronization time-stamp read from a lower-frequency time-source would diminish the
precision of time-stamps to the precision of the external time-source.

If, instead of writing such resynchronization event periodically, it was written in a header to the
buffer containing the events, this would again either impose limits minimum event flow expected,
otherwise a buffer covering a too long time period could contain undetectable 32-bit overflows. Also,
given that the buffer is naturally expected to present the events in an order in which time monotonically
increases, performing adjustments based on a different time-source at the buffer boundary can make
time go backward because the two clocks are not perfectly synchronized. One clock going too fast
could make the last buffer events overlap the time window of the following buffer. Simply using aCAS
instruction would not solve the issue, given that the architectures we are dealing with only have a 32-bit
cycle counter and are typically limited to 32-bit atomic operations.

There is already an existing approach in the Linux kernel, created initially for the ARM architecture,
to extend a 32-bit counter to 63 bits. This infrastructure, namedcnt32 to 63, keeps a 32-bit (thus
atomically updated) value in memory. Its lower 31 bits are used to represent the extended counter top
31 bits. A single bit is used to detect overflow by keeping track of the low-order 32nd bit. Update is
performed atomically in the reader context when a 32-bit overflow is detected. Assuming the code is
run at least twice per low-order 32-bit overflow period, thisalgorithm detects the 32-bit overflows and
updates the high-order 31-bit count accordingly. This approach has the benefit of requiring a very small
amount of memory data (only 32-bit) and being fast: given thesnapshot is updated on the reader-side
as soon as the overflow is detected, the branch verifying thiscondition only needs to be taken very
rarely. This approach, however, has some limitations: it only permits to keep an amount of data smaller
than the architecture word size. Therefore, it is not extensible: it would not be possible to return the full
64-bit, because the top bit must be cleared to zero, and it could not support addition ofNTPor CPU
frequency scaling information. This infrastructure assumes that the hardware time-source will always
appear to go forward. Therefore, with slightly buggy timersor if the execution or memory accesses
are not performed in order, this would cause time to jump forward of a whole 32-bit period if the
time-source appears to slightly decrement at the same time an overflow occurs. This could be fixed by
reserving one more bit to also keep track of the low-order 31st bit and require the code to be called
4 times per counter overflow period. Those two bits could be used together to distinguish between
overflow and underflow. This would however be at the expense ofyet another high-order information
bit and only permit returning a 62-bit time-base.

Therefore, a new mechanism would be welcome to generically extend these 32-bit counters to 64-
bit while still allowing a time-base read fromNMI context. The algorithm we created to solve this
problem extends a counter containing an arbitrary number ofbits to 64 bits. The data structure used is
a per-CPU array containing two 64-bit counts. A pointer to either the first or the second array entry is
updated atomically, which permits to atomically read the odd counter while the even is being updated
and conversely (as shown in Figure1). The reader atomically reads the pointer to the current array
parity and then reads the last 64-bit value updated by the periodic timer. It then detects the possible
overflows by comparing the current value of the time source least significant bits with the low-order
bits of the 64-bit value. It returns the 64 bits corresponding to the current count, with high-order bits
incremented if a low-order bit overflow is detected (as shownin Figure2).

The algorithm for synthetic clock read-side is shown in Figure4. At line 1,TC HWBITS is defined
as the number of bits provided by the clock source, represented by a call tohw clock read() .
The main limitation on the minimum number of bits required from the clock source is that it must be

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–20
Prepared usingspeauth.cls



SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 13

Figure 1. Trace clock read (no32nd bit overflow)

Figure 2. Trace clock read (32nd bit overflow)

Figure 3. Trace clock update (1, 3, 4) interrupted by a read (2)
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14 M. DESNOYERS AND M. R. DAGENAIS

1 #define HW_BITMASK ((1ULL << TC_HW_BITS) - 1)
2 #define HW_LS(hw) ((hw) & HW_BITMASK)
3 #define SW_MS(sw) ((sw) & ˜HW_BITMASK)
4
5 struct synthetic_tsc_struct {
6 u64 tsc[2];
7 unsigned int index;
8 };
9

10 static DEFINE_PER_CPU(struct synthetic_tsc_struct, s ynthetic_tsc);
11
12 static inline notrace u64 sw_tsc_read(u64 old_sw_tsc)
13 {
14 u64 hw_tsc, new_sw_tsc;
15
16 hw_tsc = (u64)hw_clock_read();
17 new_sw_tsc = SW_MS(old_sw_tsc) | hw_tsc;
18
19 if (unlikely(hw_tsc < HW_LS(old_sw_tsc)))
20 new_sw_tsc += 1ULL << TC_HW_BITS;
21
22 return new_sw_tsc;
23 }
24
25 u64 notrace trace_clock_read_synthetic_tsc(void)
26 {
27 struct synthetic_tsc_struct * cpu_synth;
28 unsigned int index;
29 u64 sw_tsc;
30
31 preempt_disable_notrace();
32 cpu_synth = &per_cpu(synthetic_tsc, smp_processor_id ());
33 index = ACCESS_ONCE(cpu_synth->index);
34 sw_tsc = sw_tsc_read(cpu_synth->tsc[index]);
35 preempt_enable_notrace();
36
37 return sw_tsc;
38 }

Figure 4. Synthetic clock read-side

larger than the sum of timer interrupt period and maximum interrupt latency. This ensures that a timer
interrupt is executed at least once per counter overflow period. Lines 2–3 present theHWLS() and
HWMS() macros, to select the least and most significant bits of a counter, respectively corresponding
to the hardware clock source and the bits counting the clock-source overflows. Lines 5–8 declare a
structure containing two 64-bittsc values and an index to the currenttsc value to read. Line 10
defines a per-CPU variable,synthetic tsc , holding the currenttsc value for each processor.
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The inline functionsw tsc read is detailed at lines 12–23. Thenotrace keyword is a macro
expanding to a gcc attribute indicating that the function must not be traced, in the unlikely event gcc
decides not to inline the function. It receives as parameterthe last 64-bit clock value saved in the data
structure and returns the current 64-bit clock value. The current source clock value is read at line 16.
The current 64-bit clock value is then derived from the old 64-bit clock most significant bits and the
source clock bits. If an overflow is detected by line 19, the 64-bit clock value is incremented of the
power of two value corresponding to the overflow at line 20.

Lines 25–37 show the execution context considerations taken around the execution of the trace clock
read. Lines 31 and 35 disable and re-enable preemption, therefore inhibiting the scheduler during this
execution phase. This ensures that no thread migration occurs, therefore ensuring local access to per-
CPU data. It also ensures that the thread is not scheduled outfor a long period of time between the
moment it reads the index, reads the clock source and accesses the array. Long preemption between
these operations could cause the current clock value to be more than a clock-source overflow apart from
the previously read last 64-bit clock value when the thread resumes. To overcome such problem, the
maximum duration for which this code can be interrupted is bounded by the maximum interrupt handler
execution time, which must be an order of magnitude lower than the overflow period. Line 32 uses the
per cpu inline, a primitive which gets a pointer to the CPU-local instance ofsynthetic tsc .
ACCESSONCE() is used at line 33 to read the current index through a volatileaccess, which informs
the compiler to treat this as an access to a memory-mapped hardware device, therefore not permitting
re-fetching nor reading in multiple segments. Line 34 invokes thesw tsc read() inline explained
above, which returns the current 64-bit clock value.

The update is performed periodically, at least once per overflow period, by a per-CPU interrupt timer.
It detects the low-order bits overflows and increments the upper bits, and then flips the current array
entry parity (as shown in Figure3). Readers still use the previous 64-bit value while the update is done
until the update completes with the parity flip.

As pointed out earlier, the read-side must disable preemption to ensure that it only holds a reference
to the current array parity for a bounded amount of cycles, much lower than the periodic timer period.
This upper bound is provided by the maximum number of cycles spent in this short code path increased
by the worse interrupt response time expected on the system.It is assumed that no interrupt flood will
hold the code path active for a whole timer period. If this assumption is eventually proven to be wrong,
disabling interrupts around the algorithm execution couldhelp not experiencing this type of problem,
but delaying of timer interrupt would still leave room for overflow miss.

The update-side algorithm is detailed in Figure5. The functionupdate synthetic tsc()
must be executed periodically on each processor. It is expected to be executed in interrupt context
(therefore with preemption already disabled) at least onceper overflow period. Line 6 gets a pointer
to the CPU-localsynthetic tsc . Line 7 flips the current index back and forth between 0 and
1 at each invocation. Lines 8–9 invokesw tsc read() to read the current 64-bitTSCvalue, using
the last synthetic TSC value saved in the data structure by the previousupdate synthetic tsc()
execution. The current 64-bitTSCvalue is saved in the free array entry, unused at that moment.Line 10
is a compiler barrier, ensuring that the index update performed on line 11 is not reordered before line 8
by the compiler. This makes sure concurrent interrupts andNMIs are never exposed to corrupted data.

If processors need to be kept in low-power mode to save energy, the per-processor interrupt needed
to update the current 64-bit syntheticTSCvalue can be disabled in such low-power mode, replaced by
a resynchronization on an external timer counter upon return to normal processor operation.
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16 M. DESNOYERS AND M. R. DAGENAIS

1 static void update_synthetic_tsc(void)
2 {
3 struct synthetic_tsc_struct * cpu_synth;
4 unsigned int new_index;
5
6 cpu_synth = &per_cpu(synthetic_tsc, smp_processor_id( ));
7 new_index = 1 - cpu_synth->index;
8 cpu_synth->tsc[new_index] =
9 sw_tsc_read(cpu_synth->tsc[cpu_synth->index]);

10 barrier();
11 cpu_synth->index = new_index;
12 }

Figure 5. Synthetic clock periodic update

The amount of data which can be placed in the per-CPU array is not limited by the architecture size.
This could therefore be extended to support time-base correction for CPU frequency scaling andNTP
correction. If the hardware time-source is expected to appear to run slightly backward (due to hardware
bugs or out-of-order execution), the algorithm presented above could additionally check the 31st bit to
differentiate between overflow or underflow in order to support non-perfectly monotonic time-sources
and still keep the ability to return the full 64 bits.

Given that each read-side and write-side thread will complete in a bounded amount of cycles without
waiting, this time-base enhancement algorithm can be considered as wait-free, which ensures that no
thread starvation can be caused by this algorithm.

It must be understood, however, that this proposed algorithm does not replace a proper 64-bit time-
stamp counter implemented by hardware. Indeed, if a faulty device holds the bus or if a driver disables
interrupts for more than a cycle-counter overflow period, itwould lead to time-base inaccuracy due
to miss of one (or more) cycle-counter overflow. Making sure that this situation does not happen
would imply reading an external clock source in addition to the cycle counter, which does not meet
our efficiency constraints. Therefore, given that it is of utmost importance to be able to rely on core
debugging facilities like kernel tracers, it is highly recommended to use hardware providing full 64-
bit cycle counters. However, given that software must oftenadapt to hardware limitations rather than
the opposite, the algorithm proposed should work correctly, unless some hardware or driver is doing
somethingreally bad like holding the bus or disabling interrupts for a few seconds.

6. BENCHMARKS

This section will present the benchmarks used to choose the right synchronization primitives for
tracing, given their respective performance impact on manyof the mainstream architectures, namely
Intel and AMD x86, PowerPC, ARM, Itanium and SPARC. The goal of the present section is to show
that it is possible to use local atomic operations without adding a prohibitive performance impact
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compared to interrupt disabling. It will be demonstrated that, on most architectures, it is even faster to
use local atomic operations than to disable interrupts.

A comparison between benchmarks realized only with synchronization primitives, and with added
operations within the synchronization is presented at TableI. The added operation consists in 10 word-
sized reads and one word write. It shows that simple operations account for a negligible amount
of cycles compared to the synchronization cost, and that costly synchronization primitives such as
synchronizedCAS are made even slower by the added operations, probably due topipeline stalls
caused by the serializing instruction. Therefore, the following benchmarks only take into account the
synchronization primitive execution time. The termspeedupis used to represent the acceleration of
one synchronization primitive compared to another. Assuming cache-line effects as small compared to
the synchronization cost makes combination of synchronization primitives more straightforward. The
assembly listings for the following Intel Xeon benchmarks are presented in Figures6, 7, 8 and9.

Let’s first focus on performance testing of theCAS operation. TableII presents benchmarks
comparing disabling interrupts to localCAS on various architectures. When comparing the
synchronization done with localCASto disabling local interrupts alone, a speedup between 4.60and
5.37 is reached on x86 architectures. On PowerPC, the speedup range is between 1.77 and 4.00. Newer
PowerPC generations seems to provide better interrupt disabling performance than the older ones.
Itanium, for both older single-core and newer dual-core 9050 processor, has a small speedup of 1.33.
Conversely, UltraSPARC atomic CAS seems inefficient compared to interrupt disabling, which makes
the latter option about twice faster. As we will discuss below, besides the performance considerations,
all those architectures allowNMIs to execute. Those are, by design, unprotected by interruptdisabling.
Therefore, unless the macroscopic impact of atomic operations becomes prohibitive, the tracer
robustness, and ability to instrument code executing inNMI context, favors use of atomic operations.

TablesIII , IV andV present the different synchronization schemes that could be used at the tracing
site. TableIII shows the individual elementary operations performed whentaking a spin lock (busy-
waiting loop) with interrupts disabled. These numbers are a“best case”, because they do not consider
the non-scalability of this approach. Indeed, the spin lockatomic variable must be shared between
all CPUs, which leads to performance degradation when the variable must be alternately owned by
different CPU’s caches, a phenomenon known as cache-line bouncing.

Table IV presents the equivalent synchronization performed using asequence counter lock and a
fully synchronized atomic operation. Sequence counter locks are used in the kernel time-keeping
infrastructure to make sure reading the 64-bit jiffies is consistent on 32-bit architectures and also
to ensure the monotonic clock and the clock adjustment are read consistently. A synchronizedCAS
operation is needed because preemption is kept enabled, which allows migration. Therefore, given
that the probe could be preempted and migrated between the moment it reads the processor ID and
the moment it performs the atomic data access, concurrency between CPUs must be addressed by
a SMP-aware atomic operation. If preemption is left enabled, per-CPU data would be accessed by
the local CPU most of the time, so it would statistically provide a good cache locality, but, in cases
where a thread is migrated to a different CPU between readingthe pointer to the data structure and
the write to the reserve or commit counters, we could have concurrent writes in the same structure
from two processors. Therefore, the synchronized version of CASand increment should be used if
preemption is left enabled. It is interesting to note that ARMv7 OMAP3 shows a significant slowdown
for the sequence lock. This is caused by the requirement for read barriers before and after the sequence
number read due to lack of address [22] or control dependency between the sequence lock and the data
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18 M. DESNOYERS AND M. R. DAGENAIS

to access. ARMv7 does not have weaker read-side only memory barriers and therefore requires two
dmb(Data Memory Barrier) instructions, which decreases performance significantly.

TableV presents aRCUapproach to synchronization. It involves disabling preemption around the
read-side critical section, keeping a copy of the old data structures upon update and making sure the
write-side waits for a grace-period to pass before the old data structure can be considered private and
memory can be reclaimed. Disabling preemption, in this scheme, also has an effect on the scheduler: it
ensures that the whole critical section is not preempted normigrated to a different CPU, which permits
to use the faster localCAS.

TableVI presents the overall speedup of each synchronization approach compared to the baseline:
Spin lock disabling interrupts.

If we would only care about the read-side, the sequence counter lock approach is the fastest: it
only takes 3-4 cycles on the x86 architecture family to read the sequence counter and to compare
it after the data structure read. This is faster than disabling preemption, which takes 8-9 cycles on
x86. Preemption disabling is the cost ofRCUread-side synchronization. Therefore, in preemptible
kernels, aRCUread-side could be slightly slower than a sequence lock. On non-preemptible kernels,
however, the performance cost ofRCUfalls down to zero and outperforms the sequence lock. But the
synchronization requirements we have also involve synchronizing concurrent writes to data structures.

In our specific tracing case, in addition to read tracing control information, we also have to
synchronize for writing to buffers by usingCASto update the write counter and by using an atomic
increment to keep track of the number of bytes committed in each sub-buffer. Choosing between
a seqlockand RCUhas a supplementary implication: the seqlock outperformsRCUon preemptible
kernels only because preemption is left enabled. However, this implies that a fully synchronizedCAS
and atomic add must be used to touch per-CPU data to prevent migration.

The speedup obtained by using theRCUapproach rather than the sequence lock ranges between 1.2
and 2.53 depending on the architectures, as presented in Table VI . This is why, overall, theRCUand
local atomic operations solution is preferred over the solution based on read-side sequence lock and
synchronized atomic operations. Moreover, in addition to execute faster, theRCUapproach is reentrant
with respect toNMIs. The read sequence lock would deadlock if anNMI nests over the write lock.

7. LEAST PRIVILEDGED EXECUTION CONTEXTS

The discussion presented above focused on tracing the kernel execution contexts. It it however
important to keep in mind that different execution contexts, namely user-space, have different
constraints. The main distinction comes from the fact that it is a bad practice to let user-space code
modify data structures shared with the kernel without goingthrough a system call, because this would
pose a security threat and lead to potential privilege escalation.

If we were to port the tracing probe to perform user-space tracing, the trade-off would differ. The
main downside of theRCUapproach, for both the scheduler-based and preemptible versions, is that it
requires the writer to wait for reader quiescent state before the old memory can be reclaimed. This could
be a problem when exporting data from kernel-space to user-space, (e.g. time-keeping data structures)
where the write-side is the kernel and the reader is user-space. When synchronizing between different
privilege levels (kernel vs user-space), the highest privilege level must never wait or synchronize on
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the least-privileged execution context, otherwise resource exhaustion could be triggered by the lower
privilege context.

8. CONCLUSION

As this paper has demonstrated, the current state of the art in tracing involves either instrumentation
coverage limitations, synchronization flaws or limitationof the architectures supported to those which
have synchronized 64-bit time-stamp counters.

A set of synchronization primitives has been proposed whichfulfill the instrumentation coverage
requirements of kernel tracing, adding code executed inNMI handler context, which was not properly
handled by state-of-the-art tracers. Those primitives arethe local CAS instruction and theRCU
mechanism along with preemption disabling around the tracing code execution.

A wait-free algorithm, to extend a time-base providing lessthan 64-bit (which overflows periodically
during the trace) to a full 64-bit counter by software, has been detailed. It should help tracers implement
time-bases without the flaws caused by incorrect use of the sequence lock and improving the real-time
guarantees compared to the sequence lock.

Finally, benchmarks have demonstrated that, on almost all architectures (except SPARC), using
local CAS for synchronization rather than disabling interrupts is actually faster. It shows that using
atomic primitives over interrupt disabling allows to grow the instrumentation coverage, including code
executed fromNMI handler context, without sacrificing performance.

This will open the door to the design of fully reentrant, wait-free, high-performance buffering
schemes and to speedups in kernel primitives currently using interrupt disabling to protect their
execution fast path, such as the memory allocator.

ACKNOWLEDGEMENTS

The authors would like to thank the Linux Trace Toolkit, Linux Kernel and SystemTAP communities for their
feedback, as well as NSERC, Google, IBM Research and Autodesk for funding parts of this work.

We are indebted to Robert Wisniewski, Robert Roy, Paul E. McKenney, Bryan Cantrill, Simone Winkler and
Etienne Bergeron for their constructive comments on this paper. Special thanks to David Miller, Josh Boyer, Alan
D. Brunelle and Andika Triwidada for helping running benchmarks on various architectures.

REFERENCES

1. Bligh M, Schultz R, Desnoyers M. Linux kernel debugging onGoogle-sized clusters.Proceedings of the Ottawa Linux
Symposium, 2007.

2. Cantrill BM, Shapiro MW, Leventhal AH. Dynamic instrumentation of production systems.USENIX, 2004.http://
www.sagecertification.org/events/usenix04/tech/gene ral/full_papers/cantrill/
cantrill_html/index.html .

3. Corbet J. On DTrace envy. Linux Weekly News,http://lwn.net/Articles/244536/ August 2007.
4. McKenney PE. Exploiting deferred destruction: An analysis of read-copy-update techniques in operating system kernels.

http://www.rdrop.com/users/paulmck/RCU/RCUdissertat ion.2004.07.14e1.pdf July 2004.
5. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms.
6. Obstruction-free synchronization: Double-ended queues as an example, IEEE Computer Society, 2003.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–20
Prepared usingspeauth.cls

http://www.sagecertification.org/events/usenix04/ tech/general/full_papers/cantrill/ cantrill_html/index.html
http://www.sagecertification.org/events/usenix04/ tech/general/full_papers/cantrill/ cantrill_html/index.html
http://www.sagecertification.org/events/usenix04/ tech/general/full_papers/cantrill/ cantrill_html/index.html
http://lwn.net/Articles/244536/
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf


20 M. DESNOYERS AND M. R. DAGENAIS

7. Yaghmour K, Dagenais MR. The Linux Trace Toolkit.Linux JournalMay 2000; URLhttp://www.linuxjournal.
com/article/3829 .

8. Krieger O, Auslander M, Rosenburg B, Wisniewski RW, Xenidis J, Da Silva D, al. K42: building a complete operating
system. 2006; 133–145.

9. Wisniewski RW, Rosenburg B. Efficient, unified, and scalable performance monitoring for multiprocessor operating
systems.Supercomputing, ACM/IEEE Conference, 2003. URLhttp://www.research.ibm.com/K42/papers/
sc03.pdf .

10. Prasad V, Cohen W, Eigler FC, Hunt M, Keniston J, Chen B. Locating system problems using dynamic
instrumentation.Proceedings of the Ottawa Linux Symposium, 2005. URLhttp://sourceware.org/systemtap/
systemtap-ols.pdf .

11. Nataraj A, Malony A, Shende S, Morris A. Kernel-level measurement for integrated parallel performance views: the KTAU
project. 2006.

12. Oprofile: A system-wide profiling tool for Linux.http://oprofile.sourceforge.net .
13. Mavinakayanahalli A, Panchamukhi P, Keniston J, Keshavamurthy A, Hiramatsu M. Probing the guts of kprobes.

Proceedings of the Ottawa Linux Symposium, 2006.
14. Desnoyers M, Dagenais M. The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux.

Proceedings of the Ottawa Linux Symposium, 2006.
15. Wisniewski RW, Azimi R, Desnoyers M, Michael MM, MoreiraJ, Shiloach D, Soares L. Experiences understanding

performance in a commercial scale-out environment.Europar, 2007.
16. Desnoyers M, Dagenais M. Low disturbance embedded system tracing with Linux Trace Toolkit Next Generation.ELC

(Embedded Linux Conference), 2006.
17. Desnoyers M, Dagenais M. OS tracing for hardware, driverand binary reverse engineering in Linux 2007; :Vol. 4, No. 1.
18. LTTng website.http://www.lttng.org .
19. Intel Corporation. Intel 64 and IA-32 architectures software developer’s manual September 2006.
20. Wetzel J, Silha E, May C, Frey B, Furukawa J, Frazier G.PowerPC Virtual Environment Architecture, Version 2.02.

2005. Available:http://www.ibm.com/developerworks/eserver/library/e s-archguide-v2.html
[Viewed June 7, 2009].

21. Heinrich J. MIPS R4000 microprocessor user’s manual, second edition 1994.
22. ARM. ARMv7-A and ARMv7-R Architecture Reference Manual. 2008.
23. High Precision Event Timers (HPET) specification.http://www.intel.com/technology/architecture/

hpetspec.htm October 2004.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–20
Prepared usingspeauth.cls

http://www.linuxjournal.com/article/3829
http://www.linuxjournal.com/article/3829
http://www.research.ibm.com/K42/papers/sc03.pdf
http://www.research.ibm.com/K42/papers/sc03.pdf
http://sourceware.org/systemtap/systemtap-ols.pdf
http://sourceware.org/systemtap/systemtap-ols.pdf
http://oprofile.sourceforge.net
http://www.lttng.org
http://www.ibm.com/developerworks/eserver/library/es-archguide-v2.html
http://www.intel.com/technology/architecture/hpetspec.htm
http://www.intel.com/technology/architecture/hpetspec.htm


SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 21

Table I. Benchmark comparison between locking primitives and added inner operations, on Intel
Xeon E5405

Locking Primitive Sync. Only Sync. and Operations Pipelineeffect
(cycles) (cycles) (cycles)

Baseline (no locking) 1 60 0
Local CAS 8 60 -7
Sync.CAS 24 94 11
IRQ save/restore 39 97 -1
Spin lock/unlock 46 99 -6
seqlock 3 60 -2
Preemption disable/enable 12 60 -11

SynchronizedCAS:

110: 48 89 c8 mov %rcx,%rax
113: f0 0f b1 0d 00 00 00 lock cmpxchg %ecx,0x0(%rip)
11a: 00
11b: ff c2 inc %edx
11d: 81 fa 20 4e 00 00 cmp $0x4e20,%edx
123: 75 eb jne 110

Local CAS:

1e8: 48 89 c8 mov %rcx,%rax
1eb: 0f b1 0d 00 00 00 00 cmpxchg %ecx,0x0(%rip)
1f2: ff c2 inc %edx
1f4: 81 fa 20 4e 00 00 cmp $0x4e20,%edx
1fa: 75 ec jne 1e8

Figure 6. Assembly listings for Intel Xeon benchmarks (CASloop content).
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Interrupt restore:

468: 56 push %rsi
469: 9d popfq
46a: ff c0 inc %eax
46c: 3d 20 4e 00 00 cmp $0x4e20,%eax
471: 75 f5 jne 468

Interrupt save (and disable):

530: 9c pushfq
531: 59 pop %rcx
532: fa cli
533: ff c0 inc %eax
535: 3d 20 4e 00 00 cmp $0x4e20,%eax
53a: 75 f4 jne 530

Interrupt save/restore:

600: 51 push %rcx
601: 9d popfq
602: 9c pushfq
603: 59 pop %rcx
604: fa cli
605: ff c0 inc %eax
607: 3d 20 4e 00 00 cmp $0x4e20,%eax
60c: 75 f2 jne 600

Figure 7. Assembly listings for Intel Xeon benchmarks (Interrupt save/restore loop content).

Table II. Cycles taken to executeCAScompared to interrupt disabling

Architecture Speedup CAS Interrupts
(cli + sti) / local CAS local sync Enable (sti) Disable (cli)

Intel Pentium 4 5.24 25 81 70 61
AMD Athlon(tm)64 X2 4.60 6 24 12 11
Intel Core2 5.37 8 24 21 22
Intel Xeon E5405 5.25 8 24 20 22
PowerPC G5 4.00 1 2 3 1
PowerPC POWER6 1.77 9 17 14 2
ARMv7 OMAP3a 4.09 71 11 25 20
Itanium 2 1.33 3 3 2 2
UltraSPARC-IIIib 0.64 0.394 0.394 0.094 0.159

aForcedSMPconfiguration for test module. Missing barriers forSMPsupport added in these tests and reported to ARM Linux
maintainers.
b In system bus clock cycles.
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Spin lock:

ffffffff814d6c00 <_spin_lock>:
ffffffff814d6c00: 65 48 8b 04 25 08 b5 mov %gs:0xb508,%rax
ffffffff814d6c07: 00 00
ffffffff814d6c09: ff 80 44 e0 ff ff incl -0x1fbc(%rax)
ffffffff814d6c0f: b8 00 01 00 00 mov $0x100,%eax
ffffffff814d6c14: f0 66 0f c1 07 lock xadd %ax,(%rdi)
ffffffff814d6c19: 38 e0 cmp %ah,%al
ffffffff814d6c1b: 74 06 je ffffffff814d6c23 <_spin_lock+ 0x23>
ffffffff814d6c1d: f3 90 pause
ffffffff814d6c1f: 8a 07 mov (%rdi),%al
ffffffff814d6c21: eb f6 jmp ffffffff814d6c19 <_spin_lock +0x19>
ffffffff814d6c23: c3 retq

Spin unlock:

spin_unlock:
ffffffff814d6f10 <_spin_unlock>:
ffffffff814d6f10: fe 07 incb (%rdi)
ffffffff814d6f12: 65 48 8b 04 25 08 b5 mov %gs:0xb508,%rax
ffffffff814d6f19: 00 00
ffffffff814d6f1b: ff 88 44 e0 ff ff decl -0x1fbc(%rax)
ffffffff814d6f21: f6 80 38 e0 ff ff 08 testb $0x8,-0x1fc8(%r ax)
ffffffff814d6f28: 75 06 jne ffffffff814d6f30 <_spin_unlo ck+0x20>
ffffffff814d6f2a: f3 c3 repz retq
ffffffff814d6f2c: 0f 1f 40 00 nopl 0x0(%rax)
ffffffff814d6f30: e9 fb e1 ff ff jmpq ffffffff814d5130 <pre empt_schedule>
ffffffff814d6f35: 66 66 2e 0f 1f 84 00 nopw %cs:0x0(%rax,%ra x,1)

Benchmark loop for spinlock()/spin unlock():

140: 48 c7 c7 00 00 00 00 mov $0x0,%rdi
147: ff c3 inc %ebx
149: e8 00 00 00 00 callq ffffffff814d6c00 <_spin_lock>
14e: 48 c7 c7 00 00 00 00 mov $0x0,%rdi
155: e8 00 00 00 00 callq ffffffff814d6f10 <_spin_unlock>
15a: 81 fb 20 4e 00 00 cmp $0x4e20,%ebx
160: 75 de jne 140

Figure 8. Assembly listings for Intel Xeon benchmarks (spinlock loop content).
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Sequence read lock:

330: f3 90 pause
332: 89 f2 mov %esi,%edx
334: 48 89 c8 mov %rcx,%rax
337: a8 01 test $0x1,%al
339: 75 f5 jne 330
33b: 39 15 00 00 00 00 cmp %edx,0x0(%rip)
341: 75 ef jne 332
343: ff c7 inc %edi
345: 81 ff 20 4e 00 00 cmp $0x4e20,%edi
34b: 75 ea jne 337

Preemption disabling/enabling:

3f8: ff 43 1c incl 0x1c(%rbx)
3fb: ff 4b 1c decl 0x1c(%rbx)
3fe: 41 f6 84 24 38 e0 ff testb $0x8,-0x1fc8(%r12)
405: ff 08
407: 0f 85 a4 00 00 00 jne 4b1
40d: ff c5 inc %ebp
40f: 81 fd 20 4e 00 00 cmp $0x4e20,%ebp
415: 75 e1 jne 3f8 <init_module+0x3e8>

[...]
4b1: e8 00 00 00 00 callq 4b6 <preempt_schedule>
4b6: e9 52 ff ff ff jmpq 40d

Figure 9. Assembly listings for Intel Xeon benchmarks (sequence lock and preemption disabling loop content).

Table III. Breakdown of cycles taken for spin lock disablinginterrupts

Architecture Spin lock IRQ save/restore Total
(cycles) (cycles) (cycles)

Pentium 4 144 131 275
AMD Athlon(tm)64 X2 67 23 90
Intel Core2 57 43 100
Intel Xeon E5405 46 39 85
ARMv7 OMAP3a 132 45 177

aForcedSMPconfiguration for test module.
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Table IV. Breakdown of cycles taken for using a readseqlockand using a synchronizedCAS

Architecture Seqlock SyncCAS Total
(cycles) (cycles) (cycles)

Pentium 4 4 81 85
AMD Athlon(tm)64 X2 4 24 28
Intel Core2 3 24 27
Intel Xeon E5405 3 24 27
ARMv7 OMAP3a 73 71 144

aForcedSMPconfiguration for test module.

Table V. Breakdown of cycles taken for disabling preemptionand using a localCAS

Architecture Preemption disable/enable LocalCAS Total
(cycles) (cycles) (cycles)

Pentium 4 9 25 34
AMD Athlon(tm)64 X2 12 5 17
Intel Core2 12 8 20
Intel Xeon E5405 12 8 20
ARMv7 OMAP3a 10 11 21

aForcedSMPconfiguration for test module.
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Table VI. Speedup of tracing synchronization primitives compared to disabling interrupts and spin
lock

Architecture Spin lock Sequence lock Preempt disabled
disabling interrupts (speedup) andCAS(speedup) and localCAS(speedup)

Pentium 4 1 3.2 8.1
AMD Athlon(tm)64 X2 1 3.2 5.3
Intel Core2 1 3.7 5.0
Intel Xeon E5405 1 3.1 4.3
ARMv7 OMAP3a 1 1.2 8.4

aForcedSMPconfiguration for test module.
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