
LTTng, Filling the Gap Between Kernel Instrumentation
and a Widely Usable Kernel Tracer

Mathieu Desnoyers
École Polytechnique de Montréal
mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

This paper presents an overview of tracing re-
quirements stated by the LTTng user-base. It
presents LTTng as a tracer having a wide user-
base, with needs different from kernel devel-
opers. It presents tracing infrastructure as be-
ing made of distinct parts which can be catego-
rized as either common core-kernel infrastruc-
ture (instrumentation, tracing time-source) or
tracer-specific, driver-like code (trace manage-
ment, buffering mechanism). This paper builds
the case for LTTng mainlining into the Linux
kernel by explaining the specific user require-
ments LTTng fulfills, its degree of maturity and
the number of users it has. This case is then
supported by showing that most of its code-
base does not affect the kernel core.

1 Introduction

With current systems becoming increasingly
multi-core and complex, the need for tools to
help understanding performance and latency
problems is clear[2]. However, a kernel trac-
ing solution usable by the large community of
Linux users has not made its way into the main-
line Linux kernel yet.

This paper will detail the various tracing so-
lutions currently available in the Linux kernel

and explain the distinction between core kernel
tracing infrastructure (which must be shared,
common and has the largest impact on the
kernel code-base) and trace data transport and
trace management infrastructures, which can be
categorized as driver code.

It will then explain how the LTTng user-base
differs from the target user-base of most of the
non-core tracing facility currently present in the
mainline kernel, therefore building a base for
mainline LTTng “driver” code.

2 Tracing Infrastructure in Main-
line Kernel

This section will detail the tracing infrastruc-
ture integrated in the Linux kernel 2.6.30-rc3.

The first gategory, instrumentation mecha-
nisms, includes Kprobes, Kernel Markers and
Tracepoints. Kprobes[9], allow dynamically
inserting breakpoints into the Linux kernel on
which handlers can be connected. The Linux
Kernel Markers[3] allow adding ad-hoc instru-
mentation along with a format string and a vari-
able argument list. This allows easy addition of
instrumentation at the source code level. The
Tracepoints[4] are a variant of the Linux Kernel
Markers, which provide better manageability of

1



the instrumentation by requiring an instrumen-
tation declaration to be added into a system-
wide header. Tracepoints are meant to allow
the kernel instrumentation process to be man-
aged by the subsystem maintainers, along with
the overview of the overall community. A third
static instrumentation mechanism present in the
kernel is the function tracer, which allows in-
strumentation of function entry and exit by the
compiler with an almost non-existing overhead
when dynamically disabled.

The second category, kernel tracers, is currently
being integrated under the Ftrace[8] umbrella.
It includes principally the block I/O tracer[1],
the memory I/O tracer, kmemtrace, KVMtrace
(tracing Linux KVM), the wakeup tracer and
the event tracer. The number of such tracers is
increasing from one kernel version to another.
The approach taken here is to let tracers attach
to Ftrace to provide a data output. One tracer
can be selected as the “current” tracer at any
given time. Their primary user-base is meant to
be kernel developers. The motto Ftrace follows
is to include everything needed to use the tracer
within the kernel, to make sure kernel develop-
ers do not run into userspace package depen-
dency problems.

3 Core Kernel vs Driver Code

As a general guideline coming from the Linux
kernel maintainers1, the kernel community is
actively trying to make it easier for contribu-
tors to have their kernel drivers merged into the
mainline Linux kernel. The linux-next tree in-
cludes a staging drivers section with this pre-
cise goal : to integrate new drivers into the ker-
nel tree early in their development.

1Referring to Andrew Morton and Greg Kroah-
Hartman at LFCS2009[7]

However, this does not apply to core kernel
code with very good reasons : modifications
to the core kernel code can have broad impacts
on the kernel and on many kernel maintainers.
Furthermore, they are, by nature, hard to isolate
in a specific module.

Therefore, the core kernel code is “jealously
kept” from external contributions, and those
typically have to go through a very thorough
round of review before being accepted.

Looking at the Linux Trace Toolkit Next Gen-
eration patchset2, one might wonder which part
of it could be considered as core kernel code
and which parts are self-contained drivers.

The core kernel modifications present in the
LTTng patchset are limited to the kernel in-
strumentation infrastructure, the instrumenta-
tion per se and the trace clock.

Most of the instrumentation infrastructure :
kernel markers and tracepoints, have been
merged into the mainline kernel already. The
“Immediate Values” patches aim at diminishing
the performance impact of dormant instrumen-
tation, which will become increasingly useful
as more tracepoints are added into the ker-
nel. The LTTng instrumentation touches vari-
ous kernel subsystems and is being submitted
for integration into the mainline kernel. The
time-base LTTng uses (trace clock) aims at pro-
viding a reliable and fast time-base suitable for
the needs of tracing. Ingo Molnar proposed a
trace clock implementation which is currently
in mainline but does not have the reliability
and performance characteristics provided by
the LTTng implementation. Those pieces of in-
frastructure will therefore have to be submitted
for mainlining as “core kernel” modifications.

This is however where stops the LTTng core
kernel intrusiveness. LTTng code-base is

2http://www.lttng.org

2

http://www.lttng.org


made primarily of self-contained kernel mod-
ules which aim at using as few pieces of ker-
nel infrastructure as possible, so the instrumen-
tation coverage can be maximized. Therefore,
the trace sessions management code, the ring-
buffer data extraction mechanism and the buffer
layout are all self-contained in kernel modules
that do not affect the rest of the Linux kernel
code-base.

We can therefore claim that the LTTng trace
management mechanism should be considered
for mainlining under the same criterions that
apply to drivers.

Given that Ftrace provides parts of the fea-
tures provided by LTTng, one might wonder if
LTTng mainlining would in fact duplicate fea-
tures already provided by Ftrace. The follow-
ing section will shown how LTTng and Ftrace
user-bases and requirements differ.

4 Case for LTTng Mainlining

This section will show how LTTng fits with
respect to the various requirements for kernel
code to be considered for mainlining, namely :
to fulfill specific user requirements, having a
large user-base and being actively developed by
a group of contributors.

4.1 LTTng Specific User Requirements

LTTng fulfills tracing requirements from de-
velopers, system administrators, technical sup-
port and users running Linux as their operat-
ing system. Those requirements include hav-
ing the ability to analyze and debug application,
library and kernel system-wide performance.
Within these users, some of the most demand-
ing need to trace high-performance comput-
ing multi-core application workloads (Google

servers). At the other end of the spectrum,
embedded system developers need to fit within
very limited memory and bandwidth resources
(Nokia embedded products). It is used in the
field on Siemens production systems to gather
a continuous flight recorder trace of the sys-
tem’s behavior to circular buffers, providing
meaningful bug reports from the end-user site
to Siemens technical support teams.

The currently existing tracing solution in the
Linux kernel, Ftrace, targets mainly kernel de-
velopers. It focuses primarily on providing spe-
cialized tracers for kernel behavior to debug
kernel-level problems occuring, for example,
at the scheduler, driver, memory management,
block layer levels. We will see below that this
difference of target users makes more difficult
the sharing of some common pieces of low-
level infrastructure.

Ftrace currently relies on some assumptions
about tracer usage specfic to kernel users. Pri-
marily, data is written into physical pages,
which limits the maximum event size to a page
and requires padding to be added whenever an
event would cross a page boundary. The buffer
locking structure is specialized for kernel trac-
ing, which makes it unlikely to be reusable for
user-space tracing. For instance, assumptions
about preemption being disabled at the tracing
site are made, which does not hold in user-
space. Ftrace uses many function calls which
are costly performance-wise on many architec-
tures. For example, on a 64-bits Intel Xeon,
adding a function call to the LTTng tracer fast
path slows down tracer execution by 20%. In
terms of buffer space usage, the ring_buffer
infrastructure reserves precious event header
bytes to encode the type and size of events
(2 bits for event type, 3 bits for event length
and 27 bits for time delta). The event pay-
load itself is a multiple of 32 bits. The locking
mechanism currently used by Ftrace is a per-
cpu spinlock with interrupts disabled; this en-

3



sures that the fast-path will not produce cache-
line bouncing between CPUs, but needs to use
synchronized atomic operations and interrupt
disabling, adding a non-negligible performance
impact[5].

Work to provide a lockless buffering mecha-
nism is underway, but it has not yet been pub-
lished by the author nor reviewed due to patent
application delays. Ftrace is also specialized
for a single-user use on a development ma-
chine. Only one tracer can be activated at a
time, which makes it hard for machines with
multiple users to use different tracers.

LTTng presents the buffer layout as a contigu-
ously addressable circular buffer, which sup-
ports writing event of variable size, with pay-
load up to the size of sub-buffers. It is suitable
for a wider variety of uses than Ftrace, includ-
ing scenarios requiring larger events like net-
work packet monitoring. The buffering mech-
anism is layered in such a way that it permits
compiling-in various memory backends to hold
the circular buffers. It uses, by default, pages
from the page allocator, but can be trivially
adapted to use video memory (which survives
hot reboot, for kernel crash trace extraction) or
statically allocated contiguous memory. LTTng
offers this level of flexibility without sacrifying
performance by using the minimum number of
function calls in the fast-path. This is possible
by building different objects including the same
headers to build the various pieces with differ-
ent options. Switching from one back-end to
another could then be done by loading a differ-
ent module.

LTTng also aims at providing a large instru-
mentation coverage. This relates to the amount
of kernel code that could not be instrumented
using the kernel tracer due to re-entrancy is-
sues. LTTng uses a lockless, formally veri-
fied, buffer concurency management algorithm
to support instrumentation of code executed
from NMI context. The locklessness of the

buffer algorithm also improves performances
significantly[5].

LTTng design makes it very kernel-
independent, which ensures that the tracer
is easy to port to different contexts. For
instance, a working user-space tracing port of
LTTng is currently undergoing final review
and awaiting LGPL licensing agreements from
other concerned parties. A port of LTTng
to the Xen hypervisor has also been done
previously without requiring much effort.
This design guide-line is not shared with the
Ftrace project, which is very Linux-kernel
specific. Low dependency on kernel behavior
assumptions makes LTTng more solid when
the kernel behaves incorrectly and more suit-
able for system-wide tracing, which includes
hypervisors, kernel and user-space.

We can therefore see that the main difference
between Ftrace and LTTng comes from dif-
ferent target use-cases and user requirements.
Therefore, the question that prevails is whether
is makes sense for those tracers to share low-
level transport infrastructure. This happens to
be very hard to do if one party does not consider
the other’s user requirements. A second worth-
while question is if LTTng could gain from
moving to a different tracing infrastructure such
as Ftrace ring_buffer. Given the community
review, testing on various platforms, usage in
the field and formal verification of the lockless
algorithms performed in its four years of de-
velopment, LTTng would actually be regress-
ing in terms of maturity and testing without any
added value. This is without even considering
the work involved in doing the adaptation, that
would postpone availability of the tracer.

It is important to specify that the respective
Ftrace and LTTng team members are working
in collaboration to share the maximum amount
of knowledge and infrastructure between the
projects and may eventually converge on pieces
of tracing infrastructure as development moves

4



forward without important visible impact for
users.

4.2 LTTng Features

We can now focus on the major features LTTng
has that makes it interesting to its user-base.

LTTng focuses on system-wide tracing of the
overall system behavior to give Linux end-
users the ability to identify the root cause of
performance degradation or high latency. It
provides very good re-entrancy using lockless
concurrency management algorithms. It sup-
ports kernel-wide instrumentation by being as
isolated as possible from the rest of the ker-
nel and by supporting re-entrancy from all ker-
nel execution contexts. It contains a solid
monotonic time-base which ensures sane up-
per bounds on the time-stamp precision error
and especially on the trace event partial order,
which lets trace analysis tools and users be con-
fident that the tracer provides correct informa-
tion.

LTTng is very low-overhead[6], has an
architecture-agnostic core, supports the ker-
nel Tracepoints, Linux Kernel Markers and
Kprobes instrumentation infrastructures to pro-
vide an easily extensible instrumentation.

For multi-user systems, where various teams
may have to share and monitor different aspects
of common hardware ressources, LTTng sup-
ports multiple tracing sessions.

4.3 LTTng Users and Contributors

LTTng currently counts many users and con-
tributors which either use Linux as their oper-
ating system or actively contribute to Linux.

Google[2] and IBM[10] have contributed and
used LTTng in their systems to pinpoint the root

cause of performance degradations. Autodesk
used LTTng to identify high latency incurred
by the Linux kernel in the development phase
of their products[2]. Ericsson is contributing to
LTTng development and actively involved with
the Eclipse community to design an IDE able
to handle traces generated by LTTng. Fujitsu is
actively contributing to the LTTng project, both
in term of code addition and support for the
LTTng tracer on the mailing lists. Siemens is
using LTTng in their production systems to pro-
vide “flight recorder” traces to diagnose prob-
lems. Nokia is working on and funding the
LTTng ARM OMAP3 port to have precise trac-
ing on their embedded systems. Sony, Samsung
and Boeing are LTTng users as well.

In terms of distributions, Novell SuSe Linux
Enterprise Server (Real-Time)3 includes the
full LTTng tracer, while the standard SLES
11 includes only core parts of the LTTng in-
strumentation. WindRiver has been distribut-
ing LTTng in their Linux distribution for a
few years, supporting it with their WindRiver
Workbench 2.6. Montavista is also shipping
LTTng in their Carrier Grade Linux 5.0.

Therefore, we can see that both large Linux
users and distributions show a clear need for the
features LTTng provides.

5 Conclusion

The intent of the Linux community is to make
it easy for non-core (driver) code to be pushed
into the mainline Linux kernel, especially when
it does not impact other subsystems. However,
there still seems to be some disagreement about
duplication of driver-like parts of tracing func-
tionality in the kernel.

3SLES 11 and SLES 11 real-time

5



This paper presented how kernel tracing dif-
fers when targeting either kernel developers
or Linux developers, system administrators,
technical support staff and end users. It has
then shown how it impacts tracer design deci-
sions from the high-level (importance of relia-
bility, low performance impact, multi-sessions
support) down to the low-level implementa-
tion choices that follow those high-level design
choices.

Some of the various LTTng users, Google,
IBM, Autodesk, Ericsson, Fujitsu, Siemens,
Nokia, Sony, Samsung, and Boeing as well as
some distributions (SLES 11, WindRiver Linux
and Montavista Carrier Grade Linux 5.0) ex-
press the strong need for such user-oriented
tracer. Their main complaint in the past years
about the LTTng tracer has been that it is not
present in the mainline kernel. Perhaps it is
time for the Linux community to address it ?

References

[1] Jens Axboe. Linux block io present and
future. In OLS (Ottawa Linux Symposium
2004), 2004.

[2] Martin Bligh, Rebecca Schultz, and
Mathieu Desnoyers. Linux kernel
debugging on google-sized clusters. In
OLS (Ottawa Linux Symposium) 2007,
2007.

[3] Jonathan Corbet. Kernel markers. Linux
Weekly News, http:
//lwn.net/Articles/245671/,
August 2007.

[4] Jonathan Corbet. Tracing: no shortage of
options. Linux Weekly News, http:
//lwn.net/Articles/291091/,
July 2008.

[5] Mathieu Desnoyers and Michel
Dagenais. Synchronization for fast and
reentrant operating system kernel tracing.
(To appear).

[6] Mathieu Desnoyers and Michel
Dagenais. The lttng tracer : A low
impact performance and behavior
monitor for gnu/linux. In OLS (Ottawa
Linux Symposium) 2006, 2006.

[7] Jake Edge. Elc/lfcs2009: A tale of two
panels. Linux Weekly News, http:
//lwn.net/Articles/327938/,
April 2009.

[8] Jake Edge. A look at ftrace. Linux
Weekly News, http:
//lwn.net/Articles/322666/,
March 2009.

[9] Ananth Mavinakayanahalli, Prasanna
Panchamukhi, Jim Keniston, Anil
Keshavamurthy, and Masami Hiramatsu.
Probing the guts of kprobes. In
Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[10] Robert W. Wisniewski, Reza Azimi,
Mathieu Desnoyers, Maged M. Michael,
Jose Moreira, Doron Shiloach, and Livio
Soares. Experiences understanding
performance in a commercial scale-out
environment. In Europar 2007, 2007.

6

http://lwn.net/Articles/245671/
http://lwn.net/Articles/245671/
http://lwn.net/Articles/291091/
http://lwn.net/Articles/291091/
http://lwn.net/Articles/327938/
http://lwn.net/Articles/327938/
http://lwn.net/Articles/322666/
http://lwn.net/Articles/322666/

	Introduction
	Tracing Infrastructure in Mainline Kernel
	Core Kernel vs Driver Code
	Case for LTTng Mainlining
	LTTng Specific User Requirements
	LTTng Features
	LTTng Users and Contributors

	Conclusion

