IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 1

User-Level Implementations of Read-Copy Update

Mathieu Desnoyers, Paul E. McKenney, Alan Stern, Michel R.ddags and Jonathan Walpole

Abstract—Read-copy update RCU is a synchronization prim- Although mechanisms similar tRCUhave been used in a
itive that is often used as a replacement for reader-writer pnumber of operating-system kernels (1; 2; 3; 4; 5), and, as
locking, due to the fact that it provides extremely lightweight shown in Figure 1, is heavily used in the Linux kernel, we

read-side primitives with sharply bounded execution timesRCU t f significant licati This lack of
updates are typically much heavier weight than areRCUreaders, are not aware or significant application usage. IS lack o

especially when used in conjunction with locking. application-level use is in part due to the fact that priogrus
Although RCUis heavily used in a number of kernel-level level RCUimplementations imposed global constraints on the

environments, these implementations make use of interrupt- gpplication’s structure and operation (6), and in some sase

and preemption-disabling facilities that are often unavailable to heavy read-side overhead as well (7). The popularitR6U

user-level applications. The fewRCUimplementations that are . i t K s has b . t due to the fact
available to user applications either provide inefficient read-side In operating-system kernels has been in part due to the 1ac

primitives or restrict application architecture. that these can accommodate the required global constraints
This paper describes several classes of efficie®CUimple- imposed by earlieRCUimplementations. Kernels therefore

mentations that are based on primitives commonly available to permits use of the high-performance quiescent-state based

user-level applications. reclamation QSBR class of RCUimplementations. In fact,

Finally, performance comparison of theseRCUprimitives with . - . .
each other and to standard locking leads to discuss appropriate N Server-class (CONFIGREEMPT=n) Linux-kernel builds,

locking for various workloads. This opens the door to use oRCU RCUincurs zero read-side overhead (8).
outside of kernels.

Index Terms—D.4.1.f Synchronization < D.4.1 Process Man- 3000 T T T T T T T
agement < D.4 Operating Systems < D Software/Software
Engineering, D.4.1.g Threads< D.4.1 Process Management D.4
Operating Systems< D Software/Software Engineering, D.4.1.a
Concurrency < D.4.1 Process Managemenk D.4 Operating
Systems< D Software/Software Engineering 2000 |- i

2500 |- a

I. INTRODUCTION

EAD-COPY UPDATE RCU is a synchronization mech-
anism that was added to the Linux kernel in October 1000
of 2002. RCUachieves scalability improvements by allowing
reads to occur concurrently with updates. In contrast with 500 |- i
conventional locking primitives that ensure mutual exidos
among concurrent threads regardless of whether they be
readers or updaters, or with reader-writer locks that allow
concurrent reads but not in the presence of updaRe&sl) vear
supports concurrency between a single updater and multiple
readersRCUensures that reads are coherent by maintainif@. 1. Linux-Kernel Usage of RCU
multiple versions of objects and ensuring that they are not
freed up until all pre-existing read-side critical secéarom- ~ Whereas we cannot yet put forward a single user-l&@U
plete.RCUdefines and uses efficient and scalable mechanisifigplementation that is ideal for all user-level environisen
for publishing and reading new versions of an object, and althe three classes dRCUimplementations described in this
for deferring reclamation of old versions. These mechasisraper should suffice for most applications.
distribute the work among read and update paths in such &irst, Section Il provides a brief overview d®CU in-
way as to make read paths extremely fast. In some cases¢lagling RCUsemantics. Then, Section Ill describes user-level
will be presented in Section IV-BRCUs read-side primitives scenarios that could benefit froRCU This is followed by
have zero overhead. the presentation of three classes REUimplementation in
. . . Section IV. Finally, Section V presents experimental resul
Manuscript received July X, 2009; revised Month Y, 2009 . .
M. Desnoyers (mathieu.desnoyers@polymtl.ca) and M. R. Dag€omparingRCUsolutions to each other and to standard locks.

nais (michel.dagenais@polymtl.ca) are with the Computer aofiwdre This leads to recommendations on locking use for various

Engineering Department, Ecole P'olytechnique de Mo_ntrgal. workloads presented in Section VI.
Paul E. McKenney (paulmck@Ilinux.vnet.ibm.com) is with the IBMux
Technology Center.
Alan Stern (stern@rowland.harvard.edu) is with the Rowlanstitude, Il. BRIEFOVERVIEW OF RCU
Harvard University.
Jonathan Walpole (walpole@cs.pdx.edu) is with the CompSEence This section introduces a conceptual view covering most

Department, Portland State University. RCUbased algorithms in Section II-A to familiarise the reader

1500 [~ -

RCU API Uses

0

2002
2003
2004 -
2005
2006
2007 -
2008
2009 -
2010

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 2

Pre—existing reads

B. User-Space RCU Desiderata
Extensive use oRCUapplications has lead to the following

rcu_read_lock() rcu_read_unlock()

|
Reader1 [reads | | irea/ds [3 reads | user-spac&CUdesiderata:
% Reader 2 | readé 7] [eads | 1) Read-side primitives.(such as Lccegd_loclf() and reu
@®© 1 ! read unlock()) boundingRCUread-side critical sections
g Reader3 [reads | [1] reads | and grace-period primitives (such as synchronize()
— Reader 4 [) reads | [reads | and callrcu()) must have the property that aRCU
‘ : read-side critical section in existence at the start of a
Updater ‘ removal ‘ grace period | reclamation grace period completes by the end of the grace period.
Time T i 2) RCUread-side primitives should avoid expensive opera-
rcu_assign_pointer(m tiong such as cach'e' misses, atomic instructions, memory
synchronize_rcu() waits for completion barriers, and conditional branches.
of pre-existing reads 3) RCUread-side primitives should haw@(1) computa-

tional complexity to enable real-time use. This property
guarantees freedom from deadlock.
4) RCUread-side primitives should be usable in all con-

with RCUconcepts and vocabulary. It then presents an informal ~ t€Xts, including nested within oth&CUread-side criti-
RCUdesiderata in Section II-B, which details the goals pursued @l sections. Another important special context is library
in this work. Then, Section 1I-C shows hoRCUis used to functions having incomplete knowledge of the user

delete an element from a linked list in the face of concurrent application. o B
readers. Finally, Section II-D gives an overview ®iCU) RCUread-side primitives should be unconditional, thus

Fig. 2. Schematic of RCU Grace Period and Read-Side Critieatiéhs

semantics, presenting the synchronization guaranteegprb eliminating the failure checking that would otherwise

by RCU complicate testing and validation. This property has the
nice side-effect of avoiding livelocks.

A. Conceptual View of RCU Algorithms 6) RCUread-side should not cause write-side starvation:

grace periods should always complete, even given a
steady flow of time-bounded read-side critical sections.
) Any operation other than a quiescent state (and thus a
grace period) should be permitted within R€Uread-
side critical section. In particular, non-idempotent eper
ations such as /0 and lock acquisition/release should
be permitted.
It is permissible to mutate a@RCUprotected data struc-
ture while executing within arRCUread-side critical
section. Of course, any grace periods following this
mutation must occur after th®CU read-side critical
section completes.
) RCUprimitives should be independent of memory al-
locator design and implementation, so tHR€U data
structures may be protected regardless of how their data

A schematic for the high-level structure of &CUbased
algorithm is shown in Figure 2, which can be thought of as 7
a pictorial view of (1) presented in Section 1I-D1. The grace
period concept, explained thoroughly in section II-D1, &&n
defined informally for the needs of this section as a period of
time such that alRCUread-side critical sections in existence
at the beginning of a given grace period have completed befor 8)
its end.

Here, each box labeled “Reads” is &CUread-side crit-
ical section that begins with rceead lock() and ends with
rcu_read unlock(). Each row oRCUread-side critical sections
denotes a separate thread, for a total of four read-sidadhre
The two boxes at the bottom left and right of the figure denote
a fifth thread, this one performing &CUupdate.

This RCUupdate is split into two phases, a remoyal phase elements are allocated and freed.
denoted by the lower Igft—hand box and a reclamation phast) RCUgrace periods should not be blocked by threads that
denoted by the lower right-hand box. These two phases must halt outside oRCUread-side critical sections. (But note

be separ_ated by a grace p_erlod, Wh'Ch.'S dete_rmmed by that most quiescent-state-based implementations violate
the duration of the synchronizecu() execution. During the this desideratum.)

removal phase, th@CUupdate removes elements from the

data structure (possibly inserting some as well) by issaimg de-ls-ih?]elfjctg ?g;?%in;?fvls|igte§?:£i? delrat:ectlon IV are
rcu_assignpointer() or equivalent pointer-replacement prim- 9 :
itive. These removed data elements will not be accessible)] .

to RCUread-side critical sections starting after the remov&: RCU Deletion From a Linked List

phase ends, but might still be accessed BgUread-side RCUprotected data structures in the Linux kernel include
critical sections initiated during the removal phase. Heave linked lists, hash tables, radix trees, and a number of oqusto
by the end of theRCUgrace period, all of th&kCUread-side built data structures. Figure 3 shows hB@CUmay be used to
critical sections that might be accessing the newly removeelete an element from a linked list that is concurrenthyngei
data elements are guaranteed to have completed, courtesyrafersed byRCUreaders, as long as each reader conducts
the definition of “grace period”. Therefore, the reclamatioits traversal within the confines of a singRCU read-side
phase beginning after the grace period ends can safely foeiical section. The first column of the figure presents the
the data elements removed previously. data structure view of the updater thread. The second column

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 3

Updater gggg; gr'gfcl;eggfggrbgggg;ggiteeg :Jtoedr other mechanism is typically locking, but any other suitabl
mechanism may be used, including atomic operations, non-
blocking synchronization, transactional memory, or a lging

designated updater thread.
{}”S‘—de'—rc“@) ¥ 1) Grace-Period Guarantee: RCU operates by defining
L RCU read-side critical sections, delimited by rcuread lock()
- o] and rcuread unlock(), and by definingrace periods, which
E [% ”””””””””””””””” [are periods of time such that &ICUread-side critical sections
@ synchronize_rcu()] | a7 c in existence at the beginning of a given grace period have com
S ,,,,,,, ,, pleted before its end. ThRCU primitive synchronizercu()
] ‘ starts a grace period and then waits for it to complete. Most
‘ RCUimplementations allowRCUread-side critical sections to
%free@) ‘ be nested.
i Somewhat more formally, suppose we have a group of C-
language statement within anRCUread-side critical section
as follows:
Fig. 3. RCU Linked-List Deletion reu_read lock(); So; Si; Sa; ...; reu read unlock();

Suppose further that we have a group of C-language mutation
presents the data structure view of a reader thread startlrsﬁgﬁrsnghfgia?;ti dabgrgl;pcaf g(l:aenggﬁgg. destruction state-
before the grace period begins. The third column presents a i Sep y 9 P '

reader thread starting after the beginning of the graceogeri Mo; Mi; Mo; ...; synchronizercu(); Do; D1; Do; ...;

The first row of the figure shows a list with elements A, B, Then the following holds, where—" indicates that the

and C, _to _each of which ever_f;(CUr_eaders initiate_d before tatement on the left executes prior to that on the right, and
the beginning of the grace period might both acquire and h ere “—" denotes logical implication:

references.

The list del rcu() primitive unlinks element B from the list,
but leaves the link from B to C intact, as shown on the second 384, My(Sa — My) = V5i, D;(Si — Dj) @)
row of the figure. This permits aniRCUreaders currently In other words
referencing B to advance to C, as shown on the second '
third rows of the figure. The transition between the seco
and third rows shows the reader thread data structure vi
gradually seeing element B disappear. During this tramsiti t'Rat same grace period.
some readers will see element B and others will not. Althoug

. . . This guarantee permitRCUbased algorithms to trivially
there might beRCUreaders stil r(_eferencmg Elemen.t B, NeWavoid a number of difficult race conditions that can otheewis
RCUreaders can no longer acquire a reference to it.

) I : . result in poor performance, limited scalability, and greaitn-
The synchronizercu() primitive waits for one grace period, poor p Y g

" e 'plexity. However this guarantee is insufficient, as it does n
after which all pre-existingRCUread-side critical sections will show that readers can operate consistently while an upsate i

have completed, resulting in the state shown in the founth ra . .
. . 7 rogress. This case is covered th rant resent
of the figure. This state is the same as the second and thln ogress s case is covered by the guarantee presented

I%he next section.
rows, except for the fact that there can no longer be R6Y

: . 2) Publication Guarantee: It is important to note that the
readers holding references to Element B. This change df Stzsi%atementss and M. mav execute concurrently. even in the
of B from globally visible to private is depicted by using a e b may Y

white background for the B box. At this point, it is safe 10 25¢ where, is referencing the same data element thitis

) S oncurrently modifying. The publication guarantee ass®ec
invoke free(), reclaiming the memory consumed by element . . M

; with the rcu assign pointer() and rcudereference() primitives
as shown on the last row of the figure.

Of course, the deletion process must be protected by so%”éjw this concurrency to be handled both correctly andlgasi

mutual-exclusion mechanism, most commonly, by locking any dereference of a pointer returned by_ruimreference(} is
Although RCUis used in a ,vvide variety of w,ays this Iist_guaranteed to see any changes prior to the corresponding rcu

deletion process is the most common usage. aSS|gr190|nter(), lncl'udmg. any changes prior to any earlier
rcu_assign pointer() involving that same pointer.

)) Somewhat more formally, suppose that the _assign
D. Overview of RCU Semantics pointer() is used as follows:

RCUsemantics comprise the grace-period guarantee covere?)
in Section 1I-D1 and the publication guarantee discussed in™"’
Section II-D2. Synchronization guarantees among conotirravhere eacly; is a C-language statement that initializes a field
modifications of theRCUprotected data structure must ben the structure referenced by the local pointer p, and where
provided by some other mechanism. In the Linux kernel, thike global pointer g is visible to reading threads.

if any statement in a givddCU read-side

ad?ﬁical section executes prior to any statement preceading
en grace period, then all statements in tR&Uread-side

Hical section must execute prior to any statement falgy

I; Is; ...; rceu_assignpointer(g,p);

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 4

Then the body of a canonicRCUread-side critical section User-level RCU has also been proposed for an elliptics-
would appear as follows: network distributed cloud-based storage project (BAND,
a major domain name server at the root of Internet domain
name resolution, is facing multi-threading scalabilitguss
where this RCU read-side critical section is enclosed inwhich are currently addressed with reader-writer locks).(13
rcu_read lock() and rcuread unlock(), g is a local pointer, Given the domain names are read often but rarely updated,
g is the same global pointer updated by the earlier_rcuhese could benefit from major performance improvement by
assignpointer() (and possibly updated again by some latesing user-leveRCU Others have mentioned possibilities in
invocations of rcuassign pointer()), and eacl; dereferences financial applications. One can also argue tR&Uhas seen
g to access one of the fields initialized by one of the statésnefong use at user level in the guise of user-mode Linux.

g = rcu dereference(g)Ry; R1; Ra; ...;

I;. In general, the area of applicability ®#CUto user-mode
Then we have the following, wherd is the rcuassign applications appears similar to that in the Linux kernel: to
pointer() andD is the rcu dereference(): read-mostly data structures, especially in cases whefe sta

data can be accommodated.
IV. CLASSES OFRCU IMPLEMENTATIONS

In other words, if a given rculereference() statement ac- hi ion d i ¢l UMDl
cesses the value stored by a given_iassign pointer(), then . This ;ectlon jescribes severa classeR@Uimp e_me”ta‘
- n ' tg)tns, with Sections IV-B, IV-C, and IV-D presenting user-

all statements dereferencing the pointer returne_d_ t.)y FhsrPace RCU implementations that are optimized for differ-
rcu_dereference() must see the effects of any initializatio

. . ; ent usage by user-space applications, but first Section 1V-A
statements preceding the rassign pointer(). ; - : . .
. M describes some primitives which might be unfamiliar. The
This guarantee allows new data to be initialized and add

. ImMplementation presented in Section IV-B offers the best
:Zae:jneF:SCUprotected data structure in face of concurrBau possible read-side performance, but requires that eacheof t

application’s threads periodically pass through a quiesce

G"’ef‘ both Fhe grace—perlod_and p.ubl|cat|on g_uarantees ate, thus strongly constraining the application’s desithe
these five primitives enable a wide variety of algorithms ar] plementation presented in Section IV-C places almost no
data structures providing extremely low read-3|d_e ovathe onstraints on the application’s design, thus being api
for read-mostly data structures (8; 6; 9; 10). Again, not thf_or use within a general-purpose library, but having higher

hani be it locki X X blocki Y88d-side overhead. Section IV-D presents an implementati
mechanism, be it locking, atomic operations, non-bloc 'r}gaving low read-side overhead, and requiring only that the

synchronization, transactional memory, or a single undatgpplication give up one signal tRCU processing. Finally,

‘hre?‘d- . . Section IV-E demonstrates how to create wait-fR€€Uupdate
With this background oRCU we are ready to consider howprimitives

it might be used in user-level applications.

A. Notation

The examples in this section use a number of primitives that

The past year has seen increased interest in appR@Y may be unfamiliar, and are thus listed in this section.
to user-space applications. Per-thread variables are defined via DEFIRER

User-level RCUwas needed for a user-level infrastructurd HREAD(). A thread may access its own instance of a
that provides low-overhead tracing for user-mode appticat per-thread variable using get threadvar(), or some other
RCUis used for tracer control data synchronization in thiénread’s instance via pethread(). The fareach thread() prim-
LTTng tracer implementation (11), which is being portedive sequences through all threads, one at a time.
to a user-space library. This usage scenario poses importanThe pthreadmutex is a type defined by the pthread library
constraints on theRCU requirements. This tracing library for mutual exclusion variables. The mutdock() primitive
cannot be too intrusive in terms of program modificatiorgcquires a pthreadhutex instance, and mutexnlock() re-
which makes theQSBRapproach presented in Section IV-Bleases it. The mb keyword stands for “memory barrier”.
inappropriate for such usage scenario. It also needs taosup@he smpmb() primitive emits a full memory barrier, for
extensible instrumentation of user-selected executides,si example, the sync instruction on the PowerPC architecture.
including signal handlers, which therefore requires sujipp The smpwmb() and smprmb() primitives are, respectively,
nestedRCUcritical sections anéRCUreader critical sections in store and load memory barriers, corresponding, for example
signal handlers. This usage scenario is also very perfarenamo the sfence and Ifence instructions on the x86 architectur
demanding on workloads involving instrumentation of frequ The ACCESSONCE() primitive prohibits any compiler op-
execution sites. Therefore, having a low-overhead andbl=al timization that might otherwise turn a single fetch or store
read-side is very important. Therefore, an ideal lockingnpr into multiple fetches, as might happen under heavy register
itive for a tracing library would require no knowledge of theressure. The barrier() primitive prohibits any compilede-
application and could be used to protect data structured useotion optimization that might otherwise move fetches or
in a library. stores across the barrier() primitive.

IIl. USER-SPACE RCU USAGE SCENARIOS

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 5

1 long rcu_gp_ctr = 0; 1 static inline int rcu_gp_ongoing(int thread)
2 DEFINE_PER_THREAD(long, rcu_reader_gs_gp); 2 {
3 3 return per_thread(rcu_reader_gs_gp, thread) & 1;
4 static inline void rcu_read_lock(void) 4}
5 { 5
6 } 6 void synchronize_rcu(void)
7 7{
8 static inline void rcu_read_unlock(void) 8 int t;
9 { 9
10 } 10 smp_mb();
11 11 mutex_lock(&rcu_gp_lock);
12 static inline void rcu_quiescent_state(void) 12 rcu_gp_ctr += 2;
13 { 13 for_each_thread(t) {
14 smp_mb(); 14 while (rcu_gp_ongoing(t) &&
15 __get_thread_var(rcu_reader_qgs_gp) = 15 ((per_thread(rcu_reader_gs_gp, t) -
16 ACCESS_ONCE(rcu_gp_ctr) + 1, 16 rcu_gp_ctr) < 0)) {
17 smp_mb(); 17 poll(NULL, 0, 10);
18 } 18 barrier();
19 19 }
20 static inline void rcu_thread_offline(void) 20 }
21 { 21 mutex_unlock(&rcu_gp_lock);
22 smp_mb(); 22 smp_mb();
23 _ get _thread_var(rcu_reader_gs_gp) = 23}
24 ACCESS_ONCE(rcu_gp_ctr);
25}
26 Fig. 5. RCU Update Side Using Quiescent States
27 static inline void rcu_thread_online(void)
28 {
29 _ get _thread_var(rcu_reader_gs_gp) =
80 ACCESS_ONCE(rcu_gp_ctr) + 1; will see an odd-numbered value, thus becoming aware that
31 smp_mb(); . " .
32} a new RCU read-side critical section has started. Instances
of synchronizercu() that are waiting on oldédRCUread-side
Fig. 4. RCU Read Side Using Quiescent States critical sections will know to ignore this new one. Finally,

line 17 executes a memory barrier to ensure that the update to
rcu_readerqs gp is seen by all threads to happen before any
B. Quiescent-Sate-Based Reclamation RCU subsequenRCUread-side critical sections.
Some applications might usgCUonly occasionally, but use

The QSBR RCUimplementation provides near zero4t very heavily when they do use it. Such applications might
overhead read-side, but requires to modify the applicaésn choose to use rcthread online() when starting to usRCU
this section explains. and rcu thread offline() when no longer usinRCU The time

Figure 4 shows the read-side primitives used to construsgtween a call to rcuhread offline() and a subsequent call
a user-level quiescent-state-based reclamat@BBR imple- to rcu_thread online() is an extended quiescent state, so that
mentation of RCU based on quiescent states. As can IRCUwill not expect explicit quiescent states to be registered
seen from lines 4-10 in the figure, the reead lock() and during this time.
rcu_read unlock() primitives do nothing, and can in fact be The rcu thread offline() function simply sets the per-thread
expected to be inlined and optimized away, as they are ricu_readerqgs gp variable to the current value of rayp_
server builds of the Linux kernel. This is due to the fact thattr, which has an even-numbered value. Any instance of
quiescent-state-basé®CU implementationsapproximate the synchronizercu() will thus know to ignore this thread. A
extents ofRCUread-side critical sections using the aforemermemory barrier is needed at the beginning of the function
tioned quiescent states, which contain calls to quiescent to ensure alRCUread side-effects are globally visible before
state(), shown from lines 12-18 in the figure. Threads emerimaking the thread appear offline. No memory barrier is needed
extended quiescent states (for example, when blocking) maythe innermost part of rcuhread offline() because it is
instead use the threadffline() and threadonline() APIs to invalid to performRCUaccesses on this side of the function.
mark the beginning and the end, respectively, of such &here is therefore no need to prevent reordering.
extended guiescent state. As such, threatine() is analogous The rcu thread online() function is the counterpart of rcu
to rcu read lock() and threadoffline() is analogous to rcu thread offline(). It marks the end of the extended quiescent
read unlock(). These two functions are shown on lines 20-3ate. It is similar to rcuquiescentstate(), except that the only
in the figure. In either case, it is invalid for a quiescentestamemory barrier required is at the end of the function.
to appear within arRCUread-side critical section. Figure 5 shows the implementation of synchronize().

In rcu_quiescentstate(), line 14 executes a memory barridit implicitly refers to the variables declared in Lines 1-2
to prevent any code prior to the quiescent state from beionf) Figure 4. Lines 1-4 show the rcgp _ongoing() helper
reordered into the quiescent state. Lines 15-16 pick upfumction, which returns true if the specified thread’s _rcu
copy of the global rcugp ctr (RCUgrace-period counter), readerqs gp variable has an odd-numbered value. Lines 622
using ACCESSONCE() to ensure that the compiler doeshow the implementation of synchronizeu() itself. Line 10
not employ any optimizations that would result in rgp_ctr is a memory barrier that ensures that the caller's mutation
being fetched more than once, and then adds one to the vadfieghe RCUprotected data structure is seen by all CPUs to
fetched and stores it into the per-thread meaderqs gp happen before the grace period identified by this invoca-
variable, so that any concurrent instance of synchrom@ag) tion of synchronizercu(). Line 11 acquires a pthreadutex

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 6

1 #define RCU_GP_CTR_BOTTOM_BIT 0x80000000
named rcugp_lock in order to serialize concurrent calls t0 2 #define RCU_GP_CTR_NEST _MASK (RCU_GP_CTR BOTTOM BIT 1)

synchronizercu(), and line 21 releases it. Line 12 adds thei 'E‘))EIQ:”{I‘E‘—F?EE“;H—READ(IOHQ reu_reader._gp);
value “2” to the global variable rcgp ctr to indicate the s - .
beginning of a new grace period. Line 13 sequences througlj static infine void rcu_read_lock(void)
all threads, and lines 14-16 check to see if the currentdhreas long tmp;
is still in an RCUread-side critical section that began beforelg long = rrgp;
the counter was incremented back on line 12: if so, we must rgp = & get_thread_var(rcu_reader_gp):
wait for it on line 17. Line 18 ensures that the compilerl2 tmp = xIrgp;
refetches the rcueaderqgs gp variable. Line 22 executes gne 51 " (*(trrn;%g; Fi%%ﬁ‘é@:‘éﬁ%&iﬁ}ﬁ”ﬁﬁﬁ? ot
last memory barrier to ensure that all other CPUs have fully®) :Igg’—{mb()?
completed theirRCU read-side critical sections before the 17 xrrgp = tmp + 1;
caller of synchronizercu() performs any destructive actions 15 } }
(such as freeing up memory). 20
This implementation has low-cost read-side primitives, ag} st inline void reu_read_unlock(void)
can be seen in Figure 4. Read-side overhead depends on hgzw long tmp;
often rcu quiescentstate() is called. These read-side primi-24
tives qualify as wait-free under the most severe conceivab
definition (14). The synchronizecu() overhead ranges from 27}
about 600 nanoseconds on a single-CPU Power5 system up to
more than 100 microseconds on a 64-CPU system with ofié- - RCU Read Side Using Memory Barriers

thread per CPU.

Because it waits for readers to complete, synchrone) uarantee that all threads of a yet-as-unwritten apptioatiill

does not qualify as non-blocking. Section IV-E describ > verse quiescent states in a timelv fashion
how RCU updates can support wait-free algorithms in the q y '

same sense as wait-free algorithms are supported by garbage
collectors. C. General-Purpose RCU
However, this implementation requires that each threadThe general-purposBCUimplementation can in theory be
either invoke rcuquiescentstate() periodically or invoke rcu used in any software environment, including even in library
thread offline() for extended quiescent states. The need fonctions that are not aware of the design of the enclosing
invoke these functions periodically can make this implemeapplication. However, the price paid for this generality is
tation difficult to use in some situations, such as for cartarelatively high read-side overhead, though this overheastill
types of library functions. significantly less than a single compare-and-swap opéeratio
In addition, this implementation does not permit concurremost hardware.
calls to synchronizercu() to share overlapping grace periods. A global variable rcugp_ctr is initialized to 1 and a per-
That said, one could easily imagine a production-quati@U thread variable rcueadergp is initialized to zero. The low-
implementation based on this versionRE€U order bits of rcureadergp is a count of the rcuead lock()
Finally, on systems where the rayp_ctr is implemented nesting depth, while the upper bit indicates the gracesperi
using 32-bit counters, this algorithm can fail if a reader iphase at the time of the invocation of the outermost read
preempted in line 3 of rcuead lock() in Figure 4 for enough lock() (15). The upper bit of global variable rogp ctr is the
time to allow the rcugp_ctr to advance through more thancurrent grace-period phase, while the low-order field istset
half (but not all) of its possible values. Although one smint the value 1 for reasons that will become apparent shortly.
is to avoid 32-bit systems, 32-bit systems can be handled byThe read-side primitives are shown in Figure 6. Lines 1-4
adapting rcuread lock() and rcuread unlock() from Figure 6 are declarations, lines 6-19 are roead lock(), and lines 21—
for use in rcuquiescentstate() and rcwffline_thread(), re- 27 are rcuread unlock().
spectively. This would of course also require adopting the In rcu_read lock(), line 11 obtains a reference to the current
synchronizercu() implementation from Figure 7. thread’s instance of rcueadergp, and line 12 fetches the
Another point worth discussing is that if read-side criticacontents into the local variable tmp. Line 13 then checks
sections are expected to execute in a signal handler, the rto see if this is the outermost raead lock(), and, if so,
quiescentstate() primitive must run with signals disabled, antine 14 copies the current value of the global rgp ctr to
signals must be kept disabled while threads are kept offlirthis thread’s rcureadergp variable, thereby snapshotting the
Effectively, if a signal handler nests over rquiescentstate() current grace-period phase and setting the nesting counitito
between the memory barriers, the read-side could be intarsingle operation. Otherwise, line 17 increments the mgsti
leaved with the rcureadergs gp update and therefore spawrcount in this thread’s rcueadergp variable.
across two grace periods, which could cause synchroriaé Line 26 decrements the thread’s reeadergp, which has
to return before the quiescent state is reached and leaddo dhe effect of decrementing the nesting count.
corruption. For outermost read-side rawead lock(), the memory bar-
The next section discusses &CU implementation that rier on line 15 ensures that the reeadergp value is globally
is safe for use in libraries, where the library code cannobservable before any of the outermost read-side critical

é smp_mb();
6 _ get_thread_var(rcu_reader_gp)--;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 7

1 static inline int rcu_old_gp_ongoing(int t) i
2 { variable is read with a single memory access. This prevésts t
3 Intv = ACCESS_ONCE(per thread(fcu_reader_gp. 0): compiler from refetching the variable or fetching it in pésc
5 return (v & RCU_GP_CTR_NEST_MASK) && Line 5 then checks to see if the low-order field is non-zero,
e) (v " reu_gp_ctr) & "RCU_GP_CTR_NEST_MASK); and line 6 checks to see if the upper bit differs from that of
8 o the rcu gp_ctr global variable. Only if both these conditions
1 {S‘a"c void flip_counter_and_wait(void) hold does rcuold_gp_ongoing() report that the current grace-
11 int t; period phase must wait on this thread.
e gp_ctr “= RCU_GP_CTR_BOTTOM_BIT: Lines 9-20 of Figure 7 show fligounterand wait(),
14 for_each_thread(t) { - which initiates a grace-period phase and waits for it to
» Whggu((ch‘ff'dagpl—(‘)’)'_‘g°'“9(‘)) { elapse. Line 13 complements the upper bit of global variable
17 barrier); rcu_gp_ctr, which initiates a new grace-period phase. Line 14
s) } cycles through all threads. The “while” loop at line 15 refpea
20 } edly executes lines 16—17 until rapid_gp_ongoing() reports
g; void synchronize_ rcu(void) that the thread no longer resides in R€Uread-side critical
23 { - section that affects the current grace-period phase. Lée 1
gg fnnafe—xml’f)(gi((&rcu ap_lock): which is optional, blocks for a short period of time, and
26 flip_counter and_wait(): line 17 ensures that the compiler refetches variables when
27 flip_counter_and_wait(); i H
28 mutex_unlock(&rcu_gp_lock); exe_cutlng rcgold_gp__ongomg().))
29 smp_mb(); Lines 22-30 of Figure 7 shows synchronirau(), which
30} waits for a full two-phase grace period to elapse. Line 24
. _ _ _ executes a memory barrier to ensure that any prior data-
Fig. 7. RCU Update Side Using Memory Barriers structure modification is seen by all threads to precede the

grace period. Line 25 acquires r@p lock to serialize any
. . concurrent invocations of synchronizeu(). Lines 26—27 wait
section memory accesses. It ensures that neither the. @M o grace-period phases, line 28 releases the lock, and
nor the.CPU wil re.order MEemMOry accesses across this bar_rﬁﬁre 29 executes a memory barrier to ensure that all threzels s
by add|_ng a compiler barrier and issuing a memory barr'ﬂqe grace period happening before any subsequent deggructi
instruction. Only the outermost rcread lock() needs to have operations (such as free())
such memory barrier because only this outermost lock CaRMemory ordering betweén the ragp_ctl complement and
chlange the (rjeadlericulr_rentzgrace period. bari testing the reader’s current grace period with _iadd_gp_

n reu_read unlock(), line 25 executes a memory barrier t%ngoing() is not strictly needed. The only requirement Bt th

e%sure_t_hatl all g_IobaIIy ort])servable leiCtS of ﬂadétUreaq- each and every reader thread that was executing in a read-
side critical section reach memory before M®Rdergp IS qiqa critical section before memory barrier on line 24 has

. . . S
decremented. The memory barrier on line 25 is needed Otﬁ&ished its critical section after the memory barrier orel29.

fordthe outermost rcTueaId_unllot():ki(]), bUt_ g|vhen the OULermost ry,;q two-phase grace period scheme is used to ensure updater
anb mnt;rrr_]osthnestmg C(ievel i ave (;n t_ e exact dse(ljme W Vogress through a grace period even if a steady flow of reader
a branch in the rcueadunlock() code is unneeded, an omes. The only requirement is that, when the updater busy-

given the common case 1S to perfor_rr_1 smgle-leyel nesting, tn)ops waiting for readers, it eventually reaches a pointrehe
memory barrier is executed unconditionally for innermosd a all new readers are in the new grace period parity.

outerm.ost nesting levels. . Grace period identification, by either a bit (in the two-

Sgctlon IV-D shows one way of getting rid Of,bOth memo%hase scheme) or by a counter, ensures that readers starting
barriers; however, even with the memory barriers, bOth—r(:lfjuring the grace period will not prevent the grace periothfro
read lock() and rcuread unlock() are wait-free. completing. In fact, if a simplistic scheme where the update

The effect of th|s |mplem¢ntat|on of rguaad_lock() and waits for all readers to complete would be used, the grace
reu_read unlock() is that a given thread may be ignored biﬂeriod would be considered as complete when the updater
the current grace-period phase in either of the followingesa reaches a point where no reader is active in the system.

1) The lower-order bits of the thread'’s reeadergp vari- However, this would allow new readers starting after the

able are all Zero, in which case the thread is not CUrren%ginning of the grace period to impede reaching quiescent
in an RCUread-side critical section. state. This would prevent grace-period progress in theepres

2) The upper bit of the thread’s rcreadergp variable of reader threads releasing the read-side critical sedtion

matches that of the global rcgp_ctr, in which case very short periods. Faster cached local data access would
this thread’sRCUread-side critical section started aftekherefore provide an unfair advantage to the reader over the
the beginning of the current grace-period phase. updater.

These checks are implemented by the function ot gp_ Now that the grace period identification question is settled
ongoing(), which is shown on lines 1-7 of Figure 7. This figurthis raises the question “why isn't a single grace-periodseh
implicitly refers to the declarations and variables in ldrle-4 sufficient?” To see why, consider the following sequence of
of Figure 6. Given a thread t, line 3 fetches t's roeadergp events which involves one read-side critical section and tw
variable, with the ACCESSONCE() primitive ensuring the consecutive grace periods:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 8

. . . 1 #define RCU_GP_COUNT (1UL << 0)

1) Thread A invokes rcuead lock(), executing lines 11— 2 #define RCU_GP_CTR_BIT (1UL << (sizeof(long) * 4))
13 of Figure 6, and finding that this instance of rcu 3 fdefine RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BIT - 1)
read lock() is not nested, fetching the value of rgp_ 5 long urcu_gp_ctr = RCU_GP_COUNT;
ctr on line 14, but not yet storing it. 3 long __thread urcu_active_readers = OL;

2) Thread B invokes synchronizesu(), executing lines 24 g static inline void rcu_read_lock(void)
and 25 of Figure 7, then invoking fligounterand. 8{ ond. tmo:
wait() on line 26, where it complements the grace-perioél g m

phase bit on line 13, so that the new value of this bit is3 i‘f’“z(;np“fg“—;ég‘fe—lg‘iagﬂfihlEST_MASK))

now 1. 14 urcu_active_readers = ACCESS_ONCE(urcu_gp_ctr);
3) Because no thread is in &CUread-side critical sec- 1> elsjrcu_active_rea ders = tmp + RCU_GP_COUNT:

tion (recall that thread A has not yet executed the7 barrier(:;

store operation on line 14), Thread B proceeds througllkg }

lines 14-19 of Figure 7, returns to synchrorlilzm(), 20 static inline void rcu_read_unlock(void)

executing lines 28-30 (recall that line 27 is omitted ingé { barrier0:

this scenario), and returning to the caller. 23 urcu_ac"[ive_readers = urcu_active_readers - RCU_GP_CO UNT;
4) Thread A now performs the store in line 14 of Figure 624}

Recall that it is using the old value of ragp_ctr where

the value of the grace-period phase bit is 0. Fig. 8. RCU Read Side Using Signals
5) Thread A then executes the memory barrier on line 15,

and returns to the caller, which proceeds in to ReU

read-side critical section. One unexpected but quite pleasant surprise is that this
6) Thread B invokes synchronizeu() once more, again approach results in relatively simple read-side primgivin

complementing the grace-period phase bit on line 13 gpntrast, those of preemptatfRCUare notoriously complex.

Figure 7, so that the value is again zero. The read-side primitives are shown in Figure 8, along with
7) When Thread B examines Thread As reeadergp the data definitions and state variables. The urquefix

variable on line 6 of Figure 7, it finds that the graceused for variables stands for “user-spaR€U Lines 1-3

period phase bit matches that of the global variabRhow the definitions controlling both the urgp ctr global

rcu_gp_ctr. Thread A is therefore ignored, and Thread Bariable (line 5) and the urcactive readers per-thread vari-

therefore exits from synchronizesu(). able (line 6). The low-order bits (those corresponding to
8) But Thread A is still in itsRCUread-side critical section 1-bit in RCU_GP_CTR_NEST_MASK) are used to count
in violation of RCUsemantics. the rcuread lock() nesting level, while the bit selected by

RCU_GP_CTR_BIT is used to detect grace periods. All other

Invokl_ng ﬂlp_counteLand_wan()_ twice '?“/O'ds this p“’b'e.”.‘ blits are unused. The global ur@p ctr may be accessed at
by making sure the grace period waits for reader critica

.) any time by any thread, but may be updated only by the thread
sectlops for each of the poss.lble tWO. phgses. holding the lock that guards grace-period detection. The pe
A single-phase approach is possible if the current gra

iod is identified b f . i h ead urcuactive readers variable may be modified only by
period IS igentiied by a iree-running counter, as shown iy, corresponding thread, and is otherwise read only by the

Section IV-B. However, the counter size is important beeaug, .., holding the lock that guards grace-period detection
this counter is subject overflow. The single-flip problemwho The reu read lock() implementation is shown on lines 9—

above, which involves two consecutive grace periods, is as

) i .. 18. Line 12 picks up the current value of this thread’s
tually a case where a single-bit overflow occurs. A similar . . L :
urcu active readers variable and places it in the local variable

scenario is therefore possible given a number of graceqimri_c%mp. Line 13 checks to see if the nesting-level portion ofiurc

sufficient to over_flow th? grace perlqd _counter passing @J”réctive_readers is zero (indicating that this is the outermost
a read lock section. This could realistically happen on 82-h

; ; . " . rcu_read lock()), and, if so, line 14 copies the global variable

architectures if read-side critical sections are preethpte :) . :

The following section shows one way to eliminate the rea(gﬁrcu_gp_ctr to this thread's urca c_tlve_ree_lder_s variable. Not(_a

. X at urcugp_ctr has been initialized with its low-order bit
side memory barriers. set, so that the nesting level is automatically set correctl
Otherwise, line 16 increments the nesting level in thisabie
urcu_active readers variable. In either case, line 17 executes
a barrier directive in order to prevent the compiler from un-

The largest sources of overhead for tRQ€BRand general- dertaking any code-motion optimization that might otheevi
purposeRCUread-side primitives shown in Figures 4 and 6ause the contents of the subsequB@Uread-side critical
are the memory barriers. One way to eliminate this overheaglction to be reordered to precede the_read lock().
is to use POSIX signals. The readers’ signal handlers aontai The implementation of rcuead unlock() is shown on
memory-barrier instructions, which allows an updater t@wéo lines 20-24. Line 22 executes a barrier directive, again, in
readers to execute a memory-barrier instruction only whender to prevent the compiler from undertaking any code-
needed, rather than suffering the extra overhead duringy evenotion optimization that might otherwise cause the costent
call to a read-side primitive. of the prior RCUread-side critical section to be reordered to

D. Low-Overhead RCU Via Sgnal Handling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 9

; Str:?rt]réi?ﬁfrﬁiglsny t to pthreadkill() are not reordered after the start of the system
g e achve teaders: call. Lines 20-26 then rescan the threads, waiting until one
5} sregistry; each has responded by setting its neeld per-thread variable

6 static char _thread need_mbi to zero. Because some versions of some operating systems
8 - ' can lose signals, line 23 will resend the signal if a response
1 {S‘a‘ic void force_mb_all_threads(void) is not received in a timely fashion. Finally, line 27 exesute

11 struct reader_registry «index; memory barrier to ensure that the signals have been received
g it (registry) and acknowledged before later operations that might otiserw

14 return; destructively interfere with readers.

15 index = registry; . Lines 30-36 show the signal handler that runs in response
16 for (; index < registry + num_readers; index++) { R . i

17 *index->need_mb = 1; to a given thread receiving the POSIX signal sent by force
e , pthread_kill(index->tid, SIGURCU); mb_all_threads(). This sigurcinandler() function executes a

20 index = registry; pair of memory barriers separated by setting its nedul per-

i f°fw(r?m;”d(ex*Tn(jrgg_‘itr:geg :‘n”br)“—{readers? index++) { thread variable to zero. This has the effect of placing a full
23 pthread_kill(index->tid, SIGURCU); memory barrier at whatever point in the thread’s code that wa
o) PONl(NULL, 0, 1); executing at the time that the signal was received, pravgnti
26} the CPU from reordering across that point.

o , smp_mb(); The sender thread has two memory barriers around whole
29 sequence consisting of sending the signal and waiting ®@r th
gg static void sigurcu_handler(int signo;losi(ijg‘“f*oc—;mext) *siginfo, remote thread to acknowledge its reception. The remotadhre

32 { executes a memory barrier before acknowledging the signal
SRl reception. These two conditions ensure that the remotadtsre

35 smp_mb(); program order and memory accesses passed by a point where
36 }

they were executing in order between the two memory barriers

on the sender thread. Therefore, execution in program order
and with ordered memory accesses is ensured on the remote
processor at that point. This promotes all compiler basrier

on the receiver side to memory barriers, but only when the

follow the rcu read unlock(). Line 23 decrements the Va'”%atching memory barrier is executed on the sender side.
of this thread's urcuactive readers variable, so that if this is The ypdate-side grace-period primitives are shown in Fig-

the outermost rcuread unlock(), the low-order bits indicating yre 10, including switchnext urcu gparity() on lines 1—

the nesting level will now be zero. 4, rcu old_gp ongoing() on lines 6-15, waitor_quiescent

Both rcureadlock() and rcureadunlock() execute a state() on lines 17—29, and synchronizai() on lines 31-41.
Sharply bounded number of instructions, hence both are wait The Switch_next_urcu_qparity() function starts a new grace-
free. period phase, where a pair of such phases make up a grace

The signal-handling primitives are shown in Figure Seriod. A single phase is insufficient for the same reasons
including variable declarations on lines 1-7, fone® all_ discussed in Section IV-C. This function simply complensent
threads() on lines 9-28 and siguréandler() on lines 30-36. the designated bit in the urcgp_ctr global variable.

The structures on lines 1-5 represents a thread, with itsThe rcu old_gp_ongoing() determines whether or not the
thread ID in tid, a pointer to its urcactive readers per-thread thread with the referenced per-thread umctive readers vari-
variable, and a pointer to its needb per-thread variable. able is still executing within aRCUread-side critical section
Line 6 declares the per-thread neatb variable, and line 7 that started before this grace-period phase. Lines 10-&dkch
defines the global variable numeaders, which contains theto see if there is no thread, and returns zero if there is not,
number of threads that are represented in the registry argfiyen that a non-existent thread cannot be executing at all,
defined on line 5. let alone within anRCUread-side critical section. This will

The forcemb_all_threads() function ensures a memoryold for the whole grace-period because thread registratio
barrier is executed on each running threads by sendingneeds to hold the internaku_lock. Otherwise, line 12 fetches
POSIX signal to all threads, waiting for each to respondhe value, using the ACCESONCE() primitive to defeat
As we will see, this has the effect of promoting compilereompiler optimizations that might otherwise cause the evalu
ordering directives such as barrier() to full memory basie to be fetched more than once. Line 13 then checks to see
while avoiding the need to incur the cost of expensive berrigf the corresponding thread is in @RCUread-side critical
in read-side primitives in the common case. Lines 13—-14metusection, and, if so, line 14 checks to see if tR&tUread-side
if there are no readers, and lines 16-19 set each threacfiical section predates the beginning of the current grac
need mb per-thread variable to the value one, then send thadriod phase.
thread a POSIX signal. Note that the system call executed forThe wait for_quiescentstate() waits for each thread to pass
pthreadkill() implies a full memory barrier before the systemthrough a quiescent state, thereby completing one phase of
call execution at the operating system level. This memotlie grace period. Lines 21-22 return immediately if theee ar
barrier ensures that all memory accesses done prior to the o@ threads. Otherwise, the loop spanning lines 23—-28 waits

Fig. 9. RCU Signal Handling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B.

tatic void switch_next_urcu_qgparity(void)

~ W0

urcu_gp_ctr = urcu_gp_ctr ~ RCU_GP_CTR_BIT;

-

s
{

©oO~NOUDAWNPRP

long v;

10 if (value == NULL)

11 return 0;

12 v = ACCESS_ONCE{value);

13 return (v & RCU_GP_CTR_NEST_MASK) &&
14 ((v = urcu_gp_ctr) & RCU_GP_CTR_BIT);
15 }

17 static void wait_for_quiescent_state(void)
18 {

19 struct reader_registry *

20

21 if (Iregistry)

22 return;

23 i = registry;

24 for (; i < registry + num_readers; i++) {
25 while (rcu_old_gp_ongoing(i->urcu_active_readers))
26 cpu_relax();

27

28 }

29 }

30

31 void synchronize_rcu(void)

32 {

33 internal_urcu_lock();

34 force_mb_all_threads();

35 switch_next_urcu_gparity();
36 wait_for_quiescent_state();
37 switch_next_urcu_gparity();
38 wait_for_quiescent_state();
39 force_mb_all_threads();

40 internal_urcu_unlock();

Fig. 10. RCU Update Side Using Signals

tatic inline int rcu_old_gp_ongoing(long *value)

Y, MONTH 2009 10

void call_rcu(struct rcu_head * head,
void (*func)(struct rcu_head * head))

1

2

3

4 head->func = func;
5 head->next = NULL;

6 enqueue(head, &rcu_data);
7

}
void call_rcu_cleanup(void)

struct rcu_head * next;
struct rcu_head * wait;

for (i}) {
wait = dequeue_all(head);
synchronize_rcu();
while (wait) {
next = wait->next;
wait->func(wait);

NERRPERRERERE
QOONOUIAWNER O ©®
—~

wait = next;
21 }
22 poll(NULL, O, 1);
23}
24 }

Fig. 11. Avoiding Update-Side Blocking by RCU

need not block the algorithm itself, just as delays builbint
an automatic garbage collector need not block a wait-free
algorithm.

One way of accomplishing this is shown in Figure 11, which
implements the asynchronous cadlu() primitive found in the
Linux kernel. Lines 4 and 5 initialize aRCUcallback, and
line 6 uses a wait-free enqueue algorithm (16) to enqueue the
callback on the rcudata list. This callrcu() function is then
clearly wait-free.

A separate thread would remove and invoke these callbacks
after a grace period has elapsed, using synchroriné) for

for each thread to exit any pre-existiRCUread-side critical ;g purpose, as shown on lines 9-24 of Figure 11, with each

section.

pass of the loop spanning lines 14-23 waiting for one grace

The synchronizercu() primitive waits for a full grace period period. Line 15 uses a (possibly blocking) dequeue algwrith
to elapse. Line 33 acquires a pthreaulitex that prevents to remove all elements from the radata list en masse, and
concurrent synchronizecu() invocations from interfering with |ine 16 waits for a grace period to elapse. Lines 17-21 invoke
each other and reader thread registration. Line 40 reléh&es)| the RCU callbacks from the list dequeued by line 15.
same pthreadnutex. Line 34 ensures that any thread that segfya)ly, line 22 blocks for a short period to allow additiéna
the start of the new grace period (line 35) will also see amycycallbacks to be enqueued. Note that the longer line 22
changes made by the caller prior to the synchroniz&) aits, the mor&RCUcallbacks will accumulate on the radata
invocation. Line 35 starts a new grace-period phase, afgt This is a classic memory/CPU trade-off, with longeritwa
line 36 waits for it to complete. Lines 37 and 38 similarl)ﬁuowing more memory to be occupied RCUcallbacks, but
start and end a second grace-period phase. Line 39 fora%%reasing the per-callback CPU overhead.

each thread to execute a memory barrier, ensuring that eac

thread will see any destructive actions subsequent to the

to synchronizercu() as happening after ariRCUread-side fu

critical section that started before the grace period began
Of course, as with the other twRCUimplementations, this

implementation’s synchronizecu() primitive is blocking. The

E)f course, the use of synchronizeu() causes calfcu_
anup() to be blocking. However, as long as the callback
nction func that was passed to callu() does nothing other
than free memory, as long as the synchronization mechanism
used to coordinat®RCUupdates is wait-free, and as long as
there is sufficient memory for allocations to succeed withou

next section shows a way to provide wait-freedomRGU blocking, RCUbased algorithms that use cattu() will them-

updates as well as tRCUreaders.

E. Wait-Free RCU Updates

Although some algorithms usBCUas a first-class tech-

selves be wait-free.

V. EXPERIMENTAL RESULTS

nigue, in most situationRCUis instead simply used as an

approximation to a garbage collector. In these situatigiven
sufficient memory, the delays built into synchronimeu()

This section presents benchmarks of eB&@lUmechanism
presented in this paper with respect to each other, compared

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 11

to mutexes, to reader-writer locks and to per-thread facks 9e+09 ' ' "0SBR ' '

. _ci ili i ; L Signal-based RCU - g

first dempnstra_t_es read §|de scalability, dlscusses_ trp_aom 8e+09 Genoralpurpose RCU —x-

of read-side critical section length on the respective itoagk 2 7e+09 - Per-thread mutex = .
o X .) g pthread mutex --= o

primitive behavior and finally presents update operatide ra & 6e+o0o pthread reader-writer lock ---o-- Mxxxx 1

impact on read-side performance. The goal of this sectitm is ¢ se+09 .

clearly demonstrate in which situati®CUoutperforms clas- 2 4es00 1

sic locking solutions to help identifying for which worklds. 5 3e+00 i

RCUcan bring performance improvements compared to classi& ..o]

. . B . B z

locks in eX|s.t|ng applications. 16409)l
The machines used to run the benchmarks are an 8-core Intel o e s

Core2 Xeon E5405 clocked at 2.0 GHz and a 64-core PowerPC 0 10 20 30 40 50 60 70

POWERS5+ clocked at 1.9 GHz. Each core of the PowerPC Number of cores

machine has 2 hardware threads. To eliminate thread'le\ffg‘l. 12. Read-Side Scalability of Various Synchronizafsimitives, 64-core

contention for processor resources, benchmarks are patbr POWERS+

with affinity to the 64 even-numbered CPUs of the 128 logical

CPUs presented by the system. 9e+06 ; T T
The mutex and reader-writer lock implementations used foé j:gg

comparison are the standard pthreads implementations frof g..os

the GNU C Library 2.7 for 64-bit Intel and GNU C Library 5e+06 »«

T T
pthread mutex —+—
pthread reader-writer lock --->---

2.5 for 64-bit PowerPC. 4e+06 ||
3e+06

STM (Software Transactional Memory) is not included in & ,c.06
these comparisons because it is already known to incur higgl 1e+06
overhead and to scale poorly (1HTM(Hardware Transac- %5 10 20 30 40 50 60 70
tional Memory) (18; 19; 20) is likely to be more scalable than Number of cores
STM However,HTMhardware is not available to us due to the . . .

Read-Side Scalability of Mutex and Reader-Writeck,c64-core
fact that it is expensive and not very common, preventing @gWERer

from including it in our performance results.

r of reads

T T S N R R

A. Scalability Therefore, Figure 14 presents the read-side critical @ecti

Figure 12 presents the read-side scalability comparison lefigth impact using logarithmic x and y axis. This benchmark
each RCU mechanism with standard locking primitives foris performed with 8 reader threads taking the read lock,
the PowerPC. The goal of this test is to determine howading the data structure, waiting for a variable delay and
each synchronization primitive performs in heavy read-sideleasing the lock, without any active updater. Interggyin
scenarios when the number of CPU increases. This is danethis 8-core machine, we notice that starting at about 1000
by executing from 1 to 64 reader threads for 10 secondwcles per critical section, the difference betweRGUand
each taking a read-lock, reading a data unit and releasing prer-thread locks becomes insignificant. At 20000 cycles per
lock in a tight loop. No updater thread is present in this.tegtritical section, the reader-writer locks are almost asdaghe
As a result, we observe that linear scalability is achievad fother solutions. Only pthread mutex performance always has
RCUand per-thread mutex approaches. This is expected, gigignificantly worse performance for all critical sectiondghs.
readers does not need to exchange cache-lines.Q®%BR To appropriately present the 64-core read-side criticed se
approach is the fastest, followed by the signal-baR&2l) tion length impact on the read-side speed, we must first
general-purposé€RCU and per-thread mutex, each adding @ntroduce the effects that alter the reader-writer lock emdex
constant per-CPU overhead. The Intel Xeon behaves sigilarl

However, Figure 12 does not show the scalability trend of

the pthread mutex and pthread reader-writer lock prinstive 1et09 e ' ' T " QSBR ——
This is the purpose of Figure 13, which presents scalalifity = 1e+08 F = = 2 Gena b Ry a3
those two primitives. As we can see, with more than 8 cores§ 1ewo7 | othread e ook e
overall performance actually decreases when the number of .06 [& @ * ™ ®-nu . pthread mutex o |
A %) R
core increases. 100000 | S]
5 o
B. Read-Sde Critical Section Length g 10000 e 1
. £ L 1
Due to the large performance difference betw&®Uand 2 °° S,
other approaches, we notice that linear-scaled graphsadre n 100 ¢ o
appropriate for the following comparisons. 10 : : : : : s
10 100 1000 10000 100000 1le+06 1e+07 1e+08
1The per-thread lock approach consists in using one mutex gmer Read-side C.S. length (in cycles)

thread. The updater threads must take all the mutexes, alwayseisame) N .
order, to exclude all readers. This approach ensures readée locality at Fig. 14. Impact of Read-Side Critical Section Length, 8-cbiel Xeon,
the expense of a slower write-side locking. Logarithmic Scale

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 12

1e+09

1e+08 T T T T T

T T T T
QSBR —+—
Signal-based RCU ------
General-purpose RCU -+
Per-thread mutex &
thread reader-writer lock ——=—-
pthread mutex --o--

1e+08 F 1e+07 E

le+07 ¢ 1e+06 4

T
!

1e+06 F—-—a m 8 8 8- g-g 100000

Updates per second

100000 10000 q

10000 |

Number of reads / second

1000 L L L L L
1 10 100 1000 10000 100000 1le+06

1000 “e. i Updates per grace period per core

100 : : : : : : Fig. 17. Impact of Grace-Period Batch-Size on Number of Up@xera-

0.1 1 10 100~ 1000 10000 100000 1e+06 tigns, 8-core Intel Xeon, Logarithmic Scale
Read-side C.S. length (in cycles)

Fig. 15. Impact of Read-Side Critical Section Length, 8 Reddeeads on le+07 T T T T T
POWERS5+, Logarithmic Scale

1e+06 E

le+10

T T T

T
””” QSBR ——
Signal-based RCU ------
General-purpose RCU -
Per-thread mutex &
hread reader-writer lock --=--
pthread mutex ---o-- N N N N N

10000
10 100 1000 10000 100000 1le+06
Updates per grace period per core

1e+09 ¢ - 100000 £ E

Updates per second

1le+08

1e+07 F
1e+06 F

100000 ¢ Fig. 18. Impact of Grace-Period Batch-Size on Number of Up@xiera-

10000 F o . "l tions, 64-core POWERS5+, Logarithmic Scale

Number of reads / second

1000 F el

100
o1 1 0 100 1000 10000 100000 1es0s C- RCU Grace-Period Batch Calibration

Read-side C.S. length (in cycles) After looking at read-side only performance, it is appro-
Fig. 16. Impact of Read-Side Critical Section Length, 64 Redthreads p_nate to S,ee how concgrrent updates influence the. read-
on POWERS+, Logarithmic Scale side behavior. To appropriately represent ReUupdate-side

performance impact, we must first calibrate the reclamation
batch size to ensure we amortize the grace-period overhead

behavior. First, the interprocessor cache-line exchaime t ©Ver multiple updates. Such calibration is presented ftelIn

affects the lock access time. Second, the number of cofdd POWERS+ in Figures 17 and 18, respectively for 8 cores
needing to access the lock also affects the number of lo@1d 64 cores. For update operation benchmark, we use half the
access per second. number of cores for readers and the other half for updaters.

Therefore, we first present, in Figure 15, the equivalep(;we calibrate with the signal-base@CUapproach, likely

POWERS5+ graph with only 8 cores used to specifically show provide the _highest grace-period _overhead due t(.) signal-
. . . handler execution. The ideal batch size for both architestu
the effect of architecture and cache-line access time &an

The cores are spaced by a striding of 8. Changing stride i 6:2a3 g).rii tL;1see?esl,f dd(i;?'rc?:\m:(iotc;etc);e 3::}28(32?;'2?:;?

L, 2 or 4 (not presented here for brevity) only very S“ghﬂ)é tch éiz;\; large enou l;MoI bela Si nific:a\;vt orgon Ofl: tldate

affects read speed for reader-writer lock and mutex. Cor a 9 9 9 P P
formed during the test because non-reclaimed batclees ar

close to each other share a common L2 and L3 cache %?{ ted for. This i hv the | t batch si
the POWERS5+, which causes reader-writer lock and mutre1>(<) accounted for. IS 1S why he fargest bafch sizes are

to be slightly faster at lower striding values. Given it ha'sg.rt]r? lgfcec:/reeg 'fégiyti??e§|'%gtlghb§ttgr-'st'?uyﬁ 1:132%\goth
no significant effect on the update rate at which the variOl\évs! o th fut th’ i Ir dat Iizntlr '3 hyn W verhead
locking primitives are equivalent, this factor can be left of . ue to the fact that per-updalte pointer exchange overhea
the rest of this study. increases exponentially with the number of threads whiée th

) grace-period overhead increases linearly. Thereforellema
The same yvorkload executed with 64 reader thr.eads dtch sizes are required to amortize the grace-period eadrh
presented in Figure 1.6' These threads_are concurrentlmgaa_ nd perform slightly better due to increased cache locality
the data structure with an added vane_lble_delay. We nOt'qgowever, given the performance difference is not very large
when comparing to the 8-core graph in Figure 15, that

need a critical section about 10 times larger (20000 instéad & use a 32768 batch size for both 8-core and 64-core tests.
2000 cycles) before the reader-writer lock performancehesa

the RCUor per-thread lock performances. Therefore, as vi¢ Update Overhead

increase the number of cores, reader-writer lock protectedOnce batch-size calibration is performed, we can proceed to
critical sections must be larger to behave similarlyRE@U update rate impact comparison. Figure 19 presents the impac
and per-thread locks. of update frequency on read-side performance for the variou

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 13

le+10 T T T T T T le+10 T T T T T
X % % % kX % kX % % % x
1e+09 KX KK K X K K X KX K % X £ % % g, 4 1e+09 q
XX X X X X X X X ox x %
" ¥R K R K K K K X K K K K K K X x x *% " o 8 0 080 @ g * j’*
) le+08 00 B0 000880008 e 3) 1e+08 - * 3
B “ Y ® -
& le+07 | 4 g le+07 | 4
© 0 0 g o 0 o © O o
= = oaon & " s ¥ n g%p9 © 0 0ogpocdm
1e+06 [] MLl " EEgyy . i 1e+06 F o maw s n -c-o © 0 o 0 0 0 0 g 000 a0 4
100000 L 1 1 1 1 1 ' 1 o 100000 L 1 1 1 1 1 J
1 10 100 1000 10000 100000 1e+06 1le+07 1 10 100 1000 10000 100000 1le+06
Updates/s Updates/s
QSBR + Per-thread mutex o QSBR + Per-thread mutex o
Signal-based RCU ~ x pthread reader-writer lock = Signal-based RCU x pthread reader-writer lock =
General-purpose RCU ~ * pthread mutex o General-purpose RCU ~ * pthread mutex o
Fig. 19. Update Overhead, 8-core Intel Xeon, Logarithmicl&ca Fig. 21. Update Overhead, 64-core POWERS5+, Logarithmic Scale
le+10 T T T T T T
le+10 T T T T T T T T
CO BN T TR <3
1e+09 i
e+09 E
" 1le+09 ¢ i?ﬁ?ﬁi???E???E?EEQ‘{EX*****H*** E % BB B B B o® B om B oF g oxpx X K X X oemmooomx
B °
g 3 g "
8 BB E BB BB EEEEFF K KKK KO R XK ['4
14 °6 1e+08 ¢ ° E
1e+08 | E
% %
1e+07 L L L L L L
le+07 . . : . : : : : 100 1000 10000 100000 1e+06 1le+07 le+08 le+09
1 10 100 1000 10000 100000 le+06 1le+07 1e+08 1e+09
Updates/s
Updates/s
Ideal QSBR + QSBR ©
.~ ldealQSBR +) QSBR o Ideal Signal-based RCU Signal-based RCU =
Ideal Signal-based RCU x Signal-based RCU = Ideal General-purpose RCU ~ * General-purpose RCU o
Ideal General-purpose RCU ~ * General-purpose RCU o

Fig. 22. Impact of Pointer Exchange on Update Overhead, 6d-co

Fig. 20. Impact of Pointer Exchange on Update Overhead, &ctel Xeon, POWERS+, Logarithmic Scale

Logarithmic Scale

update rates, even compared to mutexes. This is attributed
locking primitives. It is performed by running 4 reader angb the lower performance overhead for exchanging a pointer
4 updater threads and varying the delay between updates. enpared to the multiple atomic operations and memory
notice thatRCU approches outperforms the per-thread lockarriers implied by acquiring and releasing a mutex. Mutex-
approach especially in terms of maximum updates per secopgsed benchmark performance seems to drop starting at 30000
The former can reach 2 million updates per second while pgfpdates per second with 32 updater threads. A similar effect
thread locks can only perform 0.1 million updates per secong present with only 4 updater threads (graph not presented
Interestingly, on such workload with 4 tight loop readerSor brevity). Figure 19 seemed to show that update overhead
mutexes outperforms the reader-writer lock primitive ih aktayed constant even at higher update frequency for 4 update
aspects. Furthermore, reader-writer locks seems to shasea ahreads on the Xeon. Therefore, as the number of concurrent
of reader starvation with high updates per second rates. updaters increases, mutex behavior seems to depend on the

But while Figure 19 presents a fair comparison between thechitecture and on the specific GNU C Library version. Two
locking primitives, it presents a non-ideal scenario RCU approaches seems to be very affected by increasing the numbe
In our attempt to present a comparison where all lockingf updaters. The reader-writer lock, where updaters glearl
primitives perform equivalent work, this figure includesethseem to be starved by readers, has a maximum update rate
RCUpointer exchange overhead. To factor out this overheasf, 175 updates per second. Per-thread locks are limited to a
Figure 20 shows both idedRCU grace-period performancemaximum update rate of 10000 updates per second with 32
and the equivalent with added pointer exchange. This shovesder threads.
that it is the pointer exchange that becomes the updatefinally, Figure 22 presents, as previously done for Xeon,
rate bottleneck, not the grace period. Therefore, in anliddew grace-period detection (ide®Cl) compares toRCU
scenario where pointers updates would be local to eachdhregrace period with pointer exchange. Therefore, with appro-
RCUcould be expected to preserve its read-side scalabiljpyiately designed data structures, better update locatiyld
characteristics even under frequent updates. Such lodatep ideally lead to constant updater overhead as the update fre-
could be ensured by appropriately designed list or haste taguency increases.
data structures.
Figure 21 shows update overhead on a 64-core POWER5+, VI. CONCLUSIONS

with 32 reader and 32 updater threads. We can conclude thatVe have presented a set RCUimplementations covering
RCU QSBRnd general purpose approaches reach the highastvide spectrum of application architectur€3SBR shows

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 14

the best performance characteristics, but severely ainstr [4] A. John, “Dynamic vhodes — design and implementa-

the application architecture by requiring each readeratthre tion,” in USENIX Winter 1995. New Orleans, LA:

to periodically pass through a quiescent state. Signadas USENIX Association, January 1995, pp. 11-23.

RCU performs almost as well as do€3SBR but requires P. E. McKenney and J. D. Slingwine, “Read-copy update:

reserving a signal. Unlike the other two, general-purpR€d) Using execution history to solve concurrency problems,”

incurs significant read-side overhead. However, it minggiz in Parallel and Distributed Computing and Systems, Las

constraints on application architecture, requiring ohtteach Vegas, NV, October 1998, pp. 509-518.

thread invoke an initialization function before enteritgifirst [6] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,

RCUread-side critical section. “Performance of memory reclamation for lockless syn-
Benchmarks demonstrate read-side linear scalability ®f th chronization,” J. Parallel Distrib. Comput., vol. 67,

RCUand per-thread lock approaches. It also shows that the no. 12, pp. 1270-1285, 2007.

smallest read-side critical section duration for whichdexa [7] K. A. Fraser, “Practical lock-freedom,” Ph.D. disserta

writer locks, RCUand per-thread lock approaches are nearly tion, King’s College, University of Cambridge, 2003.

equivalent in terms of read-side performance impact growf8] D. Guniguntala, P. E. McKenney, J. Triplett, and

larger as the number of cores increases. These benchmsoks al J. Walpole, “The read-copy-update mechanism for sup-

show that, by performing memory reclamation in batelGU porting real-time applications on shared-memory multi-

approaches reach update rates much higher than reader-writ processor systems with LinuxJBM Systems Journal,

locks, per-thread locks and mutexes on similar workloads vol. 47, no. 2, pp. 221-236, May 2008.

where updates are performed on a shared data structuf®] P. E. McKenney, “Exploiting deferred destruction: An

Furthermore, given ideal data structures preserving @pdat analysis of read-copy-update techniques in operating

cache localityRCUapproaches are shown to have a constant system kernels,” Ph.D. dissertation, OGI School of Sci-

update overhead as update frequency increases. Therifere, ence and Engineering at Oregon Health and Sciences

upper-bound foRCUupdate overhead is demonstrated to be University, 2004.

far below lock-based overhead. Furthermore, it is stillgide [10] ——, “What is RCU? part 2: Usage,” January 2008,

to decreas®CUupdate-side overhead even more by designing available: http://lwn.net/Articles/263130/.

data structures providing good update cache-locality. [11] M. Desnoyers and M. R. Dagenais, “Synchronization for

fast and reentrant operating system kernel tracing,” To

[5]

ACKNOWLEDGEMENTS

We owe thanks to Maged Michael for many illuminatin

discussions, to Kathy Bennett for her support of this effturt

appear.

gIlZ] E. Polyakov, “The elliptics network,” April 2009, a\ai

able: http://www.ioremap.net/projects/elliptics.

Etienne Bergeron and Alexandre Desnoyers for reviewing tHit3] T- Jinmei and P. Vixie, “Implementation and evaluation
paper. of moderate parallelism in the BIND9 DNS server,” in
This material is based upon work supported by the National ~Proceedings of the annual conference on USENIX Annual
Science Foundation under Grant No. CNS-0719851. This lechnical Conference, Boston, MA, February 2006, pp.

work is funded by Google, Natural Sciences and Engineerin 115-128.

Research Council of Canada, Ericsson and Defence Reseiﬁzﬂ M. Herlihy, “Wait-free synchronization, ACM TOPLAS,
and Development Canada. vol. 13, no. 1, pp. 124-149, January 1991.

[15] P. E. McKenney, “Using a malicious user-level RCU to
LEGAL STATEMENT torture RCU-ba_\sed algorithms,” ilinux.conf.au 2009,
This work represents the views of the authors and does not necessarily represent the HObart’ Australla, January 20089. .
view of Ecole Polytechnique de Montreal, Harvard, IBM, or Portland Stateddsity. 6] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
Linux'is a registered trademark of Linus Torvalds. scalable synchronization on shared-memory multiproces-
sors,” Transactions of Computer Systems, vol. 9, no. 1,
pp. 21-65, February 1991.
C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee, “Software transactional
memory: Why is it only a research toyACM Queue,
September 2008.
A Scalable, Non-blocking Approach to Transactional
Memory, 2007.
Scalable and reliable communication for hardware trans-
actional memory, 2008.
D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early

Other company, product, and service names may be trademarks or service marks of
others.
[17]
REFERENCES
[1] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm,
“Tornado: Maximizing locality and concurrency in a
shared memory multiprocessor operating system,” [d8]
Proceedings of the 3@ Symposium on Operating System
Design and Implementation, New Orleans, LA, February [19]
1999, pp. 87-100.
[2] J. P. Hennessy, D. L. Osisek, and J. W. Seigh I, “Passij20]

serialization in a multitasking environment,” US Patent
and Trademark Office, Washington, DC, Tech. Rep. US
Patent 4,809,168 (lapsed), February 1989.

[3] V. Jacobson, “Avoid read-side locking via delayed ftee,

September 1993.

experience with a commericial hardware transactional
memory implementation,” inFourteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ' 09), Wash-
ington, DC, USA, March 2009, p. 12.

