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SUMMARY

To effectively trace an operating system, a performance matoring and debugging infrastructure needs
the ability to trace various execution contexts. These comkts range from kernel running as a thread to
NMI (Non-Maskable Interruptcontexts.

Given that any part of kernel infrastructure used by a kernel tracer could lead to infinite recursion if
traced, and because most kernel primitives require synchnoization unsuitable for some execution contexts,
all interactions of the tracing code with the existing kerné infrastructure must be considered in order to
correctly inter-operate with the existing operating systen kernel.

This paper presents a new low overhead tracing mechanism andotivates the choice of synchronization
sequences suited for operating system kernel tracing, naryelocal atomic instructionsas main buffer
synchronization primitive and the RCU(Read-Copy Updajemechanism to control tracing. It also proposes
a wait-free algorithm extending the time-base needed by thé&acer to 64-bit on architectures that lack
hardware 64-bit time-base support. Copyright© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As computers are becoming increasingly multi-core, thednie debugging facilities that will
help identify timing related problems, across executioyeta and between processes, is rapidly
increasing 1, 2, 3]. Such facilities must allow information gathering aboublplematic workloads
without affecting the behavior being investigated in orgielne useful for problem analysis purposes.
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2 M. DESNOYERS AND M. R. DAGENAIS

The variety of execution contexts reached during kernetatken complicates efficient exportation
of trace data out of the instrumented kernel. The generatoagp used to deal with this level
of concurrency is to either provide good protection agagtber execution contexts, for instance
by disabling interrupts, or to adopt a fast, but limited matkm by shrinking the instrumentation
coverage (e.g. by disallowing interrupt handler instrutagan). This trade-off often means that either
performance or instrumentation coverage is sacrificed.@¥ew as this paper will show, this trade-off
is not required if the appropriate synchronization prives are chosen.

We propose to extend ti@S" kernel instrumentation coverage compared to other egistacers
by dealing with the variety of kernel execution contexts.r @pproach is to consider reentrancy
from NMI? execution context, which presents particular constraggarding execution atomicity due
to the inability to create critical sections by disablingeimupts. In this article, we show that in a
multiprocesso©OS the combination of synchronized time-stamp countersaglsngle-CPU atomic
operations and trace merging, provides an effective andiesiti tracing mechanism which supports
tracing inNMI contexts.

Section3 will first present the synchronization primitives used bg #tate-of-the-art open source
tracers. In Sectiod, we outline theLTTng? design requirements which aim at high scalability and
minimal real-time response disruption.

Recursion between the tracer probe and the kernel will lridg®d in Sectioh, where the reasons
why a kernel tracer cannot call standard kernel primitiveésout limiting the instrumentation coverage
will be illustrated by concrete examples in Sectiédn$ and5.2. We then propose an algorithm that
synchronizes data structures to provide a 64-bit tracekadm architectures that lack hardware 64-bit
time-base support in Secti@n3.

In Section6 we show how to achieve both good performance and instruriemntaoverage
by choosing primitives that provide the right reentrancyaretcteristics and high performance.
Overhead measurements comparingR@J [4] mechanism antbcal atomic operationgrimitives
to alternative synchronization methods will support thisgmsal.

This opens a wide perspective for the design of fully reenttrsait-free, high-performance buffering
schemes.

2. INTRODUCTION TO TRACING

This section introduces to the background required to wtded the following state of the art. The
tracer impact on real-time response is first discusseawvi@ltl by a description of tracer concepts.
Real-time impact of algorithms can be categorized follaytime guarantees they provide. The terms
used to identify such guarantees evolved through time émditire 5, 6]. The terminology used in
this article will follow [6]. The strongest non-blocking guarantee is wait-free, Whéasures each
thread can always make progress and is therefore neveedtakwnon-blocking lock-free algorithm

10S Operating System

2NMI: Non-Maskable Interrupt

3LTTng: Linux Trace Toolkit Next Generation
4RCU Read-Copy Update.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 3

only ensures that the system as a whole always makes progitgsss made possible by ensuring
that at least one thread is progressing when concurrenssi¢toea data structure is performed. An
obstruction-free algorithm offers an even weaker guagatitan lock-free: it only guarantees progress
of any thread executing in isolation, meaning that all cotimgeconcurrent accesses may be aborted.
Finally, a blocking algorithm does not provide any of thesamgntees.

This article specifically discusses operating system Keraeers. A tracer consists in a mechanism
collecting an execution trace from a running system. A triaca sequence of event records, each
identifying that the kernel executed a pre-identified morf its code.

Mapping between execution sites and events is made podsiblestrumentation of the kernel.
Instrumentation can be either declared statically at thiecgscode level or dynamically added to the
running kernel. Statically declared instrumentation carebabled dynamically.

A tracer probe is the tracer component called when enabsdiimentation is executed. This probe
is responsible for fetching all the data to write in the evexbrd, namely an event identifier, a time-
stamp and, optionally, an event-specific payload. Timayptaare monotonically increasing values
representing the time-flow on the system. They are typiciyved from an external timer or from a
TSC register on the processor.

To amortize the impact dfO ® communication, event records are saved in memory bufférsirT
extraction through atiO device is therefore delayed. To ensure continuous avhilabf free buffer
space, a ring buffer with at least two sub-buffers can be .uSee is used by tracer probes to write
events while the other is extracted througd devices.

3. STATE OF THE ART

This section reviews the synchronization primitives usedhie state-of-the-art open source tracers
currently available, namely: the original LTT tracét,[the wait-free write-side tracing solution found
in K42 [8, 9], a highly-scalable research operating system create@bly DTrace [2] from Sun’s
OpenSolarisSystemTAP [10] from RedHat, providing scripting hooks for the Linux keftmiilt

as external module&TAU[11] from University of Oregon andrtrace , started by Linux kernel
maintainer Ingo Molnar. The following study details the slgronisation mechanisms used in each of
these projects.

The originalLTT (Linux Trace Toolkit) [7/] project started back in 1999. Karim Yaghmour, its
author, aimed at creating a kernel tracer suitable for tinentkernel with a static instrumentation set
targeting the most useful kernel execution sitéBT uses the architecture time-stamp counter register
when available to interpolate the time between the timeptataken at sub-buffer boundaries with
do_gettimeofday()This leads to problems witNTP (Network Time Protocol) correction, where the
time-base at the sub-buffer boundaries could appear to gonaad. Regarding synchronization, the
do_gettimeofday(function uses a sequence counter locking on the read-siden&uring time-base
data consistency, which can cause deadlock¢éNfi handlers were instrumented. One of the early
buffering scheme used was based on spin lock (busy-waitiok) Idisabling interrupts for buffers

5TSC Time-Stamp Counter
61/0 : Input/Output
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4 M. DESNOYERS AND M. R. DAGENAIS

shared between the CPUs. Per-CPU buffers support, probigl&elayFS , uses interrupt disabling
to protect from interrupt handlers. Karim worked, in cobha#tion with Tom Zanussi and Robert
Wisniewski from IBM, on the integration of some locklessfening ideas from théK42 tracer into
RelayFs .

K42 [8, 9] is a research operating system developed by IBM, mostlywéetn 1999 and 2006.
According to the authors, its code-base should be consideya prototype. It focuses on large multi-
processor machine scalability and therefore uses datetstes and operations local to each CPU as
much as possible. It brings some very interesting ideag#airtg synchronization, namely the use of
atomic operations to synchronize buffer space reservaiiba tracing facility found irk42 is built
into the kernel. It uses per-CPU buffers to log tracing dailamits the consumption of data to user-
space threads tied to the local CPU. This first design cdnstauld be problematic in a production
OS, because if the workload is not equally shared among8falls, those with the most idle time will
not be able to collaborate with the busier CPUs to help thetraeixthe trace streams to disk or over
the network. It uses a wait-free algorithm based onGA&(compare-and-swagmperation to manage
space reservation from multiple concurrent writers. Itsacmimpiler optimisation restriction barriers to
order instructions with respect to the local instructiaeai, but does not add memory barriers, since
all data accesses are local. Once the space reservatiorfasnped, the data writes to the buffer and
the commit count increments are done out-of-ordeouffers producedount and @uffers consumed
count are updated to keep track of the buffers availabledasamption by the user-space thread. For
time-base synchronizatioli42 only supports architectures with 64-bit time-stamp cotsi@owerPC
and amd64) and assumes that those counters are synchraniosg all CPUs. Therefore, a simple
register read is sufficient to provide the time-base at #hang site, and no synchronization is required
after system boot.

TheDTrace [2] tracer has first been made available in 2003, and formakiased as part of Sun’s
Solaris 10 in 2005 under théDDL’ license. It aims at providing information to users abouirthe
system’s behavior by executing scripts at the kernel levedminstrumentation sites are reached. It has
since then been ported to FreeBSD and Apple Mac OS X 10.5 lrdopgport to the Linux kernel is
under development, but involves license issues betDLandGPLE.

The DTrace traceP disables interrupts around iteration on the probe arragregiroceeding to
their invocation. Therefore, the whole tracer site exexuis protected from interrupts coming on the
local CPU. Disabling interrupts also serves as a means tk aR€Uread-side critical section. Trace
control synchronization is based orR&Ulike [4] mechanism which waits for a grace period before
tracing sites can be considered having reached a quiedegat This is performed by executing a
thread on every CPU waiting for all the currently active ingcsites to complete. Given that such
threads are not allowed to execute while interrupts arebtisiathis permits detection of tracing sites
quiescent states.

DTrace also uses a per-thread flap,DONTDTRACE ensuring that critical kernel code dealing
with page mappings does not call the tracer. It does not shemever, to apply any thread flag to
NMI handler execution. In OpenSolarl$MIs are primarly used to enter the kernel debugger, which

7CDDL Common Development and Distribution License.
8GPL General Public License.
9Version reviewed: OpenSolaris 20090330.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 5

is not allowed to run at the same time @3race . Therefore, the following discussion applies to a
situation where the same algorithms and structures woulgsbd in an operating system like Linux,
whereNMlIs can execute code contained in various subsystems, ingltitk Oprofile 12] profiler.

DTrace calls thedtracegethrtime()primitive to read the time source. On the x86 architecture,
this primitive uses a locking mechanism similar to the segedock in Linux. A sequence lock is
a type of lock which lets the reader retry the read operatittil the writer exits its critical section.
The particularity of the sequence lock foundDirace is that if it spins twice waiting for the lock,
it assumes that it is nested over the write lock, so a timeevaheviously copied by the time-base
tick update will be returned. This shadow value is protedigdts own sequence lock. In the x86
implementation, this leaves room for a 4-way deadlock on R€iRvolving theNTPcorrection update
routinessc.tick() and two nestingltrace gethrtime()calls in interrupt handlers.

Although this deadlock should never cause harm due to spexifil controlled use dfiMls in
OpenSolaris, porting this tracer to a different operatiyggesm or loading specific drivers usitnMIs
could become a problem. Discussion with Bryan Cantrillhauof DTrace , with Mike Shapiro and
Adam Leventhal, led to notice that an approprisitdl-safe implementation based on two sequence
locks taken successively fromsinglethread already exists itrace gethrestime()but is not used in
the lower-level x86 primitive. It requires that only a siagixecution thread takes the two sequence
locks successively. Using it in the lower-level code wowduire modification of th&élTPadjustment
codée?. This example taken from a widely distributed tracer shdves it is far from trivial to design
tracing clock source synchronization properly, especifali a flexible open source operating system
like Linux.

Considering real-time guarantees, a sequence lock shewdtegorized as a blocking algorithm. If
an updater thread is stopped in the middle of an update, rdere¢bread can progress. Therefore,
a sequence lock does not provide non-blocking guarantdgs.riieans real-time behavior can be
affected significantly by the execution DfTrace .

The SystemTAP [10] project from Redhat, first made available in 2006, aims #inig system
administrators run scripts connected at specific kerne$ $d gather information and statistics about
the system behavior and investigate problems at a systelm-\@vel. It aims at providing features
similar to DTrace *! in the Linux operating system. Its first aim is not to expor thhole trace
information flow, but rather to execute scripts which cameaitaggregate the information, perform
filtering on the data input or write data into buffers alonghatime-stamps. The focus is therefore
not to have a very high-performance capable data extraotiechanism, given this is not their main
target use-cas&ystemTAP uses a heavy locking mechanism at the probe site. It disatikrsupts
and takes a global spin lotktwice in the write path. The first critical section surrouddyy interrupt
disabling and locking is used to manage the free buffer gd@.second critical section, similar to the
former but using a distinct lock, is needed to add the bu#ady for consumption tor@ady queue

10Based on review of th®Trace code-base, we recommend using a standard mutex to ensuvelnemtlusion around
the two write sequence locks should allow to permit usingghme locking mechanism for bottirace gethrestime()and
dtracegethrtime() which would allow updates frolNTPand from thesctick() routine.

11 According tohttp://sourceware.org/systemtap/wiki/SystemtapDtrac eComparison .

12 A spin lock is a type of busy-waiting lock in the Linux kernel.
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6 M. DESNOYERS AND M. R. DAGENAIS

SystemTAP assumes it is called fro{probes [13], a Linux kernel infrastructure permitting
connection of breakpoint-based probes at arbitrary addsds the kernel. Kprobes disables interrupts
around handler execution. Therefo8y,stemTAP assumes interrupt disabling is done by the caller,
which is not the case for static instrumentation mechanibkesthe Linux Kernel Markers and
Tracepoints . In those cases, if events come nested over the tracing cadsed by recursion
or coming fromNMlIs, SystemTAP will consider this as an error condition and will silentlysdard
the event until the number of events discarded reaches shibick At that point, it will stop tracing
entirely. SystemTAP modules can use thgettimeofday(primitive exported by the Linux kernel as
time source. It uses a sequence lock to ensure the time-baseency. This fails in &MI context
because it would cause a deadlock if a probe MMI nests over a sequence writer lock. Therefore,
SystemTAP'’s internals disallows instrumentation of code reachethfidMI context. It also depends
on interruptions being disabled by the lower-level instemation mechanism.

TheKTAU(Kernel Tuning and Analysis Utilities)I[1] project, available since 2006, allows to either
profile or trace the Linux kernel on a system-wide or per-psadasis. It allows detailed per-process
collection of trace events to memory buffers, but deals W#mel system-wide data collection by
aggregating performance information of the entire systéhe motivation for using aggregation to
deal with system-wide data collection is that exportingfilleinformation flow into tracing buffers
would consume too much system resources. Conversely, fi@hmesis thé TTng approach is trying
to verify is that it is possible to trace a significant usefuibset of operating system’s execution in a
detailed manner without prohibitive impact on the workldesdhavior. Therefore, we have to consider
if the KTAUprocess-centric tracing approach would deal with systede-wacing appropriately.

Some design decisions indicate that detailed processr&not meant to be used for system-wide
tracing. KTAUkeeps buffers and data structures local to each threadhvdain lead to significant
memory usage on workloads containing multiple threads.KWads consisting of many mostly
inactive threads and few very active threads risk overflgwiime buffers if they are too small, or
consuming a lot of memory if all buffers are made larg€FAUallows tweaking the size of specific
thread’s buffers, but it can be difficult to tune if the threade short-lived. We can also notice that the
kernel idle loop, which includes swap activity, and all mtgpts and bottom halves nested over this
idle loop, are not covered by the tracer, which silently dripe events.

For synchronizatiorK TAUpermits choosing at compilation time betweéBi®Q or bottom half (lower
priority interrupts) disabling and uses a per-thread spik ko protect its data structures. The fact that
the data can stay local to each thread ensures that no usaecesche-line bouncing between the
CPUs will occur. Those spin locks are used therefore mamlgynchronize the data producer with
the consumer. This protection mechanism is thus not inttalraceNMIs because the handler could
deadlock when taking a spin lock if it nests over code alrdaalgling the lock.

Regarding kernel reentrandg,TAUusesvmalloc (kernel virtual memory) to allocate the trace
buffers. Given that the Linux kernel populates TeB (Translation Lookaside Buffer) entries of those
pages lazily on x86, the tracing code will trigger page ftihie first time those pages are accessed.
Therefore, the page fault handler should be instrumentéd gveat careKTAUonly supports x86
and PowerPC and uses the time-stamp counter register ag adimmce, which does not require any
synchronization per se. On the performance impact sidegatibn of tracing buffers at each thread
creation could be problematic on workloads consisting ohynshort-lived threads, because thread
creation is normally not expected to be slowed down by miglfyage allocations, since threads usually
share the same memory pages.

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-20
Prepared usingpeauth.cls



SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 7

Ftrace, a project started in 2009 by Ingo Molnar, grew from IfRQ tracer, which traces long
interrupt latencies, to incrementally integrate the waketnacer, providing information about the
scheduler activity, the function tracer, which instrunsethie kernel function entry at low-cost and an
actively augmented list of tracers. Its goal is to providstegn-wide, but subsystem-oriented tracing
information primarily useful to kernel developers. It uiesTracepoint  mechanism, which comes
from theLTTng project, as primary instrumentation mechanism.

Ftrace , in its current implementation, disables interrupts arkksaper-buffer (and thus per-
CPU) spin locks. The advantage of taking a per-CPU spin logs @ global spin lock is that it
does not require to transfer the spin lock cache-line betweieUs when the lock has to be taken,
which improves the scalability when the number of CPUs iasesFtrace , as of its Linux 2.6.29
implementation, does not hand¥Mls gracefully. If instrumentation is added in a code pathliedc
by NMI context, a deadlock may occur due to the use of spin Idekace relies on the scheduler
clock for timekeeping, which does not provide any lockingiagt non-atomigiffies'® counter updates.
Although this time source is statistically correct for sghker purposes, it can result in incorrect timing
data when the tracer races with fifées update. Dropping events coming from neskdd| handlers
will be the solution integrated in the 2.6.30 kernels. Iny@nment is expected in a near future regarding
tracing buffer ability to handlé&Mls gracefully using a lock-free kernel-specific bufferindgieame
submitted for U.S. and international patent in early 200$tgven Rostedt.

4. LINUX TRACE TOOLKIT NEXT GENERATION

The purpose of the study presented in this paper is to be ssadasis for developing tHeTTng
kernel tracer. This tracer aims at tracing the Linux kerngllevproviding these guarantees:

e Provide a wide instrumentation coverage.

Provide probe reentrancy for all kernel execution contartdudingNMIs andMCE(Machine
Check Exception) handlers.

Record very high-frequency kernel events.

Impose small overhead to typical workloads.

Scale to large multiprocessor systems.

Change the system real-time response in a predictable way.

Earlier work presented an overview of th€Tng tracer design14] and industry use-case scenarios
in the industry [, 15, 16, 17]. That work presents an in-depth analysis of synchrororgprimitives
and new algorithms required to deal with some widely usedi8architectures.

The LTTng tracer probe needs, as input, a clock source to provide timmgss, trace control
information to know if tracing is enabled or if filters must bpplied, and the input data identified
by the instrumentation. The result of its execution is to bora its inputs to generate an event written
to a ring buffer.

13 Thejiffies counter increments at each timer tick, at a frequency tylpibatween 100 and 1000 HZ.
1 As stated in thétrace  presentation at the Linux Foundation Collaboration Sun2®@o.
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8 M. DESNOYERS AND M. R. DAGENAIS

In order to provide good scalability when the number of CPtréases|. TTng uses per-CPU
buffers and buffer management counters to eliminate caddgesmand false-sharing. It diminishes the
impact of the tracer on the overall system performance. Nestess, cross-CPU synchronization is
still required when information is exchanged from a prodiocea consumer CPU.

This paper will justifyLTTng’s use of theRCUmechanism to synchronize control information read
from the probe, locaCASand proper memory barriers to synchronize ring buffer otépd present a
custom trace clock scheme used to deal with architectuckmlz64-bit hardware clock source.

5. TRACING SYNCHRONIZATION

In this section we describe tlomic primitivesandRCUmechanisms used iyl Tng [14, 18] to deal
with the constraints associated wihinchronizatiorof data structures while running in aeyecution
context avoidingkernel recursionWe then present aRCUlike trace clock infrastructure required
to provide 64-bit time-base on many 32-bit architecturdee @issociategerformance impacof the
synchronization primitives will be studied thereafter,ighwill lead to the subsequent benchmark
section.

5.1. ATOMIC PRIMITIVES

This section presents synchronization considerationkéonel data read from the tracing probe,
followed by inner tracer synchronization for the controtadatructures read usingCUand buffer
space reservation performed with atomic operations.

Because any execution context, includiiylls, can execute the probe, any data accessed from the
probe must be consistent when it runs. Kernel data identifiethe instrumentation site is expected
to be coherent when read by every execution contexts assdeidth the given site. It is therefore the
instrumentation site’s responsibility to correctly syrmhize with those kernel data structures.

Data read by the probe can be classified into two types. Thetfjpe contains global and static
shared variables read from kernel memory. The second tygedes data accessed locally by the
processor, contained either in registers, on the threadtemupt stack, or in per-CPU data structures
when preemptiot? is temporarily disabled.

Synchronization of shared data structures is ensured by ststrumentation because the data input
identification is located within the source code which @&sthe correct locking semantic. Conversely,
dynamic instrumentation offers no guarantee that globadtatic variables read by the probe will
be appropriately synchronized. For instance, Kprold&$ flo not export specific data at a given
instrumentation site. Therefore, it does not guarantdangother than whatis being done in the kernel
around the breakpoint instruction. Given that there arenecessarily any data dependency between
the instruction being instrumented and the data accesgshahwhe probe, subtle race conditions may
occur if locking is not performed appropriately within theope.

15User space preemption naturally occurs when the schediéeripts a thread executing in user space context anccespia
by another runnable thread. At kernel-level, with fullyepmptible Linux kernelsGONFIG.PREEMPT=y, the scheduler can
preempted threads running in kernel context as well.
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SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 9

Local data accessed by its owner execution context, howgwerot have such locking requirement
because it is normally modified only by the local executiontegt. The probe which accesses this data
executes either in the same execution context owning th& atain a trap generated by instructions
within the owner context. However, compiler optimizatialts not guarantee to keep local variables
live at the probe execution site with Kprobes. Static instentation can make sure that the compiler
keeps the data accessed live at a specific instruction.

Information controlling tracing behavior is accessed dilge from the probe, without any
consideration regarding the context in which it is execufBuis information includes the buffer
location, produced and consumed data counters and a flagadysi a specific set of buffers is active
for tracing. This provides flexibility so users can tune tfaeér following their system’s workload.

LTTng uses theRCUmechanism to manage trace-control data structure. Thishsgnization
mechanism provides very fast and scalable data structadeaccess by keeping copies of the protected
data structure when a modification is performed. It gragualinoves an outdated data structure by first
replacing all pointers to it by pointers to the new versidfkeleps all data copies in place until a grace
period has passed, which identifies a read-side quiesetatsid therefore permits reclamation of the
data structure. /RCUread-side is wait-free, but the write-side can block if norenfree memory is
available. Moreover, the write-side may either block wegtior a grace period to end, or queue memory
reclamation as & CUcallback to execute after the current grace period. In #itel case, reclamation
is performed in batch after the current grace period endbetefore provides very predictable read-
side real-time response. Given that the trace control datatare updates are rare, this operation can
afford to block.LTTng marks the read-side critical sections by disabling preenpgiecause this
technique is self-contained (it does not use other kerriglifives) and due to its low overhead. The
LTTng trace-control write-side waits for readers to completecakien to provide guarantees to the
trace-control caller. Therefore, when the operasitart tracecompletes, the caller knows all current
and new tracer probes are seeing an active trace. The opppgiies when tracing stops.

The tracing information is organized aR&Ulist of trace structures, and is only read by the probe
to control its behavior. Since the probe is executed witlepnetion disabled, updates to this structure
can be done on a copy of the original while the two versiongegeented to the probes when the list
is updated: probes holding a pointer to the old structulleust the old one, while the newly executing
probes use the new one. A quiescent state is reached wheon@digsors have executed the scheduler.
It guarantees that all preemption-disabled sections hgldipointer to the old structure finished their
execution. It is thus safe, from that point, to free the olthddructure.

With theRCUmechanism, the write-side must use preemptible mutexestode other writers and
has to wait for quiescent states. Luckily, such trace datetstre updates are rare (e.g. starting a trace
session), so update performance is not an issue.

Because th(RCUmechanism wait-free guarantees apply only for the reag-&i@dTng cannot
leverageRCUprimitives to deal with reentrancy coming from any executtmntext to synchronize
memory buffer space reservation, which includes updatindpta structure. Primitives, allowing
protection from concurrent execution contexts perforninffer space reservation on the local CPU,
need to execute atomically with respect to interruptsiditls, which implies thaatomic operations
must be used to perform atomic data accesses.

Given that the cross-CPU synchronization points are gladdntified and occur only when sub-
buffers can pass from a producer CPU to a consumer CPU atudtds-boundaries, the performance
impact of synchronization primitives required for eachrénvghould be characterized to find out which
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10 M. DESNOYERS AND M. R. DAGENAIS

set of primitives are adequate to protect the tracer datetsires from use in concurrent execution
contexts.

On modern architectures such as Intel Pentium and above, AMRerPC and MIPS, using atomic
instructions, synchronized to modify shared variables 8\MP(Symmetric Multi-Processor) system,
incurs a prohibitive performance degradation due to theclssonized variant of the instructions
used (for Intel and AMD) or to the memory barriers which mustused on PowerPC, MIPS and
modern ARM processors. Given that several atomic operataoe often required to perform the
equivalent synchronization of what would otherwise be dbyelisabling interrupts a single time,
the latter method is often preferred. The wait-free writkedracing algorithm used ibTTng® needs
a singleCASoperation to update the write count (amount of space reddovevriting) and an atomic
increment to update the commit count (amount of informatwoitten in a particular sub-buffer).

Given that the tracing operations happen, by design, onlypemCPU data, their single-CPU
atomic primitives can be safely used. This means Intel and>AMN6 do not need OCK prefix to
synchronize these atomic operations with concurrent CRidss; while PowerPC, MIPS and modern
ARM processors do not require them to be surrounded by metramers to ensure correct memory
order, since the only order that matters is from the pointieiwof a single CPU. Therefore, those
lightweight primitives, faster than disabling interrujpts many architectures, can be used. Secdgion
will present benchmarks supporting these claims.

5.2. RECURSION WITH THE OPERATING SYSTEM KERNEL

The instrumentation coverage depends directly on the atafumteraction the probe has with the rest
of the kernel. In fact, the tracer code itself cannot be umsgnted because it would lead to infinite
probe recursion. The same applies to any kernel functiod bigehe prob¥’.

In the Linux kernel, the x86 32 and 64-bit architectures melypage faults to populate the page table
entries of the virtual memory mappings created withalloc()or vmap() Since the kernel modules
are allocated in this area, any access to module instriscéind data might cause a minor kernel page
fault. Care must therefore be taken to call theallocsyncall() primitive which populates all the
kernel virtual address space reserved for virtual mappivitisthe correct page table entries between
module load and use of this module at the tracing site. Tisss that no recursive page fault will be
triggered by the page fault handler instrumentation.

In the context of the probe, the most important limitatioga®ling operating system recursion is
the inability to wake up a process when the buffers are readhetread. Instrumenting thread wake-
ups provides very useful information about the inner sclerdoehavior. However, instrumentation
of this scheduler primitive forbids using it in the traceppe. This problem is solved by adding a
periodic timer which samples the buffer state and wakes agtmsumers appropriately. Given that
the operating system already executes a periodic timarrigeto perform scheduling and manage its
internal state, the performance impact of this approach ikeé same order of magnitude as adding a
callback to the timer interrupt. The impact on low power-®@mption modes is kept small by ensuring

16 TTng kernel tracing algorithm with wait-free write-side will lpgesented in a forthcoming paper.
17 A particularly unobvious example is the page fault handistrumentation.

Copyright(©) 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-20
Prepared usingpeauth.cls



SYNCHRONIZATION FOR FAST AND REENTRANT OS KERNEL TRACING 11

that these per-processor polling timers are delayed whaeststem is in these low-power modes.
Therefore, polling is only performed when the system isva¢tand thus generating trace data.

As a general guideline, the probe site only touches its owrabkes atomically, so it requires
absolutely no higher-level synchronization with the OS.tB®OS side, any operation done on those
shared variables is also performed atomically. It resaleni hermetic interface between the probe and
the kernel which makes sure the probe calls no OS primitive.

Because preemption must be disabled around probe execptiararily to allow theRCUbased
data structures reads, care must be taken not to use ammesired version of the preemption disabling
macros. It can be done by using the untraced implementateasmptdisablenotrace()

5.3. TIMEKEEPING

Time-stamping must also be done by the probe. It therefaédread a time-base. In the Linux kernel,
the standardjettimeofday(pr other clock sources are synchronized with a sequence(sacitoch;,
which consists of a busy loop on the read-side, waiting fdatens to finish modifying the data structure
and checking for a sequence counter modification prior tcedted reading the data structure. However,
this is problematic wheNMIs need to execute the read-side, because nesting over teéogki would
resultin a deadlock; thedMIwould wait endlessly for the writer to complete its modifioat but would

do so while being nested over the writer. Normal use of thi€kyonization primitive requires interrupt
disabling, which explains why it is generally correct, exci@ this specific case. Another issue is that
the sequence lock is a blocking synchronization algorithecause the updater threads have the ability
to inhibit reader progress for an arbitrarily long periodiofe. Therefore, the CPU time-stamp register,
when available, is used to read the time-base rather thassiog any kernel infrastructure.

Some architectures provide a 64-bit time-base. This isaise éor the cycle counter read witltsc
on x86 32 and 64-bit][9], the PowerPC time-base regist@f] and the 64-bit MIPSZ1]. A simple
atomic register read permit reading a full 64-bit time-b&smwvever, architectures like the 32-bit MIPS
and ARM OMAP3 2] only provide a 32-bit cycle counter. Other architecturealiack proper cycle
counter register support must read external timers. Féauicg, earlier ARM processors must read the
time-base from an external timer through memory mappedNMé&mnory-mapped I/O timers usually
overflow every 32-bit count or even more often, although seweeptions, like the IntdHPET[23],
permits reading a 64-bit value atomically in some modes.

The number of bits used to encode time has a direct impact eralility of the time-base to
accurately keep track of time during a trace session. A 64rbe-base is guaranteed not to overflow
for 3 thousand years at 4 GHz, which should be enough for aegéeable use. However, at a 500 MHz
frequency, typical for embedded systems, 32-bit overfloezsipevery 8 seconds.

Tracing-specific approaches to deal with time-stamp owerth@s been explored in the past,
all presenting their own limitations. The sequence lockbiliy to deal with NMI context has
been presented above, although one could imagine portiagDtrace double-sequence lock
implementation to address this problem. This approachwugekher slower than thRCUread-side and
implies using a blocking sequence lock, which fails to pdevjood real-time guarantees.

Alternatively, an approach based on a posteriori analythe event sequence presented in the
buffers could permit detecting overflows, but this requaggiaranteed maximum time delta between
two events, which could be hard to meet due to its dependanttyeonvorkload and events traced. Low-
power consumption systems with deep sleep states are gaatpées of such workloads. Periodically
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12 M. DESNOYERS AND M. R. DAGENAIS

writing a resynchronization time-stamp read from a lowegtiency time-source would diminish the
precision of time-stamps to the precision of the extermaétsource.

If, instead of writing such resynchronization event peidatly, it was written in a header to the
buffer containing the events, this would again either ingpbigits minimum event flow expected,
otherwise a buffer covering a too long time period could aomtindetectable 32-bit overflows. Also,
given that the buffer is naturally expected to present tle@esin an order in which time monotonically
increases, performing adjustments based on a differertsiource at the buffer boundary can make
time go backward because the two clocks are not perfectlghspmized. One clock going too fast
could make the last buffer events overlap the time windovieffbllowing buffer. Simply using £AS
instruction would not solve the issue, given that the aechitres we are dealing with only have a 32-bit
cycle counter and are typically limited to 32-bit atomic cgtens.

There is already an existing approach in the Linux kernekiad initially for the ARM architecture,
to extend a 32-bit counter to 63 bits. This infrastructuramedcnt32t0_63, keeps a 32-bit (thus
atomically updated) value in memory. Its lower 31 bits aredu® represent the extended counter top
31 bits. A single bit is used to detect overflow by keepingkratthe low-order 32 bit. Update is
performed atomically in the reader context when a 32-birftow is detected. Assuming the code is
run at least twice per low-order 32-bit overflow period, thigorithm detects the 32-bit overflows and
updates the high-order 31-bit count accordingly. This eapph has the benefit of requiring a very small
amount of memory data (only 32-bit) and being fast: givensih@pshot is updated on the reader-side
as soon as the overflow is detected, the branch verifyingcthriglition only needs to be taken very
rarely. This approach, however, has some limitations:lif permits to keep an amount of data smaller
than the architecture word size. Therefore, it is not extdesit would not be possible to return the full
64-bit, because the top bit must be cleared to zero, and itlcwt support addition oNTP or CPU
frequency scaling information. This infrastructure asearthat the hardware time-source will always
appear to go forward. Therefore, with slightly buggy timersf the execution or memory accesses
are not performed in order, this would cause time to jump &wdwf a whole 32-bit period if the
time-source appears to slightly decrement at the same tinoeexflow occurs. This could be fixed by
reserving one more bit to also keep track of the low-ordét Bit and require the code to be called
4 times per counter overflow period. Those two bits could beElusgether to distinguish between
overflow and underflow. This would however be at the expensebénother high-order information
bit and only permit returning a 62-bit time-base.

Therefore, a new mechanism would be welcome to genericailgne these 32-bit counters to 64-
bit while still allowing a time-base read frolMMI context. The algorithm we created to solve this
problem extends a counter containing an arbitrary numbbiteto 64 bits. The data structure used is
a per-CPU array containing two 64-bit counts. A pointer tbei the first or the second array entry is
updated atomically, which permits to atomically read thd odunter while the even is being updated
and conversely (as shown in Figute The reader atomically reads the pointer to the curreryarr
parity and then reads the last 64-bit value updated by thiegiertimer. It then detects the possible
overflows by comparing the current value of the time sourastlgignificant bits with the low-order
bits of the 64-bit value. It returns the 64 bits correspogdmthe current count, with high-order bits
incremented if a low-order bit overflow is detected (as showFigure?2).

The algorithm for synthetic clock read-side is shown in eyl At line 1, TCHWBITS is defined
as the number of bits provided by the clock source, repreddny a call tohw_clock _read()

The main limitation on the minimum number of bits requireainfrthe clock source is that it must be
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&

MSB LSB
Update ™ | 0x00000123 | OxFFFFDO0O |

’ ‘ 0x0000A000 ‘

Cycle counter 0x0000C000
0000C000 ‘ /

Figure 1. Trace clock reaah¢ 32 bit overflow)

MSB LSB
’ 4 ‘ OxFFEEE0O ‘

date [ 0x00000124 | 0x0000A000 |

Cycle counter Ox000FB0O0OO
5000FBO0O ‘ /

Figure 2. Trace clock read (%bbit overflow)

mse (D) 1sp @

’ 0x00000124 ‘ 0x06000020 ‘

’ 3 ‘ 0xA0000000 ‘

Cycle counter 0x06000000
406000000 ‘ /

Figure 3. Trace clock update (1, 3, 4) interrupted by a read (2
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14 M. DESNOYERS AND M. R. DAGENAIS
1 #define HW_BITMASK ((AULL << TC_HW_BITS) - 1)
2 #define HW_LS(hw) ((hw) & HW_BITMASK)

3 #define SW_MS(sw) ((sw) & "HW_BITMASK)
4

5 struct synthetic_tsc_struct {

6 ué4 tscl2];

7 unsigned int index;

8}

9

10 static DEFINE_PER_CPU(struct synthetic_tsc_struct, s ynthetic_tsc);
11

12 static inline notrace u64 sw_tsc_read(u64 old_sw_tsc)
13 {

14 u64 hw_tsc, new_sw_tsc;

15

16 hw_tsc = (u64)hw_clock_read();

17 new_sw_tsc = SW_MS(old_sw_tsc) | hw_tsc;
18

19 if (unlikely(hw_tsc < HW_LS(old_sw_tsc)))

20 new_sw_tsc += 1ULL << TC_HW_BITS;

21

22 return new_sw_tsc;

23 }

24

25 u64 notrace trace_clock read_synthetic_tsc(void)

26 {

27 struct synthetic_tsc_struct * cpu_synth;
28 unsigned int index;

29 u64 sw_tsc;

30

31 preempt_disable_notrace();

32 cpu_synth = &per_cpu(synthetic_tsc, smp_processor_id 0);
33 index = ACCESS_ONCE(cpu_synth->index);

34 sw_tsc = sw_tsc_read(cpu_synth->tsc[index]);
35 preempt_enable_notrace();

36

37 return sw_tsc;

38 }

larger than the sum of timer interrupt period and maximurarinipt latency. This ensures that a timer

Figure 4. Synthetic clock read-side

interrupt is executed at least once per counter overflonogetiines 2—3 present tHéWLS() and

HWMS() macros, to select the least and most significant bits of ateguespectively corresponding
to the hardware clock source and the bits counting the céockee overflows. Lines 5-8 declare a

structure containing two 64-btsc values and an index to the currest value to read. Line 10

defines a per-CPU variablgynthetic

_tsc , holding the currentsc value for each processor.
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The inline functionsw_tsc _read is detailed at lines 12—-23. Thetrace keyword is a macro
expanding to a gcc attribute indicating that the functiorstmot be traced, in the unlikely event gcc
decides not to inline the function. It receives as parantbtetast 64-bit clock value saved in the data
structure and returns the current 64-bit clock value. Theeeut source clock value is read at line 16.
The current 64-bit clock value is then derived from the oldbitdclock most significant bits and the
source clock bits. If an overflow is detected by line 19, theb4lock value is incremented of the
power of two value corresponding to the overflow at line 20.

Lines 25—-37 show the execution context considerationsitakeund the execution of the trace clock
read. Lines 31 and 35 disable and re-enable preemptiomftierinhibiting the scheduler during this
execution phase. This ensures that no thread migrationgdterefore ensuring local access to per-
CPU data. It also ensures that the thread is not schedulefdoatlong period of time between the
moment it reads the index, reads the clock source and ascmsarray. Long preemption between
these operations could cause the current clock value to betiman a clock-source overflow apart from
the previously read last 64-bit clock value when the thremidimes. To overcome such problem, the
maximum duration for which this code can be interrupted istaed by the maximum interrupt handler
execution time, which must be an order of magnitude lower tha overflow period. Line 32 uses the
per cpu inline, a primitive which gets a pointer to the CPU-localtarsce ofsynthetic  _tsc .
ACCESSONCE() is used at line 33 to read the currentindex through a volatitess, which informs
the compiler to treat this as an access to a memory-mappddaear device, therefore not permitting
re-fetching nor reading in multiple segments. Line 34 ir®khesw_tsc _read() inline explained
above, which returns the current 64-bit clock value.

The update is performed periodically, at least once peifloveperiod, by a per-CPU interrupt timer.
It detects the low-order bits overflows and increments theeupits, and then flips the current array
entry parity (as shown in Figu®. Readers still use the previous 64-bit value while the teadone
until the update completes with the parity flip.

As pointed out earlier, the read-side must disable pre@mpdi ensure that it only holds a reference
to the current array parity for a bounded amount of cyclessimower than the periodic timer period.
This upper bound is provided by the maximum number of cygessin this short code path increased
by the worse interrupt response time expected on the sy#térassumed that no interrupt flood will
hold the code path active for a whole timer period. If thisuasgtion is eventually proven to be wrong,
disabling interrupts around the algorithm execution cdwdtb not experiencing this type of problem,
but delaying of timer interrupt would still leave room forefiow miss.

The update-side algorithm is detailed in FigireThe functionupdate _synthetic  _tsc()
must be executed periodically on each processor. It is éggdeo be executed in interrupt context
(therefore with preemption already disabled) at least qrazeoverflow period. Line 6 gets a pointer
to the CPU-localkynthetic  _tsc . Line 7 flips the current index back and forth between 0 and
1 at each invocation. Lines 8-9 invoke/_tsc _read() to read the current 64-bitSCvalue, using
the last synthetic TSC value saved in the data structuredoprewiousipdate _synthetic  _tsc()
execution. The current 64-bitSCvalue is saved in the free array entry, unused at that moriieet10
is a compiler barrier, ensuring that the index update peréaton line 11 is not reordered before line 8
by the compiler. This makes sure concurrent interruptshids are never exposed to corrupted data.

If processors need to be kept in low-power mode to save engper-processor interrupt needed
to update the current 64-bit syntheli§Cvalue can be disabled in such low-power mode, replaced by
a resynchronization on an external timer counter uponmetunormal processor operation.
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16 M. DESNOYERS AND M. R. DAGENAIS

1 static void update_synthetic_tsc(void)

2 {

3 struct synthetic_tsc_struct * cpu_synth;
4 unsigned int new_index;

5

6 cpu_synth = &per_cpu(synthetic_tsc, smp_processor_id( ));
7 new_index = 1 - cpu_synth->index;

8 cpu_synth->tsc[new_index] =

9 sw_tsc_read(cpu_synth->tsc[cpu_synth->index]);
10 barrier();

11 cpu_synth->index = new_index;

12 }

Figure 5. Synthetic clock periodic update

The amount of data which can be placed in the per-CPU arragtisnmited by the architecture size.
This could therefore be extended to support time-base awrefor CPU frequency scaling andiTP
correction. If the hardware time-source is expected to apjperun slightly backward (due to hardware
bugs or out-of-order execution), the algorithm presentexa could additionally check the Sbit to
differentiate between overflow or underflow in order to suppon-perfectly monotonic time-sources
and still keep the ability to return the full 64 bits.

Given that each read-side and write-side thread will cotepitea bounded amount of cycles without
waiting, this time-base enhancement algorithm can be derssil as wait-free, which ensures that no
thread starvation can be caused by this algorithm.

It must be understood, however, that this proposed alguorithes not replace a proper 64-bit time-
stamp counter implemented by hardware. Indeed, if a fa@tyog holds the bus or if a driver disables
interrupts for more than a cycle-counter overflow periodyauld lead to time-base inaccuracy due
to miss of one (or more) cycle-counter overflow. Making surat tthis situation does not happen
would imply reading an external clock source in additionhe tycle counter, which does not meet
our efficiency constraints. Therefore, given that it is ahast importance to be able to rely on core
debugging facilities like kernel tracers, it is highly resmended to use hardware providing full 64-
bit cycle counters. However, given that software must oftéapt to hardware limitations rather than
the opposite, the algorithm proposed should work correatifess some hardware or driver is doing
somethingeally bad like holding the bus or disabling interrupts for a fewmsets.

6. BENCHMARKS

This section will present the benchmarks used to chooseigi synchronization primitives for
tracing, given their respective performance impact on n@rtie mainstream architectures, namely
Intel and AMD x86, PowerPC, ARM, Itanium and SPARC. The gdahe present section is to show
that it is possible to use local atomic operations withoudiag a prohibitive performance impact
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compared to interrupt disabling. It will be demonstrateat tlon most architectures, it is even faster to
use local atomic operations than to disable interrupts.

A comparison between benchmarks realized only with syrmibabion primitives, and with added
operations within the synchronization is presented atellafilhe added operation consists in 10 word-
sized reads and one word write. It shows that simple opemtazcount for a negligible amount
of cycles compared to the synchronization cost, and thatycegnchronization primitives such as
synchronizedCAS are made even slower by the added operations, probably dpipétine stalls
caused by the serializing instruction. Therefore, theofeihg benchmarks only take into account the
synchronization primitive execution time. The tespeedups used to represent the acceleration of
one synchronization primitive compared to another. Assignaache-line effects as small compared to
the synchronization cost makes combination of synchrdioizgrimitives more straightforward. The
assembly listings for the following Intel Xeon benchmarkes presented in Figures 7, 8 and9.

Let's first focus on performance testing of ti@AS operation. Tablell presents benchmarks
comparing disabling interrupts to localAS on various architectures. When comparing the
synchronization done with loc&ASto disabling local interrupts alone, a speedup between @n60
5.37 is reached on x86 architectures. On PowerPC, the speadge is between 1.77 and 4.00. Newer
PowerPC generations seems to provide better interrupbldigaperformance than the older ones.
Itanium, for both older single-core and newer dual-core®@f®cessor, has a small speedup of 1.33.
Conversely, UltraSPARC atomic CAS seems inefficient comgém interrupt disabling, which makes
the latter option about twice faster. As we will discuss beloesides the performance considerations,
all those architectures alloWMlIs to execute. Those are, by design, unprotected by intedisgibling.
Therefore, unless the macroscopic impact of atomic omaratbecomes prohibitive, the tracer
robustness, and ability to instrument code executirght context, favors use of atomic operations.

Tableslll, IV andV present the different synchronization schemes that caeilasled at the tracing
site. Tablelll shows the individual elementary operations performed vithkimg a spin lock (busy-
waiting loop) with interrupts disabled. These numbers diteeat case”, because they do not consider
the non-scalability of this approach. Indeed, the spin latkmic variable must be shared between
all CPUs, which leads to performance degradation when thiabla must be alternately owned by
different CPU’s caches, a phenomenon known as cache-limedirtg.

TableV presents the equivalent synchronization performed usisgqgaence counter lock and a
fully synchronized atomic operation. Sequence countekdare used in the kernel time-keeping
infrastructure to make sure reading the 64-bit jiffies is sistent on 32-bit architectures and also
to ensure the monotonic clock and the clock adjustment @@ censistently. A synchronize@AS
operation is needed because preemption is kept enabledhwatiows migration. Therefore, given
that the probe could be preempted and migrated between theenidt reads the processor ID and
the moment it performs the atomic data access, concurreswyelen CPUs must be addressed by
a SMP-aware atomic operation. If preemption is left enabfea-CPU data would be accessed by
the local CPU most of the time, so it would statistically pd®va good cache locality, but, in cases
where a thread is migrated to a different CPU between reatimgointer to the data structure and
the write to the reserve or commit counters, we could havewoant writes in the same structure
from two processors. Therefore, the synchronized versioBAS and increment should be used if
preemption is left enabled. It is interesting to note thalWR OMAP3 shows a significant slowdown
for the sequence lock. This is caused by the requiremen¢&at barriers before and after the sequence
number read due to lack of addre&8&][or control dependency between the sequence lock and the dat
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18 M. DESNOYERS AND M. R. DAGENAIS

to access. ARMv7 does not have weaker read-side only menzoriets and therefore requires two
dmb(Data Memory Barrier) instructions, which decreases pearémce significantly.

TableV presents &CUapproach to synchronization. It involves disabling pregamparound the
read-side critical section, keeping a copy of the old datactires upon update and making sure the
write-side waits for a grace-period to pass before the otd dfmucture can be considered private and
memory can be reclaimed. Disabling preemption, in this s@&healso has an effect on the scheduler: it
ensures that the whole critical section is not preemptedmgrated to a different CPU, which permits
to use the faster loc&AS

TableVI presents the overall speedup of each synchronization apiprmompared to the baseline:
Spin lock disabling interrupts.

If we would only care about the read-side, the sequence eolmtk approach is the fastest: it
only takes 3-4 cycles on the x86 architecture family to rd@s sequence counter and to compare
it after the data structure read. This is faster than disghtireemption, which takes 8-9 cycles on
x86. Preemption disabling is the cost RCUread-side synchronization. Therefore, in preemptible
kernels, aRCUread-side could be slightly slower than a sequence lock. @npreemptible kernels,
however, the performance costRCUfalls down to zero and outperforms the sequence lock. But the
synchronization requirements we have also involve synthitng concurrent writes to data structures.

In our specific tracing case, in addition to read tracing @ninformation, we also have to
synchronize for writing to buffers by usingASto update the write counter and by using an atomic
increment to keep track of the number of bytes committed thesaub-buffer. Choosing between
a seglockand RCUhas a supplementary implication: the seqlock outperfoR@&Jon preemptible
kernels only because preemption is left enabled. Howevisrjmplies that a fully synchronizedAS
and atomic add must be used to touch per-CPU data to prevgration.

The speedup obtained by using R€Uapproach rather than the sequence lock ranges between 1.2
and 2.53 depending on the architectures, as presented lia \Tabrhis is why, overall, thd&RCUand
local atomic operations solution is preferred over the tsmubased on read-side sequence lock and
synchronized atomic operations. Moreover, in additiondecete faster, thRCUapproach is reentrant
with respect td\Mls. The read sequence lock would deadlock if\Nail nests over the write lock.

7. LEAST PRIVILEDGED EXECUTION CONTEXTS

The discussion presented above focused on tracing the Ikexeeution contexts. It it however
important to keep in mind that different execution contextamely user-space, have different
constraints. The main distinction comes from the fact tha& & bad practice to let user-space code
modify data structures shared with the kernel without geimgugh a system call, because this would
pose a security threat and lead to potential privilege asioal.

If we were to port the tracing probe to perform user-spacartg the trade-off would differ. The
main downside of th®CUapproach, for both the scheduler-based and preemptildéonst is that it
requires the writer to wait for reader quiescent state ledfue old memory can be reclaimed. This could
be a problem when exporting data from kernel-space to yssres (e.g. time-keeping data structures)
where the write-side is the kernel and the reader is usarespdhen synchronizing between different
privilege levels (kernel vs user-space), the highest legeé level must never wait or synchronize on
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the least-privileged execution context, otherwise rese@xhaustion could be triggered by the lower
privilege context.

8. CONCLUSION

As this paper has demonstrated, the current state of tha &rdding involves either instrumentation
coverage limitations, synchronization flaws or limitatiwfithe architectures supported to those which
have synchronized 64-bit time-stamp counters.

A set of synchronization primitives has been proposed whidfill the instrumentation coverage
requirements of kernel tracing, adding code executédhNt handler context, which was not properly
handled by state-of-the-art tracers. Those primitives thee local CAS instruction and theRCU
mechanism along with preemption disabling around therigacode execution.

A wait-free algorithm, to extend a time-base providing s 64-bit (which overflows periodically
during the trace) to a full 64-bit counter by software, hasrbeetailed. It should help tracers implement
time-bases without the flaws caused by incorrect use of tipgesee lock and improving the real-time
guarantees compared to the sequence lock.

Finally, benchmarks have demonstrated that, on almostreffitactures (except SPARC), using
local CASfor synchronization rather than disabling interrupts itually faster. It shows that using
atomic primitives over interrupt disabling allows to grdvetinstrumentation coverage, including code
executed fronNMI handler context, without sacrificing performance.

This will open the door to the design of fully reentrant, wiaée, high-performance buffering
schemes and to speedups in kernel primitives currentlygusiterrupt disabling to protect their
execution fast path, such as the memory allocator.
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Table I. Benchmark comparison between locking primitived added inner operations, on Intel

Xeon E5405
Locking Primitive Sync. Only  Sync. and Operations  Pipekffect
(cycles) (cycles) (cycles)

Baseline (no locking) 1 60 0
Local CAS 8 60 -7
Sync.CAS 24 94 11
IRQ save/restore 39 97 -1
Spin lock/unlock 46 99 -6
seglock 3 60 -2
Preemption disable/enable 12 60 -11

SynchronizedCAS

110: 48 89 c8 mov %rcx,%rax

113: fo Of b1 0d 00 00 00 lock cmpxchg %ecx,0x0(%rip)

1la: 00

11b: ff c2 inc %edx

11d: 81 fa 20 4e 00 00 cmp $0x4e20,%edx

123: 75 eb jne 110

Local CAS

le8: 48 89 c8 mov %rcx,%rax

leb: Of b1 0d 00 00 00 00 cmpxchg %ecx,0x0(%rip)

1f2: ff c2 inc %edx

1f4: 81 fa 20 4e 00 00 cmp $0x4e20,%edx

1fa: 75 ec jne le8
Figure 6. Assembly listings for Intel Xeon benchmar&ASloop content).
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Interrupt restore:

468: 56 push %irsi

469: 9d popfq

46a: ff cO inc Y%eax

46c:  3d 20 4e 00 00 cmp $0x4e20,%eax
471: 75 5 jne 468

Interrupt save (and disable):

530: 9c pushfq

531: 59 pop %%rex

532: fa cli

533: ff cO inc Y%eax

535: 3d 20 4e 00 00 cmp $0x4e20,%eax
53a: 75 f4 jne 530

Interrupt save/restore:

600: 51 push %rcx

601: 9d popfq

602: 9c pushfq

603: 59 pop %orex

604: fa cli

605: ff cO inc Y%eax

607: 3d 20 4e 00 00 cmp $0x4e20,%eax
60c: 75 f2 jne 600

Figure 7. Assembly listings for Intel Xeon benchmarks (tnipt save/restore loop content).

Table II. Cycles taken to execu@AScompared to interrupt disabling

Architecture Speedup CAS Interrupts

(cli + sti) /local CAS = Tocal sync Enable (stiy Disable (cli)
Intel Pentium 4 5.24 25 81 70 61
AMD Athlon(tm)64 X2 4.60 6 24 12 11
Intel Core2 5.37 8 24 21 22
Intel Xeon E5405 5.25 8 24 20 22
PowerPC G5 4.00 1 2 3 1
PowerPC POWERG6 1.77 9 17 14 2
ARMv7 OMAP3Z 4.09 71 11 25 20
Itanium 2 1.33 3 3 2 2
UltraSPARC-IIIi® 0.64 0.394 0.394 0.094 0.159

“ForcedSMPconfiguration for test module. Missing barriers fMPsupport added in these tests and reported to ARM Linux
maintainers.
bIn system bus clock cycles.
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Spin lock:
ffffffff8 14d6c00

ffffffff8 14d6c00:
ffffffff814d6¢c07:
ffffffff814d6c09:

ffffffff8 14d6cOf:

ffffffff814d6c14:
ffffffff814d6c19:
ffffffff814d6clb:
ffffffffe14d6cld:

ffffffff8 14d6clf:

ffffffffe14d6c21:
ffffffff814d6c23:

Spin unlock:

spin_unlock:

ffffffff814d6f10
ffffffff814d6f10:
ffffffff814d6f12:
ffffffff814d6f19:
ffffffff814d6f1b:
ffffffff814d6f21:
ffffffff814d6f28:
ffffffff814d6f2a:
ffffffff814d6f2c:
ffffffff814d6f30:
ffffffff814d6f35:

<_spin_lock>:
65 48 8b 04 25 08 b5 mov %(gs:0xb508,%rax
00 00
ff 80 44 e0 ff ff incl -Ox1fbc(%rax)
b8 00 01 00 00 mov $0x100,%eax
fo 66 Of cl 07 lock xadd %ax,(%rdi)
38 e0 cmp %ah,%al
74 06 je ffffffff814d6c23 <_spin_lock+
f3 90 pause
8a 07 mov (%rdi),%al
eb 6 jmp ffffffff814d6c19 < spin_lock
c3 retq

<_spin_unlock>:
fe 07 incb  (%rdi)
65 48 8b 04 25 08 b5 mov %gs:0xb508,%rax
00 00
ff 88 44 e0 ff ff decl -Ox1fbc(%rax)
f6 80 38 e0 ff ff 08 testb  $0x8,-0x1fc8(%or ax)
75 06 jne ffffffff814d6f30 <_spin_unlo
f3 ¢3 repz retq
of 1f 40 00 nopl 0x0(%rax)
e9 fb el ff ff jmpg  ffffffff814d5130 <pre
66 66 2e Of 1f 84 00 nopw  %cs:0x0(%rax,%ra x,1)

Benchmark loop for spitock()/spin.unlock():

147: ff ¢c3

140: 48 ¢7 c7 00 00 00 00 mov $0x0,%rdi

inc %ebx
149: e8 00 00 00 00 callq ffffffff814d6c00 <_spin_lock>
14e: 48 ¢7 c7 00 00 00 0O mov $0x0,%rdi

155: e8 00 00 00 00
15a: 81 fb 20 4e 00 00 cmp

callq ffffffff814d6f10 <_spin_unlock>
$0x4€20,%ebx

160: 75 de jne 140

Figure 8. Assembly listings for Intel Xeon benchmarks (dpk loop content).

0x23>

+0x19>

ck+0x20>

empt_schedule>
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Sequence read lock:

330: f3 90 pause

332: 89 f2 mov %esi,%edx
334: 48 89 c8 mov %rcx,%rax
337: a8 01 test  $0x1,%eal

339: 75 15 jne 330

33b: 39 15 00 00 00 00 cmp %edx,0x0(%rip)
341: 75 ef jne 332

343: ff c7 inc %edi

345: 81 ff 20 4e 00 00 cmp $0x4e20,%edi
34b: 75 ea jne 337

Preemption disabling/enabling:

3f8: ff 43 1c incl 0x1c(%rbx)

3fh: ff 4b 1c decl 0x1c(%rbx)

3fe: 41 f6 84 24 38 e0 ff testb  $0x8,-0x1fc8(%r12)

405:  ff 08

407:  Of 85 a4 00 00 00 jne 4b1

40d: ff c5 inc %ebp

40f: 81 fd 20 4e 00 00 cmp $0x4e20,%ebp

415: 75 el jne 3f8 <init_module+0x3e8>
[-]

4b1: e8 00 00 00 00 callq 4b6 <preempt_schedule>
4b6: e9 52 ff ff ff jmpg  40d

Figure 9. Assembly listings for Intel Xeon benchmarks (ssme lock and preemption disabling loop content).

Table Ill. Breakdown of cycles taken for spin lock disablingerrupts

Architecture Spin lock IRQ save/restore Total
(cycles) (cycles) (cycles)
Pentium 4 144 131 275
AMD Athlon(tm)64 X2 67 23 920
Intel Core2 57 43 100
Intel Xeon E5405 46 39 85
ARMv7 OMAP3® 132 45 177

“ForcedSMPconfiguration for test module.
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Table IV. Breakdown of cycles taken for using a resadjlockand using a synchronizeétiAS

Architecture Seqglock SyncCAS  Total
(cycles) (cycles) (cycles)
Pentium 4 4 81 85
AMD Athlon(tm)64 X2 4 24 28
Intel Core2 3 24 27
Intel Xeon E5405 3 24 27
ARMv7 OMAP3 73 71 144

%ForcedSMPconfiguration for test module.

Table V. Breakdown of cycles taken for disabling preemptiod using a locaCAS

Architecture Preemption disable/enable LoCAS  Total
(cycles) (cycles) (cycles)
Pentium 4 9 25 34
AMD Athlon(tm)64 X2 12 5 17
Intel Core2 12 8 20
Intel Xeon E5405 12 8 20
ARMv7 OMAP3 10 11 21

“ForcedSMPconfiguration for test module.
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Table VI. Speedup of tracing synchronization primitivesnpared to disabling interrupts and spin

lock
Architecture Spin lock Sequence lock Preempt disabled
disabling interrupts (speedup) a@dAS(speedup) and loc&AS(speedup)
Pentium 4 1 3.2 8.1
AMD Athlon(tm)64 X2 1 3.2 5.3
Intel Core2 1 3.7 5.0
Intel Xeon E5405 1 3.1 4.3
ARMv7 OMAP3? 1 1.2 8.4
2ForcedSMPconfiguration for test module.
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