
Highly-Scalable Wait-Free Buffering Scheme for Multi-Core System Tracing

Mathieu Desnoyers
École Polytechnique de Montréal

Dept. of Computer and Software Eng.
P.O. Box 6079, Station Centre-Ville,
Montréal, Qúebec, Canada, H3C 3A4

mathieu.desnoyers@polymtl.ca

Michel Dagenais
École Polytechnique de Montréal

Dept. of Computer and Software Eng.
P.O. Box 6079, Station Centre-Ville,
Montréal, Qúebec, Canada, H3C 3A4

michel.dagenais@polymtl.ca

Dominique Toupin
Ericsson

Process Methods and Tools
Datalinjen 4 (Hus K)

Linköping, 581 12, Sweden
dominique.toupin@ericsson.com

Abstract

Diagnostic of complex problems involving the interac-
tion between several applications and the operating sys-
tems in a distributed multi-core system with tracing requires
to extract system events without disturbing its execution.
Recording an event must therefore take negligible time (e.g.
less than the duration of simple system call) and should not
change the ordering of events (non locking).

As a result, a highly-scalable, low-overhead, lock-free
trace buffering scheme was designed and proposed for the
LTTng tracer. It uses local compare-and-exchange opera-
tions for synchronization and resorts toRCU (Read-Copy
Update) data structures for atomically updating control
data. The cost associated with tracer execution has been
benchmarked for different types of execution loads, on sys-
tems scaling up to 8 cores. The performance of the new
trace buffering system has been measured and compared to
other tracing systems such as DTrace, SystemTap and K42.

1. Introduction

Performance monitoring of multiprocessor high-
performance computers deployed as production sys-
tems (e.g. Google platform), requires tools to report what
is being executed on the system. This provides better un-
derstanding of complex multi-threaded and multi-processes
application interactions with the kernel.

Tracing the most important kernel events has been done
for decades in the embedded field to reveal useful informa-
tion about program behavior and performance. The main
distinctive aspect of multiprocessor system tracing is the
complexity added by time-synchronization across cores.
Additionally, tracing of interactions between processes and
the kernel generates a high information volume.

Allowing wide instrumentation coverage of the kernel
code can prove to be especially tricky, given the concur-
rency of multiple execution contexts and multiple proces-
sors. In addition to being able to trace a large portion of
the executable code, another key element expected from
a kernel tracer is to be very low-overhead and not disturb
the normal system behavior. Ideally, a problematic work-
load should be repeatable both under normal conditions
and under tracing, without suffering from the observer ef-
fect caused by the tracer. TheLTTng [3] tracer (available
at: http://www.lttng.org) has been developed with
these two principal goals in mind: provide good instrumen-
tation coverage and minimize observer effect on the traced
system.

This paper presents a state of the art of the existing trac-
ing solutions along with their strengts and weaknesses in
Section 2, synchronization primitives used in the buffering
scheme in Section 3, a tracer architecture overview in Sec-
tion 4, experimental results in Section 6 and concludes with
Section 7.

http://www.lttng.org

2. State of the Art

In this section, we will present the state-of-the-art open
source tracers. For each of these, their target usage scenar-
ios will be presented along with the requirements imposed.
Finally, we will study in detail the tracer inK42, which
is the closest toLTTng requirements, explaining where
LTTng brings new contributions.
DTrace [1], first made available in 2003 and formally

released as part of Sun’s Solaris 10 in 2005, aims at pro-
viding information to users about the way their operating
system and applications behave by executing scripts per-
forming specialized analysis. It also provides the infrastruc-
ture to collect the event trace into memory buffers, but aims
at moderate event production rates. It disables interrupts
to protect the tracer from concurrent execution contexts on
the same processor and a sequence lock to protect the clock
source usage from concurrent modifications.
SystemTAP [6] provides scriptable probes which

can be connected on top of Markers, Tracepoints or
Kprobes [5]. It is designed to provide a safe language to ex-
press the scripts to run at the instrumentation site, but does
not aim at optimizing probe performance for high data vol-
ume, since it was originally designed to gather information
exclusively from Kprobes breakpoints and therefore expects
the user to carefully filter out the unneeded information to
diminish the probe effect. It disables interrupts and takes
a busy-spinning lock to synchronize concurrent tracing site
execution. TheLKET project (Linux Kernel Event Tracer)
re-used theSystemTAP infrastructure to trace events, but
reached limited performance results given it shared much of
SystemTAP’s heavy synchronization.

Ftrace, started in 2009 by Ingo Molnar, aims primarily
at kernel tracing suited for kernel developer’s needs. It pri-
marily lets specialized trace analysis modules run in kernel-
space to generate either a trace or analysis output, available
to the user in text format. It also integrates a binary buffer
data extraction which aims at providing efficient data out-
put. It is currently based on per-cpu busy-spinning locks
and interrupt disabling to protect the tracer against concur-
rent execution contexts. It is currently evolving to a lockless
buffering scheme.

The work onLTTng presented in this paper started back
in 2006 to reach its current level of testing and safety veri-
fication.

TheK42 [4] project is a research operating system devel-
oped mostly between 1999 and 2006 by IBM Research. It
targeted primarily large multiprocessor machines with high
scalability and performance requirements. It contained a
built-in tracer simply named “trace”, which was an element
integrated to the kernel design per se. The systems tar-
geted byK42 and use of lockless buffering algorithms with
atomic operations are similar toLTTng.

On the design aspect, a major difference between this
research-oriented tracer andLTTng is that the latter aims at
being deployed on multi-user Linux systems, where secu-
rity is a concern. Therefore, simply sharing a per-cpu buffer,
available both for reading and writing by the kernel and any
user process, would not be acceptable on production sys-
tems. Also, in terms of synchronization,K42’s tracer im-
plementation ties trace extraction user-space threads to the
processor on which the information is collected. Although
it removes needs for synchronization, it also implies that
a relatively idle processor cannot contribute to the overall
tracing effort when some processors are busier. Regard-
ing CPU hotplug support, which is present in Linux, an
approach where the only threads able to extract the buffer
data would be tied to the local processor would not allow
trace extraction in the event a processor would go offline.
Adding support for cross-CPU data reader support would
involve adding the proper memory barriers to the tracer.

Then, more importantly for the focus of this paper,
studying in depth the lockless atomic buffering scheme
found in K42 indicates the presence of a race condition
where data corruption is possible. It must be pointed out
that, given theK42 tracer uses large buffers compared to the
typical event size, this race is unlikely to happen, but could
become more frequent if the buffer size is made smaller or
larger events were written, whichLTTng tracer’s flexibility
permits.

The formal verification performed by modeling the
LTTng algorithms and using the Spin model-checker in-
creases the level of confidence that such corner-cases are
correctly handled.

3. Synchronization Primitives

The variety of execution contexts reached during kernel
execution complicates efficient exportation of trace data out
of the instrumented kernel. The general approach used to
deal with this level of concurrency is to either provide good
protection against other execution contexts, for instanceby
disabling interrupts, or to adopt a fast, but limited mech-
anism by shrinking the instrumentation coverage (e.g. by
disallowing interrupt handler instrumentation). This trade-
off often means that either performance or instrumentation
coverage is sacrificed. However, as this paper will show,
this trade-off is not required if the appropriate synchroniza-
tion primitives are chosen.

We propose to extend theOS1 kernel instrumentation
coverage compared to other existing tracers by dealing with
the variety of kernel execution contexts. Our approach is
to consider reentrancy fromNMI2 execution context, which

1OS: Operating System
2NMI: Non-Maskable Interrupt

presents particular constraints regarding execution atomic-
ity due to the inability to create critical sections by disabling
interrupts. In this article, we show that in a multiproces-
sorOS, the combination of synchronized time-stamp coun-
ters, cheap single-CPU atomic operations and trace merg-
ing, provides an effective and efficient tracing mechanism
which supports tracing inNMI contexts.

4. Tracer Architecture Overview

Pursuing the objective to allow multiple analysis to be
performed on a single trace collected, enabling in-depth
analysis of hard to reproduce bugs, we extract trace data
from the kernel.

In order to answer the various industry requirements,
the architecture depicted in Figure 1 is proposed. Grey
rectangles represent major phases of tracing. Within these
rectangles, ellipses represent the tracing phases, linked
with arrows showing the trace data flow direction. Be-
tween the tracing and post-processing phases, a dottedIn-
put/Outputarrow represents extraction of trace data through
I/O mechanisms: disk, network, serial port, etc.

The tracing phases are performed on the traced system,
using the processor, memory bandwidth andI/O resources
required to extract the data out of the kernel. Initially,in-
strumentationis inserted into the operating system kernel.
When the kernel executes and reaches an instrumentation
site, it verifies if the tracing site is activated, and calls the
attached probes. These probes perform all synchronization
required to write events into the trace buffers.

Writing to circular memory buffers without live trace
data extraction is calledflight recordertracing. This is one
tracing mode available. The other mode consists in extract-
ing the trace data while tracing is active. This latter phase
is namedbuffered data extraction. Events are gathered in
memory buffers to ensure that costlyI/O operations are
not used by the probe execution. TheI/O phase is per-
formed by specialized threads. It can be either done live
while the trace is being recorded, or after tracing activityis
over. In the latter case, only the very last buffers written will
be available for analysis.

Extracting large amounts of data, albeit having a small
impact on system performances, involves applying very
strict implementation constraints. We deal with this at the
design-level by minimizing the amount of trace data extrac-
tion synchronization required between processors and exe-
cution contexts. A zero-copy approach, involving no trace
data copy between memory locations through the tracing
phases, ensures efficient use of memory bandwidth.

Event reordering atpost-processingis made possible by
gathering a time-stamp value from the traced processor,
written by theprobeat each event header. The time-stamp
is typically the value of a time-source synchronized across

Probes

Instrumentation

Analysis

Merge−sort

Data extraction

Input/Output

Post−processing

Tracing

On−site

Off−site

Scalability to multi−cores

Deterministic real−time effect

Low−latency

Low−overhead

Portability

Cross−architecture

Scalability to large traces

Figure 1. Tracing Phases

processors. When provided by the architecture, a cycle
count register synchronized across processors can be used
as time-source. This allows a posteriori reordering of events
based on their time-stamps.

Thepost-processingphase can be performed either in the
same environment as the traced kernel or on a completely
different computer architecture. It may not be assumed that
the traced and post-processing machines are the same ar-
chitecture. Thus, trace data extracted must be readable by
the post-processor. We propose self-described binary traces,
written by the traced kernel in its native binary format, to
extract compact trace data efficiently and portably.

5. Atomic Buffering Scheme

On SMP (Symmetric Multiprocessing) systems, some in-
structions are designed to update data structures in one sin-
gle indivisible step. Those are called atomic operations. To
properly implement the semantic carried by these low-level
primitives, memory barriers are required on some architec-
ture (this is the case for PowerPC and ARMv7 for instance).
For the x86 architecture family, these memory barriers are
implicit, but a special lock prefix is required before these
instructions to synchronize multiprocessor access. How-
ever, to diminish performance overhead of the tracer fast-
path, we remove memory barriers and use atomic opera-
tions only synchronized with respect to the local processor
due to their lower overhead than those synchronized across
cores. They are the only instructions allowed to modify the
per-CPU data, to ensure reentrancy withNMI context.

The main restriction that must be observed when using
such operations is to disable preemption around all access
to these variables, to ensure threads are not migrated from

Figure 2. Producer-consumer synchroniza-
tion.

one core to another between the moment the reference is
read and the atomic access. This ensures no remote core
accesses the variable with SMP-unsafe operations.

The two atomic instructions required are theCAS
(Compare-And-Swap) and a simple atomic increment. Fig-
ure 2 shows the data structures being modified by thoselo-
cal atomic operations. Each per-CPU buffer has a control
structure which contains thewrite count, the read count,
and an array ofcommit countsandcommit seqcounters3.
The counterscommit countkeep track of the amount of
data committed in a sub-buffer using a lightweight incre-
ment instruction. Thecommit seqcounters are updated with
a concurrency-aware synchronization primitive each time a
sub-buffer is filled.

A local CAS is used on thewrite count to update the
counter of reserved buffer space. This operation ensures
space reservation is done atomically with respect to other
execution contexts running on the same CPU. The atomic
add instruction is used to increment the per sub-buffercom-
mit count, which identifies how much information has actu-
ally been written in each sub-buffer.

The sub-buffer size and the number of sub-buffers within
a buffer are limited to powers of 2 for two reasons. First,
using bitwise operations to access the sub-buffer offset and
sub-buffer index is faster than the modulo and division. The
second reason is more subtle: although theCAS operation
could detect 32 or 64-bits overflows and deal with them cor-
rectly before they happen by resetting to 0, thecommit count
atomic add will eventually overflow the 32 or 64-bits coun-
ters, which adds an inherent power of 2 modulo that would
be problematic if the sub-buffer size would not be power of
2.

On the reader side, theread countis updated using a
standard SMP-awareCAS operation. This is required be-

3The size of this array is the number of sub-buffers.

cause the reader thread can read sub-buffers from buffers
belonging to a remote CPU. It is designed to ensure that a
traced workload executed on a very busy CPU can be ex-
tracted by other CPUs which have more idle time. Having
the reader on a remote CPU requires SMP-awareCAS. This
allows the writer to push the reader position when the buffer
is configured inflight recordermode. The performance cost
of the SMP-aware operation is not critical because updat-
ing the read countis only done once a whole sub-buffer
has been read by the consumer, or when the writer needs to
push the reader at sub-buffer switch, when a buffer is con-
figured inflight recordermode. Concurrency between many
reader threads is managed by using a reference count on
file open/release, which only lets a single process open the
file, and by requiring that the user-space application reads
the sub-buffers from only one execution thread at a time.
Mutual exclusion of many reader threads is left to the user-
space caller, because it must encompass a sequence of mul-
tiple system calls. Holding a kernel mutex is not allowed
when returning to user-space.

The consumer,lttd, uses two system calls,poll() and
ioctl(), to control the interaction with the memory buffers,
andsplice()as a mean to extract the buffers to disk or to the
network without extra copy. At kernel-level, we specialize
those three system calls for the virtual files presented by
DebugFS. The daemon waits for incoming data usingpoll().

The specializedioctl() operation is responsible for syn-
chronizing the reader with the writer’s buffer-space reser-
vation and commit. It is also responsible for making sure
the sub-buffer is made private to the reader to eliminate any
possible race in flight recorder mode. This is achieved by
adding a supplementary sub-buffer, owned by the reader.
A table with pointers to the sub-buffers being used by the
writer allows the reader to change the reference to each sub-
buffer atomically. The reference to the sub-buffer about to
be read is atomically exchanged with the sub-buffer cur-
rently owned by the reader. If theCAS operation fails, the
reader does not get access to the buffer for reading.

Given that sub-buffer management data structures are
aligned on 4 or 8-bytes multiples, we can use the lowest
bit of the sub-buffer pointer to encode whether it is actively
referenced by the writer. This ensures that the pointer ex-
change performed by the reader can never succeed when the
writer is actively using the reference to write to a sub-buffer
about to be exchanged by the reader.

AlthoughLTTng mostly keeps data local to each CPU,
cross-CPU synchronization is still required at those three
sites:

• At initial time-stamp counters synchronization, done
at boot-time by the operating system. This heavy
synchronization, if not done by theBIOS (Basic In-
put/Output System), requires full control of the system.

• When the producer finishes writing to a sub-buffer,
making it available for reading by a thread running
on an arbitrary CPU. This involves using the proper
memory barriers ensuring that all written data is com-
mitted to memory before another CPU starts reading
the buffer.

• At consumed data counter update, involving the appro-
priate memory barriers ensuring the data has been fully
read before making the buffer available for writing.

6. Experimental Results

6.1. Atomic Operations

Let’s first focus on performance testing of theCAS oper-
ation. Table 1 presents benchmarks comparing disabling
interrupts to localCAS on various architectures. When
comparing the synchronization done with localCAS to dis-
abling local interrupts alone, a speedup between 4.60 and
5.37 is reached on x86 architectures. On PowerPC, the
speedup range is between 1.77 and 4.00. Newer Pow-
erPC generations seems to provide better interrupt disabling
performance than the older ones. Itanium, for both older
single-core and newer dual-core 9050 processor, has a small
speedup of 1.33. Conversely, UltraSPARC atomic CAS
seems inefficient compared to interrupt disabling, which
makes the latter option about twice faster. As we will
discuss below, besides the performance considerations, all
those architectures allowNMIs to execute. Those are, by
design, unprotected by interrupt disabling. Therefore, un-
less the macroscopic impact of atomic operations becomes
prohibitive, the tracer robustness, and ability to instrument
code executing inNMI context, favors use of atomic opera-
tions.

The speedup obtained by using aRCU approach rather
than the sequence lock ranges between 1.2 and 2.53 depend-
ing on the architectures, as presented in Table 2. This is
why, overall, theRCU and local atomic operations solution
is preferred over the solution based on read-side sequence
lock and synchronized atomic operations. Moreover, in ad-
dition to execute faster, theRCU approach is reentrant with
respect toNMIs. The read sequence lock would deadlock if
anNMI nests over the write lock.

6.2. Latency Impact

We consider the latency impact of the tracer by perform-
ing a comparative study of network response-time bench-
marks in the presence and absence of tracing. We choose to
measure network latency impact to characterise the tracer
because it is a typical application where latency impact must
be kept low. Web servers and domain name servers, which

must answer queries quickly, are a good example of this ap-
plication class.

We determine the tracer impact on the average network
response time of a computer by measuring the packet round-
trip time of 100000ping echo requests. This test involves
two hosts, one initiating the request and the second answer-
ing to it. The round-trip time consists in the time it takes
for the packet to be generated byping, sent to the network
card through the operating system, sent over the network,
received by the second host’s operating system kernel, and
sent back to the originating host through a similar route.

The repetitive nature of the test might show lower laten-
cies than standard production systems due to the high cache
locality of the workload. Hence, to make this test more rep-
resentative of a real-life operating system, a workload is ex-
ecuted in the background, precisely to trash the processor
caches and branch prediction. The chosen workload is a
cache-hot Linux kernel build spread across all the machine
cores.

The first latency test realized is performed in a setup min-
imizing the network effect where both the sender and the re-
ceiver are on the same computer, using the local host loop-
back interface. An 8-core Intel Xeon, clocked at 2.0 GHz is
used. The number of events recorded per packet is identified
by manually inspecting the recorded trace. The 95 % con-
fidence interval for the difference between the two means
found in Table 3, is[8.88, 9.12] µs, which means that flight
recorder tracing of 27 events adds a latency overhead on
local host communication between 8.88 and 9.12µs, with
a 95 % certainty. This corresponds to anadded latency
between 328 and 338 ns per event, which is about 666 cy-
cles. It is higher than the overhead measured with micro-
benchmarks, which is 119 ns per events for this architec-
ture. The difference between these latency results and the
micro-benchmarks measurements can be attributed to pro-
cessor pipeline, branch prediction and cache effects, which
are higher in the latency test due to lower temporal and spa-
cial locality than a tight loop calling the tracer.

Test Events / avg. std.dev.
round-trip (µs) (µs)

No tracing – 40.0 12.8
Flight recorder tracing 27 49.0 14.3

Table 3. Tracer latency overhead for a ping
round-trip. Local host, Linux 2.6.30.9, 100000
requests sample, at 2 ms interval.

Similar results, presented in Table 4 are obtained by
sendingping echo requests from a remote host over a
100Mbps network. The number of events generated on the
traced receiver side for each echo request is 7. The 95 %
confidence interval for the difference between these two

Table 1. Cycles taken to execute CAS compared to interrupt disabling
Architecture Speedup CAS Interrupts

(cli + sti) / local CAS local sync Enable (sti) Disable (cli)
Intel Pentium 4 5.24 25 81 70 61
AMD Athlon(tm)64 X2 4.60 6 24 12 11
Intel Core2 5.37 8 24 21 22
Intel Xeon E5405 5.25 8 24 20 22
PowerPC G5 4.00 1 2 3 1
PowerPC POWER6 1.77 9 17 14 2
ARMv7 OMAP3 4.09 71 11 25 20
Itanium 2 1.33 3 3 2 2
UltraSPARC-IIIi 0.64 0.394 0.394 0.094 0.159

Table 2. Speedup of tracing synchronization primitives compared to disabling interrupts and spin
lock

Architecture Spin lock Sequence lock Preempt disabled
disabling interrupts (speedup) andCAS (speedup) and localCAS (speedup)

Pentium 4 1 3.2 8.1
AMD Athlon(tm)64 X2 1 3.2 5.3
Intel Core2 1 3.7 5.0
Intel Xeon E5405 1 3.1 4.3
ARMv7 OMAP3 1 1.2 8.4

means is[1.56, 2.85] µs. Therefore, with 7 events per re-
quest, the added latency impact is between 223 and 407 ns
per event, which is consistent with the measurements from
the local hostping test. The confidence interval of net-
work testing is much larger that the local host test due to an
higher standard deviation on the measurements.

Test Events / avg. std.dev.
round-trip (µs) (µs)

No tracing – 256.10 73.3
Flight recorder tracing 7 258.31 73.3

Table 4. Tracer latency overhead for a ping
round-trip. 100Mbps network, tracing re-
ceiver host only, Linux 2.6.30.9, 100000 re-
quests sample, at 2 ms interval.

Hence, the analysis of these measurements allows us to
affirm that the 95 % confidence interval of the tracer latency
impact on a busy system is between 328 and 338 ns per
event on the Intel Xeon E5405.

6.3 Throughput

Thetbench benchmark tests the throughput achieved
by the network traffic portion of a simulated Samba file

server workload. Given it generates network traffic from
data located in memory, it results in very low I/O and user-
space CPU time consumption, and very heavy kernel net-
work layer use. We therefore use this test to measure the
overhead of tracing on network workloads. We compare
network throughputs when running mainline Linux kernel,
instrumented kernel and traced kernel.

This set of benchmarks, presented in Table 5, shows that
tracing has very little impact on the overall performance un-
der network load on a 100 Mbps network card. 8tbench
client threads are executed for a 120s warm up and 600s
test execution. Trace data generated in flight recorder mode
reaches 0.9 GB for a 1.33 MB/s trace data throughput. Data
gathered in normal tracing to disk reaches 1.1 GB. The sup-
plementary data generated when writing trace-data to disk is
explained by the fact that we also trace disk activity, which
generates additional events. This very little performance
impact can be explained by the fact that the system was
mostly idle.

Now, given that currently existing 1 GB and 10 GB net-
work cards can generate higher throughput, and given the
100Mbps link was the bottleneck of the previoustbench
test, Table 6 shows the added tracer overhead when tracing
tbench running with both server and client on the loop-
back interface on the same machine, which is a worse-case
scenario in terms of generated throughput kernel-wise. This
workload consists in running 8 client threads and 8 server

Test Tbench Throughput Overhead Trace Throughput
(MB/s) (%) (∗103 events/s)

Mainline Linux kernel 12.45 0 –
Dormant instrumentation 12.56 0 –
Overwrite (flight recorder) 12.49 0 104
Normal tracing to disk 12.44 0 107

Table 5. tbench client network throughput tracing overhead.

Test Tbench Throughput Overhead Trace Throughput
(MB/s) (%) (∗103 events/s)

Mainline Linux kernel 2036.4 0 –
Dormant instrumentation 2047.1 -1 –
Overwrite (flight recorder) 1474.0 28 9768
Normal tracing to disk – – –

Table 6. tbench localhost client/server throughput tracing overhead.

threads.
The kernel instrumentation, when compiled-in but not

enabled, actually accelerates the kernel. It can be attributed
to modification of instruction and data cache layout. Flight
recorder tracing stores 92 GB of trace data to memory,
which represents a trace throughput of 130.9 MB/s for the
overall 8 cores. Tracing adds a 28% overhead on this work-
load. Needless to say that trying to export such throughput
to disk would cause a significant proportion of events to be
dropped. This is why tracing to disk is excluded from this
table.

6.4. Scalability

To characterize the tracer overhead when the number of
CPU increases, we need to study a scalable workload where
tracing overhead is significant. The localhosttbench test
exhibits these characteristics. Figure 3 presents the impact
of flight recordertracing on thetbench localhost work-
load on the same setup used for Table 6. The number of
active processors varies from 1 to 8 together with the num-
ber oftbench threads. We notice that thetbench work-
load itself scales linearly in the absence of tracing. When
tracing is added, linear scalability is invariant. It showsthat
the overhead progresses linearly as the number of proces-
sors increases. Therefore, tracing withLTTng adds a con-
stant per-processor overhead independent from the number
of processors in the system.

6.5. Comparison

Benchmarks performed onDTrace [1], the Solaris
tracer, on a Intel Pentium 4 shows a performance impact of
1.18µs per event when tracing all system calls to a buffer.
LTTng takes 0.182µs per event on the same architecture,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 1 2 3 4 5 6 7 8

tb
en

ch
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of cores

No tracing
With tracing

Figure 3. Impact of tracing overhead on local-
host tbench workload scalability.

for a speedup of 6.42:1. As shown in this paper, tracing a
tbench workload withLTTng generates a trace through-
put of 130.9 MB/s, for approximately 8 million events/s
with an average event size of 16 bytes. With this work-
load,LTTng has a performance impact of 28 %, for a work-
load execution time of 1.28:1.DTrace being 6.42 times
slower thanLTTng, the same workload should be expected
to be slowed down by 180 % and therefore have an execu-
tion time of 2.8:1. Therefore, performance-wise,LTTng
has nothing to envy [2]. This meansLTTng can be used to
trace workloads and diagnose problems outside ofDTrace
reach.

7. Conclusion

Overall, theLTTng kernel tracer presented in this pa-
per presents a wide kernel code instrumentation coverage,
which includes tricky non-maskable interrupts, traps and
exception handlers, as well as the scheduler code. It has a
per-event performance overhead 6.42 times lower than the
existingDTrace tracer and scales linearly when the num-
ber of cores increases. The performance improvements are
mostly derived from the following atomic primitive char-
acteristics: local atomic operations, when used on local
per-CPU variables, are cheaper than disabling interrupts on
many architectures.

The atomic buffering mechanism presented in this pa-
per is very useful for tracing. The good reentrancy and
performance characteristics it demonstrates could be use-
ful to other parts of the kernel, especially drivers. Using
this scheme could accelerate buffer synchronization signif-
icantly and diminish interrupt latency.

References

[1] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
USENIX, 2004. [Online]. Available: http://www.
sagecertification.org/events/usenix04/
tech/general/full_papers/cantrill/
cantrill_html/index.html. [Accessed: Octo-
ber 19, 2009].

[2] J. Corbet. On DTrace envy, August 2007. [Online]. Available:
Linux Weekly News, http://lwn.net/Articles/
244536/. [Accessed: October 19, 2009].

[3] M. Desnoyers and M. Dagenais. The LTTng tracer: A low
impact performance and behavior monitor for GNU/Linux.
In Proceedings of the Ottawa Linux Symposium, 2006.

[4] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. Da Silva, and al. K42: building a complete
operating system. InEuroSys ’06: Proceedings of the 2006
EuroSys conference, pages 133–145, April 2006.

[5] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Ke-
shavamurthy, and M. Hiramatsu. Probing the guts of kprobes.
In Proceedings of the Ottawa Linux Symposium, 2006.

[6] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and
B. Chen. Locating system problems using dynamic instru-
mentation. InProceedings of the Ottawa Linux Symposium,
2005. [Online]. Available:http://sourceware.org/
systemtap/systemtap-ols.pdf. [Accessed: Octo-
ber 19, 2009].

http://www.sagecertification.org/events/usenix04/tech/general/full_papers/cantrill/cantrill_html/index.html
http://www.sagecertification.org/events/usenix04/tech/general/full_papers/cantrill/cantrill_html/index.html
http://www.sagecertification.org/events/usenix04/tech/general/full_papers/cantrill/cantrill_html/index.html
http://www.sagecertification.org/events/usenix04/tech/general/full_papers/cantrill/cantrill_html/index.html
http://lwn.net/Articles/244536/
http://lwn.net/Articles/244536/
http://sourceware.org/systemtap/systemtap-ols.pdf
http://sourceware.org/systemtap/systemtap-ols.pdf

	. Introduction
	. State of the Art
	. Synchronization Primitives
	. Tracer Architecture Overview
	. Atomic Buffering Scheme
	. Experimental Results
	. Atomic Operations
	. Latency Impact
	Throughput
	. Scalability
	. Comparison

	. Conclusion

