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User-Level Implementations of Read-Copy Update
Mathieu Desnoyers, Paul E. McKenney, Alan Stern, Michel R. Dagenais and Jonathan Walpole

Abstract—Read-copy update (RCU) is a synchronization prim-
itive that is often used as a replacement for reader-writer
locking, due to the fact that it provides extremely lightweight
read-side primitives with sharply bounded execution times.RCU
updates are typically much heavier weight than areRCUreaders,
especially when used in conjunction with locking.

Although RCU is heavily used in a number of kernel-level
environments, these implementations make use of interrupt-
and preemption-disabling facilities that are often unavailable to
user-level applications. The fewRCU implementations that are
available to user applications either provide inefficient read-side
primitives or restrict application architecture.

This paper describes several classes of efficientRCU imple-
mentations that are based on primitives commonly available to
user-level applications.

Finally, performance comparison of theseRCUprimitives with
each other and to standard locking leads to discuss appropriate
locking for various workloads. This opens the door to use ofRCU
outside of kernels.

Index Terms—D.4.1.f Synchronization < D.4.1 Process Man-
agement < D.4 Operating Systems < D Software/Software
Engineering, D.4.1.g Threads< D.4.1 Process Management< D.4
Operating Systems< D Software/Software Engineering, D.4.1.a
Concurrency < D.4.1 Process Management< D.4 Operating
Systems< D Software/Software Engineering

I. I NTRODUCTION

READ-COPY UPDATE (RCU) is a synchronization mech-
anism that was added to the Linux kernel in October

of 2002.RCUachieves scalability improvements by allowing
reads to occur concurrently with updates. In contrast with
conventional locking primitives that ensure mutual exclusion
among concurrent threads regardless of whether they be
readers or updaters, or with reader-writer locks that allow
concurrent reads but not in the presence of updates,RCU
supports concurrency between a single updater and multiple
readers.RCUensures that reads are coherent by maintaining
multiple versions of objects and ensuring that they are not
freed up until all pre-existing read-side critical sections com-
plete.RCUdefines and uses efficient and scalable mechanisms
for publishing and reading new versions of an object, and also
for deferring reclamation of old versions. These mechanisms
distribute the work among read and update paths in such a
way as to make read paths extremely fast. In some cases, as
will be presented in Section IV-B,RCU’s read-side primitives
have zero overhead.
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Although mechanisms similar toRCUhave been used in a
number of operating-system kernels (1; 2; 3; 4; 5), and, as
shown in Figure 1, is heavily used in the Linux kernel, we
are not aware of significant application usage. This lack of
application-level use is in part due to the fact that prior user-
level RCUimplementations imposed global constraints on the
application’s structure and operation (6), and in some cases
heavy read-side overhead as well (7). The popularity ofRCU
in operating-system kernels has been in part due to the fact
that these can accommodate the required global constraints
imposed by earlierRCU implementations. Kernels therefore
permits use of the high-performance quiescent-state based
reclamation (QSBR) class of RCU implementations. In fact,
in server-class (CONFIGPREEMPT=n) Linux-kernel builds,
RCUincurs zero read-side overhead (8).
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Fig. 1. Linux-Kernel Usage of RCU

Whereas we cannot yet put forward a single user-levelRCU
implementation that is ideal for all user-level environments,
the three classes ofRCU implementations described in this
paper should suffice for most applications.

First, Section II provides a brief overview ofRCU, in-
cluding RCUsemantics. Then, Section III describes user-level
scenarios that could benefit fromRCU. This is followed by
the presentation of three classes ofRCU implementation in
Section IV. Finally, Section V presents experimental results,
comparingRCUsolutions to each other and to standard locks.
This leads to recommendations on locking use for various
workloads presented in Section VI.

II. B RIEF OVERVIEW OF RCU

This section introduces a conceptual view covering most
RCU-based algorithms in Section II-A to familiarise the reader
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Fig. 2. Schematic of RCU Grace Period and Read-Side Critical Sections

with RCUconcepts and vocabulary. It then presents an informal
RCUdesiderata in Section II-B, which details the goals pursued
in this work. Then, Section II-C shows howRCUis used to
delete an element from a linked list in the face of concurrent
readers. Finally, Section II-D gives an overview ofRCU
semantics, presenting the synchronization guarantees provided
by RCU.

A. Conceptual View of RCU Algorithms

A schematic for the high-level structure of anRCU-based
algorithm is shown in Figure 2, which can be thought of as
a pictorial view of (1) presented in Section II-D1. The grace
period concept, explained thoroughly in section II-D1, canbe
defined informally for the needs of this section as a period of
time such that allRCUread-side critical sections in existence
at the beginning of a given grace period have completed before
its end.

Here, each box labeled “Reads” is anRCUread-side crit-
ical section that begins with rcuread lock() and ends with
rcu read unlock(). Each row ofRCUread-side critical sections
denotes a separate thread, for a total of four read-side threads.
The two boxes at the bottom left and right of the figure denote
a fifth thread, this one performing anRCUupdate.

This RCUupdate is split into two phases, a removal phase
denoted by the lower left-hand box and a reclamation phase
denoted by the lower right-hand box. These two phases must
be separated by a grace period, which is determined by
the duration of the synchronizercu() execution. During the
removal phase, theRCUupdate removes elements from the
data structure (possibly inserting some as well) by issuingan
rcu assignpointer() or equivalent pointer-replacement prim-
itive. These removed data elements will not be accessible
to RCUread-side critical sections starting after the removal
phase ends, but might still be accessed byRCU read-side
critical sections initiated during the removal phase. However,
by the end of theRCUgrace period, all of theRCUread-side
critical sections that might be accessing the newly removed
data elements are guaranteed to have completed, courtesy of
the definition of “grace period”. Therefore, the reclamation
phase beginning after the grace period ends can safely free
the data elements removed previously.

B. User-Space RCU Desiderata

Extensive use ofRCUapplications has lead to the following
user-spaceRCUdesiderata:

1) Read-side primitives (such as rcuread lock() and rcu
read unlock()) boundingRCUread-side critical sections
and grace-period primitives (such as synchronizercu()
and call rcu()) must have the property that anyRCU
read-side critical section in existence at the start of a
grace period completes by the end of the grace period.

2) RCUread-side primitives should avoid expensive opera-
tions such as cache misses, atomic instructions, memory
barriers, and conditional branches.

3) RCU read-side primitives should haveO(1) computa-
tional complexity to enable real-time use. This property
guarantees freedom from deadlock.

4) RCUread-side primitives should be usable in all con-
texts, including nested within otherRCUread-side criti-
cal sections. Another important special context is library
functions having incomplete knowledge of the user
application.

5) RCUread-side primitives should be unconditional, thus
eliminating the failure checking that would otherwise
complicate testing and validation. This property has the
nice side-effect of avoiding livelocks.

6) RCU read-side should not cause write-side starvation:
grace periods should always complete, even given a
steady flow of time-bounded read-side critical sections.

7) Any operation other than a quiescent state (and thus a
grace period) should be permitted within anRCUread-
side critical section. In particular, non-idempotent oper-
ations such as I/O and lock acquisition/release should
be permitted.

8) It is permissible to mutate anRCU-protected data struc-
ture while executing within anRCU read-side critical
section. Of course, any grace periods following this
mutation must occur after theRCU read-side critical
section completes.

9) RCUprimitives should be independent of memory al-
locator design and implementation, so thatRCU data
structures may be protected regardless of how their data
elements are allocated and freed.

10) RCUgrace periods should not be blocked by threads that
halt outside ofRCUread-side critical sections. (But note
that most quiescent-state-based implementations violate
this desideratum.)

The RCU implementations described in Section IV are
designed to meet the above list of desiderata.

C. RCU Deletion From a Linked List

RCU-protected data structures in the Linux kernel include
linked lists, hash tables, radix trees, and a number of custom-
built data structures. Figure 3 shows howRCUmay be used to
delete an element from a linked list that is concurrently being
traversed byRCU readers, as long as each reader conducts
its traversal within the confines of a singleRCU read-side
critical section. The first column of the figure presents the
data structure view of the updater thread. The second column
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presents the data structure view of a reader thread starting
before the grace period begins. The third column presents a
reader thread starting after the beginning of the grace period.

The first row of the figure shows a list with elements A, B,
and C, to each of which everyRCUreaders initiated before
the beginning of the grace period might both acquire and hold
references.

The list del rcu() primitive unlinks element B from the list,
but leaves the link from B to C intact, as shown on the second
row of the figure. This permits anyRCU readers currently
referencing B to advance to C, as shown on the second and
third rows of the figure. The transition between the second
and third rows shows the reader thread data structure view
gradually seeing element B disappear. During this transition,
some readers will see element B and others will not. Although
there might beRCUreaders still referencing Element B, new
RCUreaders can no longer acquire a reference to it.

The synchronizercu() primitive waits for one grace period,
after which all pre-existingRCUread-side critical sections will
have completed, resulting in the state shown in the fourth row
of the figure. This state is the same as the second and third
rows, except for the fact that there can no longer be anyRCU
readers holding references to Element B. This change of state
of B from globally visible to private is depicted by using a
white background for the B box. At this point, it is safe to
invoke free(), reclaiming the memory consumed by element B,
as shown on the last row of the figure.

Of course, the deletion process must be protected by some
mutual-exclusion mechanism, most commonly, by locking.

Although RCUis used in a wide variety of ways, this list-
deletion process is the most common usage.

D. Overview of RCU Semantics

RCUsemantics comprise the grace-period guarantee covered
in Section II-D1 and the publication guarantee discussed in
Section II-D2. Synchronization guarantees among concurrent
modifications of theRCU-protected data structure must be
provided by some other mechanism. In the Linux kernel, this

other mechanism is typically locking, but any other suitable
mechanism may be used, including atomic operations, non-
blocking synchronization, transactional memory, or a single
designated updater thread.

1) Grace-Period Guarantee: RCU operates by defining
RCU read-side critical sections, delimited by rcuread lock()
and rcu read unlock(), and by defininggrace periods, which
are periods of time such that allRCUread-side critical sections
in existence at the beginning of a given grace period have com-
pleted before its end. TheRCUprimitive synchronizercu()
starts a grace period and then waits for it to complete. Most
RCUimplementations allowRCUread-side critical sections to
be nested.

Somewhat more formally, suppose we have a group of C-
language statementsSi within anRCUread-side critical section
as follows:

rcu read lock(); S0; S1; S2; ...; rcu read unlock();

Suppose further that we have a group of C-language mutation
statementsMi and a group of C-language destruction state-
mentsDi separated by anRCUgrace period:

M0; M1; M2; ...; synchronizercu(); D0; D1; D2; ...;

Then the following holds, where “→” indicates that the
statement on the left executes prior to that on the right, and
where “=⇒” denotes logical implication:

∃Sa,Mb(Sa → Mb) =⇒ ∀Si,Dj(Si → Dj) (1)

In other words, if any statement in a givenRCU read-side
critical section executes prior to any statement precedinga
given grace period, then all statements in thatRCUread-side
critical section must execute prior to any statement following
that same grace period.

This guarantee permitsRCU-based algorithms to trivially
avoid a number of difficult race conditions that can otherwise
result in poor performance, limited scalability, and greatcom-
plexity. However this guarantee is insufficient, as it does not
show that readers can operate consistently while an update is
in progress. This case is covered by the guarantee presented
in the next section.

2) Publication Guarantee: It is important to note that the
statementsSa andMb may execute concurrently, even in the
case whereSa is referencing the same data element thatMb is
concurrently modifying. The publication guarantee associated
with the rcu assignpointer() and rcudereference() primitives
allow this concurrency to be handled both correctly and easily:
any dereference of a pointer returned by rcudereference() is
guaranteed to see any changes prior to the corresponding rcu
assignpointer(), including any changes prior to any earlier
rcu assignpointer() involving that same pointer.

Somewhat more formally, suppose that the rcuassign
pointer() is used as follows:

I0; I1; I2; ...; rcu assignpointer(g,p);

where eachIi is a C-language statement that initializes a field
in the structure referenced by the local pointer p, and where
the global pointer g is visible to reading threads.
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Then the body of a canonicalRCUread-side critical section
would appear as follows:

q = rcu dereference(g);R0; R1; R2; ...;

where this RCU read-side critical section is enclosed in
rcu read lock() and rcuread unlock(), q is a local pointer,
g is the same global pointer updated by the earlier rcu
assignpointer() (and possibly updated again by some later
invocations of rcuassignpointer()), and eachRi dereferences
q to access one of the fields initialized by one of the statements
Ii.

Then we have the following, whereA is the rcu assign
pointer() andD is the rcu dereference():

A → D =⇒ ∀Ii, Rj(Ii → Rj) (2)

In other words, if a given rcudereference() statement ac-
cesses the value stored by a given rcuassignpointer(), then
all statements dereferencing the pointer returned by that
rcu dereference() must see the effects of any initialization
statements preceding the rcuassignpointer().

This guarantee allows new data to be initialized and added
to anRCU-protected data structure in face of concurrentRCU
readers.

Given both the grace-period and publication guarantees,
these five primitives enable a wide variety of algorithms and
data structures providing extremely low read-side overheads
for read-mostly data structures (8; 6; 9; 10). Again, note that
concurrent updates must be handled by some synchronization
mechanism, be it locking, atomic operations, non-blocking
synchronization, transactional memory, or a single updater
thread.

With this background onRCU, we are ready to consider how
it might be used in user-level applications.

III. U SER-SPACE RCU USAGE SCENARIOS

The past year has seen increased interest in applyingRCU
to user-space applications.

User-levelRCUwas needed for a user-level infrastructure
that provides low-overhead tracing for user-mode applications.
RCU is used for tracer control data synchronization in the
LTTng tracer implementation (11), which is being ported
to a user-space library. This usage scenario poses important
constraints on theRCU requirements. This tracing library
cannot be too intrusive in terms of program modification,
which makes theQSBRapproach presented in Section IV-B
inappropriate for such usage scenario. It also needs to support
extensible instrumentation of user-selected execution sites,
including signal handlers, which therefore requires supporting
nestedRCUcritical sections andRCUreader critical sections in
signal handlers. This usage scenario is also very performance
demanding on workloads involving instrumentation of frequent
execution sites. Therefore, having a low-overhead and scalable
read-side is very important. Therefore, an ideal locking prim-
itive for a tracing library would require no knowledge of the
application and could be used to protect data structures used
in a library.

User-level RCU has also been proposed for an elliptics-
network distributed cloud-based storage project (12).BIND,
a major domain name server at the root of Internet domain
name resolution, is facing multi-threading scalability issues
which are currently addressed with reader-writer locks (13).
Given the domain names are read often but rarely updated,
these could benefit from major performance improvement by
using user-levelRCU. Others have mentioned possibilities in
financial applications. One can also argue thatRCUhas seen
long use at user level in the guise of user-mode Linux.

In general, the area of applicability ofRCUto user-mode
applications appears similar to that in the Linux kernel: to
read-mostly data structures, especially in cases where stale
data can be accommodated.

IV. CLASSES OFRCU IMPLEMENTATIONS

This section describes several classes ofRCUimplementa-
tions, with Sections IV-B, IV-C, and IV-D presenting user-
space RCU implementations that are optimized for differ-
ent usage by user-space applications, but first Section IV-A
describes some primitives which might be unfamiliar. The
implementation presented in Section IV-B offers the best
possible read-side performance, but requires that each of the
application’s threads periodically pass through a quiescent
state, thus strongly constraining the application’s design. The
implementation presented in Section IV-C places almost no
constraints on the application’s design, thus being appropriate
for use within a general-purpose library, but having higher
read-side overhead. Section IV-D presents an implementation
having low read-side overhead, and requiring only that the
application give up one signal toRCU processing. Finally,
Section IV-E demonstrates how to create wait-freeRCUupdate
primitives.

A. Notation

The examples in this section use a number of primitives that
may be unfamiliar, and are thus listed in this section.

Per-thread variables are defined via DEFINEPER
THREAD(). A thread may access its own instance of a
per-thread variable using get thread var(), or some other
thread’s instance via perthread(). The foreach thread() prim-
itive sequences through all threads, one at a time.

The pthreadmutex is a type defined by the pthread library
for mutual exclusion variables. The mutexlock() primitive
acquires a pthreadmutex instance, and mutexunlock() re-
leases it. The mb keyword stands for “memory barrier”.
The smpmb() primitive emits a full memory barrier, for
example, the sync instruction on the PowerPC architecture.
The smpwmb() and smprmb() primitives are, respectively,
store and load memory barriers, corresponding, for example,
to the sfence and lfence instructions on the x86 architecture.
The ACCESSONCE() primitive prohibits any compiler op-
timization that might otherwise turn a single fetch or store
into multiple fetches, as might happen under heavy register
pressure. The barrier() primitive prohibits any compiler code-
motion optimization that might otherwise move fetches or
stores across the barrier() primitive.
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1 long rcu_gp_ctr = 0;
2 DEFINE_PER_THREAD(long, rcu_reader_qs_gp);
3
4 static inline void rcu_read_lock(void)
5 {
6 }
7
8 static inline void rcu_read_unlock(void)
9 {

10 }
11
12 static inline void rcu_quiescent_state(void)
13 {
14 smp_mb();
15 __get_thread_var(rcu_reader_qs_gp) =
16 ACCESS_ONCE(rcu_gp_ctr) + 1;
17 smp_mb();
18 }
19
20 static inline void rcu_thread_offline(void)
21 {
22 smp_mb();
23 __get_thread_var(rcu_reader_qs_gp) =
24 ACCESS_ONCE(rcu_gp_ctr);
25 }
26
27 static inline void rcu_thread_online(void)
28 {
29 __get_thread_var(rcu_reader_qs_gp) =
30 ACCESS_ONCE(rcu_gp_ctr) + 1;
31 smp_mb();
32 }

Fig. 4. RCU Read Side Using Quiescent States

B. Quiescent-State-Based Reclamation RCU

The QSBR RCUimplementation provides near zero-
overhead read-side, but requires to modify the application, as
this section explains.

Figure 4 shows the read-side primitives used to construct
a user-level quiescent-state-based reclamation (QSBR) imple-
mentation of RCU based on quiescent states. As can be
seen from lines 4–10 in the figure, the rcuread lock() and
rcu read unlock() primitives do nothing, and can in fact be
expected to be inlined and optimized away, as they are in
server builds of the Linux kernel. This is due to the fact that
quiescent-state-basedRCU implementationsapproximate the
extents ofRCUread-side critical sections using the aforemen-
tioned quiescent states, which contain calls to rcuquiescent
state(), shown from lines 12–18 in the figure. Threads entering
extended quiescent states (for example, when blocking) may
instead use the threadoffline() and threadonline() APIs to
mark the beginning and the end, respectively, of such an
extended quiescent state. As such, threadonline() is analogous
to rcu read lock() and threadoffline() is analogous to rcu
read unlock(). These two functions are shown on lines 20–32
in the figure. In either case, it is invalid for a quiescent state
to appear within anRCUread-side critical section.

In rcu quiescentstate(), line 14 executes a memory barrier
to prevent any code prior to the quiescent state from being
reordered into the quiescent state. Lines 15–16 pick up a
copy of the global rcugp ctr (RCU grace-period counter),
using ACCESSONCE() to ensure that the compiler does
not employ any optimizations that would result in rcugp ctr
being fetched more than once, and then adds one to the value
fetched and stores it into the per-thread rcureaderqs gp
variable, so that any concurrent instance of synchronizercu()

1 static inline int rcu_gp_ongoing(int thread)
2 {
3 return per_thread(rcu_reader_qs_gp, thread) & 1;
4 }
5
6 void synchronize_rcu(void)
7 {
8 int t;
9

10 smp_mb();
11 mutex_lock(&rcu_gp_lock);
12 rcu_gp_ctr += 2;
13 for_each_thread(t) {
14 while (rcu_gp_ongoing(t) &&
15 ((per_thread(rcu_reader_qs_gp, t) -
16 rcu_gp_ctr) < 0)) {
17 poll(NULL, 0, 10);
18 barrier();
19 }
20 }
21 mutex_unlock(&rcu_gp_lock);
22 smp_mb();
23 }

Fig. 5. RCU Update Side Using Quiescent States

will see an odd-numbered value, thus becoming aware that
a new RCU read-side critical section has started. Instances
of synchronizercu() that are waiting on olderRCUread-side
critical sections will know to ignore this new one. Finally,
line 17 executes a memory barrier to ensure that the update to
rcu readerqs gp is seen by all threads to happen before any
subsequentRCUread-side critical sections.

Some applications might useRCUonly occasionally, but use
it very heavily when they do use it. Such applications might
choose to use rcuthread online() when starting to useRCU
and rcu thread offline() when no longer usingRCU. The time
between a call to rcuthread offline() and a subsequent call
to rcu thread online() is an extended quiescent state, so that
RCUwill not expect explicit quiescent states to be registered
during this time.

The rcu thread offline() function simply sets the per-thread
rcu readerqs gp variable to the current value of rcugp
ctr, which has an even-numbered value. Any instance of
synchronizercu() will thus know to ignore this thread. A
memory barrier is needed at the beginning of the function
to ensure allRCUread side-effects are globally visible before
making the thread appear offline. No memory barrier is needed
in the innermost part of rcuthread offline() because it is
invalid to performRCUaccesses on this side of the function.
There is therefore no need to prevent reordering.

The rcu thread online() function is the counterpart of rcu
thread offline(). It marks the end of the extended quiescent
state. It is similar to rcuquiescentstate(), except that the only
memory barrier required is at the end of the function.

Figure 5 shows the implementation of synchronizercu().
It implicitly refers to the variables declared in Lines 1–2
of Figure 4. Lines 1–4 show the rcugp ongoing() helper
function, which returns true if the specified thread’s rcu
readerqs gp variable has an odd-numbered value. Lines 6–22
show the implementation of synchronizercu() itself. Line 10
is a memory barrier that ensures that the caller’s mutation
of the RCU-protected data structure is seen by all CPUs to
happen before the grace period identified by this invoca-
tion of synchronizercu(). Line 11 acquires a pthreadmutex
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named rcugp lock in order to serialize concurrent calls to
synchronizercu(), and line 21 releases it. Line 12 adds the
value “2” to the global variable rcugp ctr to indicate the
beginning of a new grace period. Line 13 sequences through
all threads, and lines 14–16 check to see if the current thread
is still in an RCUread-side critical section that began before
the counter was incremented back on line 12: if so, we must
wait for it on line 17. Line 18 ensures that the compiler
refetches the rcureaderqs gp variable. Line 22 executes one
last memory barrier to ensure that all other CPUs have fully
completed theirRCU read-side critical sections before the
caller of synchronizercu() performs any destructive actions
(such as freeing up memory).

This implementation has low-cost read-side primitives, as
can be seen in Figure 4. Read-side overhead depends on how
often rcu quiescentstate() is called. These read-side primi-
tives qualify as wait-free under the most severe conceivable
definition (14). The synchronizercu() overhead ranges from
about 600 nanoseconds on a single-CPU Power5 system up to
more than 100 microseconds on a 64-CPU system with one
thread per CPU.

Because it waits for readers to complete, synchronizercu()
does not qualify as non-blocking. Section IV-E describes
how RCU updates can support wait-free algorithms in the
same sense as wait-free algorithms are supported by garbage
collectors.

However, this implementation requires that each thread
either invoke rcuquiescentstate() periodically or invoke rcu
thread offline() for extended quiescent states. The need to
invoke these functions periodically can make this implemen-
tation difficult to use in some situations, such as for certain
types of library functions.

In addition, this implementation does not permit concurrent
calls to synchronizercu() to share overlapping grace periods.
That said, one could easily imagine a production-qualityRCU
implementation based on this version ofRCU.

Finally, on systems where the rcugp ctr is implemented
using 32-bit counters, this algorithm can fail if a reader is
preempted in line 3 of rcuread lock() in Figure 4 for enough
time to allow the rcugp ctr to advance through more than
half (but not all) of its possible values. Although one solution
is to avoid 32-bit systems, 32-bit systems can be handled by
adapting rcuread lock() and rcuread unlock() from Figure 6
for use in rcuquiescentstate() and rcuoffline thread(), re-
spectively. This would of course also require adopting the
synchronizercu() implementation from Figure 7.

Another point worth discussing is that if read-side critical
sections are expected to execute in a signal handler, the rcu
quiescentstate() primitive must run with signals disabled, and
signals must be kept disabled while threads are kept offline.
Effectively, if a signal handler nests over rcuquiescentstate()
between the memory barriers, the read-side could be inter-
leaved with the rcureaderqs gp update and therefore spawn
across two grace periods, which could cause synchronizercu()
to return before the quiescent state is reached and lead to data
corruption.

The next section discusses anRCU implementation that
is safe for use in libraries, where the library code cannot

1 #define RCU_GP_CTR_BOTTOM_BIT 0x80000000
2 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT -1)
3 long rcu_gp_ctr = 1;
4 DEFINE_PER_THREAD(long, rcu_reader_gp);
5
6 static inline void rcu_read_lock(void)
7 {
8 long tmp;
9 long * rrgp;

10
11 rrgp = &__get_thread_var(rcu_reader_gp);
12 tmp = * rrgp;
13 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0) {
14 * rrgp = ACCESS_ONCE(rcu_gp_ctr);
15 smp_mb();
16 } else {
17 * rrgp = tmp + 1;
18 }
19 }
20
21 static inline void rcu_read_unlock(void)
22 {
23 long tmp;
24
25 smp_mb();
26 __get_thread_var(rcu_reader_gp)--;
27 }

Fig. 6. RCU Read Side Using Memory Barriers

guarantee that all threads of a yet-as-unwritten application will
traverse quiescent states in a timely fashion.

C. General-Purpose RCU

The general-purposeRCUimplementation can in theory be
used in any software environment, including even in library
functions that are not aware of the design of the enclosing
application. However, the price paid for this generality is
relatively high read-side overhead, though this overhead is still
significantly less than a single compare-and-swap operation on
most hardware.

A global variable rcugp ctr is initialized to 1 and a per-
thread variable rcureadergp is initialized to zero. The low-
order bits of rcureadergp is a count of the rcuread lock()
nesting depth, while the upper bit indicates the grace-period
phase at the time of the invocation of the outermost rcuread
lock() (15). The upper bit of global variable rcugp ctr is the
current grace-period phase, while the low-order field is setto
the value 1 for reasons that will become apparent shortly.

The read-side primitives are shown in Figure 6. Lines 1–4
are declarations, lines 6–19 are rcuread lock(), and lines 21–
27 are rcuread unlock().

In rcu read lock(), line 11 obtains a reference to the current
thread’s instance of rcureadergp, and line 12 fetches the
contents into the local variable tmp. Line 13 then checks
to see if this is the outermost rcuread lock(), and, if so,
line 14 copies the current value of the global rcugp ctr to
this thread’s rcureadergp variable, thereby snapshotting the
current grace-period phase and setting the nesting count to1 in
a single operation. Otherwise, line 17 increments the nesting
count in this thread’s rcureadergp variable.

Line 26 decrements the thread’s rcureadergp, which has
the effect of decrementing the nesting count.

For outermost read-side rcuread lock(), the memory bar-
rier on line 15 ensures that the rcureadergp value is globally
observable before any of the outermost read-side critical



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 7

1 static inline int rcu_old_gp_ongoing(int t)
2 {
3 int v = ACCESS_ONCE(per_thread(rcu_reader_gp, t));
4
5 return (v & RCU_GP_CTR_NEST_MASK) &&
6 ((v ˆ rcu_gp_ctr) & ˜RCU_GP_CTR_NEST_MASK);
7 }
8
9 static void flip_counter_and_wait(void)

10 {
11 int t;
12
13 rcu_gp_ctr ˆ= RCU_GP_CTR_BOTTOM_BIT;
14 for_each_thread(t) {
15 while (rcu_old_gp_ongoing(t)) {
16 poll(NULL, 0, 10);
17 barrier();
18 }
19 }
20 }
21
22 void synchronize_rcu(void)
23 {
24 smp_mb();
25 mutex_lock(&rcu_gp_lock);
26 flip_counter_and_wait();
27 flip_counter_and_wait();
28 mutex_unlock(&rcu_gp_lock);
29 smp_mb();
30 }

Fig. 7. RCU Update Side Using Memory Barriers

section memory accesses. It ensures that neither the compiler
nor the CPU will reorder memory accesses across this barrier
by adding a compiler barrier and issuing a memory barrier
instruction. Only the outermost rcuread lock() needs to have
such memory barrier because only this outermost lock can
change the reader’s current grace period.

In rcu read unlock(), line 25 executes a memory barrier to
ensure that all globally observable effects of theRCUread-
side critical section reach memory before rcureadergp is
decremented. The memory barrier on line 25 is needed only
for the outermost rcuread unlock(), but given the outermost
and innermost nesting level behave in the exact same way,
a branch in the rcuread unlock() code is unneeded, and
given the common case is to perform single-level nesting, the
memory barrier is executed unconditionally for innermost and
outermost nesting levels.

Section IV-D shows one way of getting rid of both memory
barriers; however, even with the memory barriers, both rcu
read lock() and rcuread unlock() are wait-free.

The effect of this implementation of rcuread lock() and
rcu read unlock() is that a given thread may be ignored by
the current grace-period phase in either of the following cases:

1) The lower-order bits of the thread’s rcureadergp vari-
able are all zero, in which case the thread is not currently
in an RCUread-side critical section.

2) The upper bit of the thread’s rcureadergp variable
matches that of the global rcugp ctr, in which case
this thread’sRCUread-side critical section started after
the beginning of the current grace-period phase.

These checks are implemented by the function rcuold gp
ongoing(), which is shown on lines 1–7 of Figure 7. This figure
implicitly refers to the declarations and variables in Lines 1–4
of Figure 6. Given a thread t, line 3 fetches t’s rcureadergp
variable, with the ACCESSONCE() primitive ensuring the

variable is read with a single memory access. This prevents the
compiler from refetching the variable or fetching it in pieces.
Line 5 then checks to see if the low-order field is non-zero,
and line 6 checks to see if the upper bit differs from that of
the rcu gp ctr global variable. Only if both these conditions
hold does rcuold gp ongoing() report that the current grace-
period phase must wait on this thread.

Lines 9–20 of Figure 7 show flipcounter and wait(),
which initiates a grace-period phase and waits for it to
elapse. Line 13 complements the upper bit of global variable
rcu gp ctr, which initiates a new grace-period phase. Line 14
cycles through all threads. The “while” loop at line 15 repeat-
edly executes lines 16–17 until rcuold gp ongoing() reports
that the thread no longer resides in anRCUread-side critical
section that affects the current grace-period phase. Line 16,
which is optional, blocks for a short period of time, and
line 17 ensures that the compiler refetches variables when
executing rcuold gp ongoing().

Lines 22–30 of Figure 7 shows synchronizercu(), which
waits for a full two-phase grace period to elapse. Line 24
executes a memory barrier to ensure that any prior data-
structure modification is seen by all threads to precede the
grace period. Line 25 acquires rcugp lock to serialize any
concurrent invocations of synchronizercu(). Lines 26–27 wait
for two grace-period phases, line 28 releases the lock, and
line 29 executes a memory barrier to ensure that all threads see
the grace period happening before any subsequent destructive
operations (such as free()).

Memory ordering between the rcugp ctl complement and
testing the reader’s current grace period with rcuold gp
ongoing() is not strictly needed. The only requirement is that
each and every reader thread that was executing in a read-
side critical section before memory barrier on line 24 has
finished its critical section after the memory barrier on line 29.
This two-phase grace period scheme is used to ensure updater
progress through a grace period even if a steady flow of readers
comes. The only requirement is that, when the updater busy-
loops waiting for readers, it eventually reaches a point where
all new readers are in the new grace period parity.

Grace period identification, by either a bit (in the two-
phase scheme) or by a counter, ensures that readers starting
during the grace period will not prevent the grace period from
completing. In fact, if a simplistic scheme where the updater
waits for all readers to complete would be used, the grace
period would be considered as complete when the updater
reaches a point where no reader is active in the system.
However, this would allow new readers starting after the
beginning of the grace period to impede reaching quiescent
state. This would prevent grace-period progress in the presence
of reader threads releasing the read-side critical sectionfor
very short periods. Faster cached local data access would
therefore provide an unfair advantage to the reader over the
updater.

Now that the grace period identification question is settled,
this raises the question “why isn’t a single grace-period phase
sufficient?” To see why, consider the following sequence of
events which involves one read-side critical section and two
consecutive grace periods:
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1) Thread A invokes rcuread lock(), executing lines 11–
13 of Figure 6, and finding that this instance of rcu
read lock() is not nested, fetching the value of rcugp
ctr on line 14, but not yet storing it.

2) Thread B invokes synchronizercu(), executing lines 24
and 25 of Figure 7, then invoking flipcounter and
wait() on line 26, where it complements the grace-period
phase bit on line 13, so that the new value of this bit is
now 1.

3) Because no thread is in anRCUread-side critical sec-
tion (recall that thread A has not yet executed the
store operation on line 14), Thread B proceeds through
lines 14–19 of Figure 7, returns to synchronizercu(),
executing lines 28–30 (recall that line 27 is omitted in
this scenario), and returning to the caller.

4) Thread A now performs the store in line 14 of Figure 6.
Recall that it is using the old value of rcugp ctr where
the value of the grace-period phase bit is 0.

5) Thread A then executes the memory barrier on line 15,
and returns to the caller, which proceeds in to theRCU
read-side critical section.

6) Thread B invokes synchronizercu() once more, again
complementing the grace-period phase bit on line 13 of
Figure 7, so that the value is again zero.

7) When Thread B examines Thread A’s rcureadergp
variable on line 6 of Figure 7, it finds that the grace-
period phase bit matches that of the global variable
rcu gp ctr. Thread A is therefore ignored, and Thread B
therefore exits from synchronizercu().

8) But Thread A is still in itsRCUread-side critical section
in violation of RCUsemantics.

Invoking flip counter and wait() twice avoids this problem
by making sure the grace period waits for reader critical
sections for each of the possible two phases.

A single-phase approach is possible if the current grace
period is identified by a free-running counter, as shown in
Section IV-B. However, the counter size is important because
this counter is subject overflow. The single-flip problem shown
above, which involves two consecutive grace periods, is ac-
tually a case where a single-bit overflow occurs. A similar
scenario is therefore possible given a number of grace periods
sufficient to overflow the grace period counter passing during
a read lock section. This could realistically happen on 32-bit
architectures if read-side critical sections are preempted.

The following section shows one way to eliminate the read-
side memory barriers.

D. Low-Overhead RCU Via Signal Handling

The largest sources of overhead for theQSBRand general-
purposeRCUread-side primitives shown in Figures 4 and 6
are the memory barriers. One way to eliminate this overhead
is to use POSIX signals. The readers’ signal handlers contain
memory-barrier instructions, which allows an updater to force
readers to execute a memory-barrier instruction only when
needed, rather than suffering the extra overhead during every
call to a read-side primitive.

1 #define RCU_GP_COUNT (1UL << 0)
2 #define RCU_GP_CTR_BIT (1UL << (sizeof(long) * 4))
3 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BIT - 1)
4
5 long urcu_gp_ctr = RCU_GP_COUNT;
6 long __thread urcu_active_readers = 0L;
7
8 static inline void rcu_read_lock(void)
9 {

10 long tmp;
11
12 tmp = urcu_active_readers;
13 if (!(tmp & RCU_GP_CTR_NEST_MASK))
14 urcu_active_readers = ACCESS_ONCE(urcu_gp_ctr);
15 else
16 urcu_active_readers = tmp + RCU_GP_COUNT;
17 barrier();
18 }
19
20 static inline void rcu_read_unlock(void)
21 {
22 barrier();
23 urcu_active_readers = urcu_active_readers - RCU_GP_CO UNT;
24 }

Fig. 8. RCU Read Side Using Signals

One unexpected but quite pleasant surprise is that this
approach results in relatively simple read-side primitives. In
contrast, those of preemptableRCUare notoriously complex.

The read-side primitives are shown in Figure 8, along with
the data definitions and state variables. The urcuprefix
used for variables stands for “user-spaceRCU” Lines 1–3
show the definitions controlling both the urcugp ctr global
variable (line 5) and the urcuactive readers per-thread vari-
able (line 6). The low-order bits (those corresponding to
1-bit in RCU GP CTR NEST MASK) are used to count
the rcu read lock() nesting level, while the bit selected by
RCU GP CTR BIT is used to detect grace periods. All other
bits are unused. The global urcugp ctr may be accessed at
any time by any thread, but may be updated only by the thread
holding the lock that guards grace-period detection. The per-
thread urcuactive readers variable may be modified only by
the corresponding thread, and is otherwise read only by the
thread holding the lock that guards grace-period detection.

The rcu read lock() implementation is shown on lines 9–
18. Line 12 picks up the current value of this thread’s
urcu active readers variable and places it in the local variable
tmp. Line 13 checks to see if the nesting-level portion of urcu
active readers is zero (indicating that this is the outermost
rcu read lock()), and, if so, line 14 copies the global variable
urcu gp ctr to this thread’s urcuactive readers variable. Note
that urcu gp ctr has been initialized with its low-order bit
set, so that the nesting level is automatically set correctly.
Otherwise, line 16 increments the nesting level in this thread’s
urcu active readers variable. In either case, line 17 executes
a barrier directive in order to prevent the compiler from un-
dertaking any code-motion optimization that might otherwise
cause the contents of the subsequentRCUread-side critical
section to be reordered to precede the rcuread lock().

The implementation of rcuread unlock() is shown on
lines 20–24. Line 22 executes a barrier directive, again, in
order to prevent the compiler from undertaking any code-
motion optimization that might otherwise cause the contents
of the prior RCUread-side critical section to be reordered to
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1 struct reader_registry {
2 pthread_t tid;
3 long * urcu_active_readers;
4 char * need_mb;
5 } * registry;
6 static char __thread need_mb;
7 static int num_readers;
8
9 static void force_mb_all_threads(void)

10 {
11 struct reader_registry * index;
12
13 if (!registry)
14 return;
15 index = registry;
16 for (; index < registry + num_readers; index++) {
17 * index->need_mb = 1;
18 pthread_kill(index->tid, SIGURCU);
19 }
20 index = registry;
21 for (; index < registry + num_readers; index++) {
22 while ( * index->need_mb) {
23 pthread_kill(index->tid, SIGURCU);
24 poll(NULL, 0, 1);
25 }
26 }
27 smp_mb();
28 }
29
30 static void sigurcu_handler(int signo, siginfo_t * siginfo,
31 void * context)
32 {
33 smp_mb();
34 need_mb = 0;
35 smp_mb();
36 }

Fig. 9. RCU Signal Handling

follow the rcu read unlock(). Line 23 decrements the value
of this thread’s urcuactive readers variable, so that if this is
the outermost rcuread unlock(), the low-order bits indicating
the nesting level will now be zero.

Both rcu read lock() and rcuread unlock() execute a
sharply bounded number of instructions, hence both are wait-
free.

The signal-handling primitives are shown in Figure 9,
including variable declarations on lines 1–7, forcemb all
threads() on lines 9–28 and sigurcuhandler() on lines 30–36.

The structures on lines 1–5 represents a thread, with its
thread ID in tid, a pointer to its urcuactive readers per-thread
variable, and a pointer to its needmb per-thread variable.
Line 6 declares the per-thread needmb variable, and line 7
defines the global variable numreaders, which contains the
number of threads that are represented in the registry array
defined on line 5.

The force mb all threads() function ensures a memory
barrier is executed on each running threads by sending a
POSIX signal to all threads, waiting for each to respond.
As we will see, this has the effect of promoting compiler-
ordering directives such as barrier() to full memory barriers,
while avoiding the need to incur the cost of expensive barriers
in read-side primitives in the common case. Lines 13–14 return
if there are no readers, and lines 16-19 set each thread’s
need mb per-thread variable to the value one, then send that
thread a POSIX signal. Note that the system call executed for
pthreadkill() implies a full memory barrier before the system
call execution at the operating system level. This memory
barrier ensures that all memory accesses done prior to the call

to pthreadkill() are not reordered after the start of the system
call. Lines 20–26 then rescan the threads, waiting until one
each has responded by setting its needmb per-thread variable
to zero. Because some versions of some operating systems
can lose signals, line 23 will resend the signal if a response
is not received in a timely fashion. Finally, line 27 executes a
memory barrier to ensure that the signals have been received
and acknowledged before later operations that might otherwise
destructively interfere with readers.

Lines 30–36 show the signal handler that runs in response
to a given thread receiving the POSIX signal sent by force
mb all threads(). This sigurcuhandler() function executes a
pair of memory barriers separated by setting its needmb per-
thread variable to zero. This has the effect of placing a full
memory barrier at whatever point in the thread’s code that was
executing at the time that the signal was received, preventing
the CPU from reordering across that point.

The sender thread has two memory barriers around whole
sequence consisting of sending the signal and waiting for the
remote thread to acknowledge its reception. The remote thread
executes a memory barrier before acknowledging the signal
reception. These two conditions ensure that the remote thread’s
program order and memory accesses passed by a point where
they were executing in order between the two memory barriers
on the sender thread. Therefore, execution in program order
and with ordered memory accesses is ensured on the remote
processor at that point. This promotes all compiler barriers
on the receiver side to memory barriers, but only when the
matching memory barrier is executed on the sender side.

The update-side grace-period primitives are shown in Fig-
ure 10, including switchnext urcu qparity() on lines 1–
4, rcu old gp ongoing() on lines 6–15, waitfor quiescent
state() on lines 17–29, and synchronizercu() on lines 31–41.

The switch next urcu qparity() function starts a new grace-
period phase, where a pair of such phases make up a grace
period. A single phase is insufficient for the same reasons
discussed in Section IV-C. This function simply complements
the designated bit in the urcugp ctr global variable.

The rcu old gp ongoing() determines whether or not the
thread with the referenced per-thread urcuactive readers vari-
able is still executing within anRCUread-side critical section
that started before this grace-period phase. Lines 10–11 check
to see if there is no thread, and returns zero if there is not,
given that a non-existent thread cannot be executing at all,
let alone within anRCUread-side critical section. This will
hold for the whole grace-period because thread registration
needs to hold the internalrcu lock. Otherwise, line 12 fetches
the value, using the ACCESSONCE() primitive to defeat
compiler optimizations that might otherwise cause the value
to be fetched more than once. Line 13 then checks to see
if the corresponding thread is in anRCU read-side critical
section, and, if so, line 14 checks to see if thatRCUread-side
critical section predates the beginning of the current grace-
period phase.

The wait for quiescentstate() waits for each thread to pass
through a quiescent state, thereby completing one phase of
the grace period. Lines 21–22 return immediately if there are
no threads. Otherwise, the loop spanning lines 23–28 waits
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1 static void switch_next_urcu_qparity(void)
2 {
3 urcu_gp_ctr = urcu_gp_ctr ˆ RCU_GP_CTR_BIT;
4 }
5
6 static inline int rcu_old_gp_ongoing(long * value)
7 {
8 long v;
9

10 if (value == NULL)
11 return 0;
12 v = ACCESS_ONCE(* value);
13 return (v & RCU_GP_CTR_NEST_MASK) &&
14 ((v ˆ urcu_gp_ctr) & RCU_GP_CTR_BIT);
15 }
16
17 static void wait_for_quiescent_state(void)
18 {
19 struct reader_registry * i;
20
21 if (!registry)
22 return;
23 i = registry;
24 for (; i < registry + num_readers; i++) {
25 while (rcu_old_gp_ongoing(i->urcu_active_readers))
26 cpu_relax();
27 }
28 }
29 }
30
31 void synchronize_rcu(void)
32 {
33 internal_urcu_lock();
34 force_mb_all_threads();
35 switch_next_urcu_qparity();
36 wait_for_quiescent_state();
37 switch_next_urcu_qparity();
38 wait_for_quiescent_state();
39 force_mb_all_threads();
40 internal_urcu_unlock();
41 }

Fig. 10. RCU Update Side Using Signals

for each thread to exit any pre-existingRCUread-side critical
section.

The synchronizercu() primitive waits for a full grace period
to elapse. Line 33 acquires a pthreadmutex that prevents
concurrent synchronizercu() invocations from interfering with
each other and reader thread registration. Line 40 releasesthis
same pthreadmutex. Line 34 ensures that any thread that sees
the start of the new grace period (line 35) will also see any
changes made by the caller prior to the synchronizercu()
invocation. Line 35 starts a new grace-period phase, and
line 36 waits for it to complete. Lines 37 and 38 similarly
start and end a second grace-period phase. Line 39 forces
each thread to execute a memory barrier, ensuring that each
thread will see any destructive actions subsequent to the call
to synchronizercu() as happening after anyRCU read-side
critical section that started before the grace period began.

Of course, as with the other twoRCUimplementations, this
implementation’s synchronizercu() primitive is blocking. The
next section shows a way to provide wait-freedom toRCU
updates as well as toRCUreaders.

E. Wait-Free RCU Updates

Although some algorithms useRCUas a first-class tech-
nique, in most situationsRCU is instead simply used as an
approximation to a garbage collector. In these situations,given
sufficient memory, the delays built into synchronizercu()

1 void call_rcu(struct rcu_head * head,
2 void ( * func)(struct rcu_head * head))
3 {
4 head->func = func;
5 head->next = NULL;
6 enqueue(head, &rcu_data);
7 }
8
9 void call_rcu_cleanup(void)

10 {
11 struct rcu_head * next;
12 struct rcu_head * wait;
13
14 for (;;) {
15 wait = dequeue_all(head);
16 synchronize_rcu();
17 while (wait) {
18 next = wait->next;
19 wait->func(wait);
20 wait = next;
21 }
22 poll(NULL, 0, 1);
23 }
24 }

Fig. 11. Avoiding Update-Side Blocking by RCU

need not block the algorithm itself, just as delays built into
an automatic garbage collector need not block a wait-free
algorithm.

One way of accomplishing this is shown in Figure 11, which
implements the asynchronous callrcu() primitive found in the
Linux kernel. Lines 4 and 5 initialize anRCUcallback, and
line 6 uses a wait-free enqueue algorithm (16) to enqueue the
callback on the rcudata list. This callrcu() function is then
clearly wait-free.

A separate thread would remove and invoke these callbacks
after a grace period has elapsed, using synchronizercu() for
this purpose, as shown on lines 9–24 of Figure 11, with each
pass of the loop spanning lines 14–23 waiting for one grace
period. Line 15 uses a (possibly blocking) dequeue algorithm
to remove all elements from the rcudata list en masse, and
line 16 waits for a grace period to elapse. Lines 17–21 invoke
all the RCU callbacks from the list dequeued by line 15.
Finally, line 22 blocks for a short period to allow additional
RCUcallbacks to be enqueued. Note that the longer line 22
waits, the moreRCUcallbacks will accumulate on the rcudata
list. This is a classic memory/CPU trade-off, with longer waits
allowing more memory to be occupied byRCUcallbacks, but
decreasing the per-callback CPU overhead.

Of course, the use of synchronizercu() causes callrcu
cleanup() to be blocking. However, as long as the callback
function func that was passed to callrcu() does nothing other
than free memory, as long as the synchronization mechanism
used to coordinateRCUupdates is wait-free, and as long as
there is sufficient memory for allocations to succeed without
blocking,RCU-based algorithms that use callrcu() will them-
selves be wait-free.

V. EXPERIMENTAL RESULTS

This section presents benchmarks of eachRCUmechanism
presented in this paper with respect to each other, compared
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to mutexes, to reader-writer locks and to per-thread locks1. It
first demonstrates read-side scalability, discusses the impact
of read-side critical section length on the respective locking
primitive behavior and finally presents update operation rate
impact on read-side performance. The goal of this section isto
clearly demonstrate in which situationRCUoutperforms clas-
sic locking solutions to help identifying for which workloads
RCUcan bring performance improvements compared to classic
locks in existing applications.

The machines used to run the benchmarks are an 8-core Intel
Core2 Xeon E5405 clocked at 2.0 GHz and a 64-core PowerPC
POWER5+ clocked at 1.9 GHz. Each core of the PowerPC
machine has 2 hardware threads. To eliminate thread-level
contention for processor resources, benchmarks are performed
with affinity to the 64 even-numbered CPUs of the 128 logical
CPUs presented by the system.

The mutex and reader-writer lock implementations used for
comparison are the standard pthreads implementations from
the GNU C Library 2.7 for 64-bit Intel and GNU C Library
2.5 for 64-bit PowerPC.

STM (Software Transactional Memory) is not included in
these comparisons because it is already known to incur high
overhead and to scale poorly (17).HTM(Hardware Transac-
tional Memory) (18; 19; 20) is likely to be more scalable than
STM. However,HTMhardware is not available to us due to the
fact that it is expensive and not very common, preventing us
from including it in our performance results.

A. Scalability

Figure 12 presents the read-side scalability comparison of
each RCU mechanism with standard locking primitives for
the PowerPC. The goal of this test is to determine how
each synchronization primitive performs in heavy read-side
scenarios when the number of CPU increases. This is done
by executing from 1 to 64 reader threads for 10 seconds,
each taking a read-lock, reading a data unit and releasing the
lock in a tight loop. No updater thread is present in this test.
As a result, we observe that linear scalability is achieved for
RCUand per-thread mutex approaches. This is expected, given
readers does not need to exchange cache-lines. TheQSBR
approach is the fastest, followed by the signal-basedRCU,
general-purposeRCU and per-thread mutex, each adding a
constant per-CPU overhead. The Intel Xeon behaves similarly.

However, Figure 12 does not show the scalability trend of
the pthread mutex and pthread reader-writer lock primitives.
This is the purpose of Figure 13, which presents scalabilityof
those two primitives. As we can see, with more than 8 cores,
overall performance actually decreases when the number of
core increases.

B. Read-Side Critical Section Length

Due to the large performance difference betweenRCUand
other approaches, we notice that linear-scaled graphs are not
appropriate for the following comparisons.

1The per-thread lock approach consists in using one mutex per reader
thread. The updater threads must take all the mutexes, always in the same
order, to exclude all readers. This approach ensures readercache locality at
the expense of a slower write-side locking.
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Therefore, Figure 14 presents the read-side critical section
length impact using logarithmic x and y axis. This benchmark
is performed with 8 reader threads taking the read lock,
reading the data structure, waiting for a variable delay and
releasing the lock, without any active updater. Interestingly,
on this 8-core machine, we notice that starting at about 1000
cycles per critical section, the difference betweenRCUand
per-thread locks becomes insignificant. At 20000 cycles per
critical section, the reader-writer locks are almost as fast as the
other solutions. Only pthread mutex performance always has
significantly worse performance for all critical section lengths.

To appropriately present the 64-core read-side critical sec-
tion length impact on the read-side speed, we must first
introduce the effects that alter the reader-writer lock andmutex
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behavior. First, the interprocessor cache-line exchange time
affects the lock access time. Second, the number of cores
needing to access the lock also affects the number of lock-
access per second.

Therefore, we first present, in Figure 15, the equivalent
POWER5+ graph with only 8 cores used to specifically show
the effect of architecture and cache-line access time change.
The cores are spaced by a striding of 8. Changing stride to
1, 2 or 4 (not presented here for brevity) only very slightly
affects read speed for reader-writer lock and mutex. Cores
close to each other share a common L2 and L3 cache on
the POWER5+, which causes reader-writer lock and mutex
to be slightly faster at lower striding values. Given it has
no significant effect on the update rate at which the various
locking primitives are equivalent, this factor can be left out of
the rest of this study.

The same workload executed with 64 reader threads is
presented in Figure 16. These threads are concurrently reading
the data structure with an added variable delay. We notice,
when comparing to the 8-core graph in Figure 15, that we
need a critical section about 10 times larger (20000 insteadof
2000 cycles) before the reader-writer lock performance reaches
the RCUor per-thread lock performances. Therefore, as we
increase the number of cores, reader-writer lock protected
critical sections must be larger to behave similarly toRCU
and per-thread locks.
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C. RCU Grace-Period Batch Calibration

After looking at read-side only performance, it is appro-
priate to see how concurrent updates influence the read-
side behavior. To appropriately represent theRCUupdate-side
performance impact, we must first calibrate the reclamation
batch size to ensure we amortize the grace-period overhead
over multiple updates. Such calibration is presented for Intel
and POWER5+ in Figures 17 and 18, respectively for 8 cores
and 64 cores. For update operation benchmark, we use half the
number of cores for readers and the other half for updaters.

We calibrate with the signal-basedRCUapproach, likely
to provide the highest grace-period overhead due to signal-
handler execution. The ideal batch size for both architectures
with 8 cores used is determined to be 32768 per updater
thread. Given the test duration is 10 sec, we have to eliminate
batch sizes large enough to be a significant portion of updates
performed during the test because non-reclaimed batches are
not accounted for. This is why the largest batch sizes are
ignored even if they seem slightly better. Figure 18 shows that
with 64 cores used, the ideal batch size is slightly lower (4096)
due to the fact that per-update pointer exchange overhead
increases exponentially with the number of threads while the
grace-period overhead increases linearly. Therefore, smaller
batch sizes are required to amortize the grace-period overhead
and perform slightly better due to increased cache locality.
However, given the performance difference is not very large,
we use a 32768 batch size for both 8-core and 64-core tests.

D. Update Overhead

Once batch-size calibration is performed, we can proceed to
update rate impact comparison. Figure 19 presents the impact
of update frequency on read-side performance for the various
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locking primitives. It is performed by running 4 reader and
4 updater threads and varying the delay between updates. We
notice thatRCUapproches outperforms the per-thread lock
approach especially in terms of maximum updates per second.
The former can reach 2 million updates per second while per-
thread locks can only perform 0.1 million updates per second.
Interestingly, on such workload with 4 tight loop readers,
mutexes outperforms the reader-writer lock primitive in all
aspects. Furthermore, reader-writer locks seems to show a case
of reader starvation with high updates per second rates.

But while Figure 19 presents a fair comparison between the
locking primitives, it presents a non-ideal scenario forRCU.
In our attempt to present a comparison where all locking
primitives perform equivalent work, this figure includes the
RCUpointer exchange overhead. To factor out this overhead,
Figure 20 shows both idealRCUgrace-period performance
and the equivalent with added pointer exchange. This shows
that it is the pointer exchange that becomes the update-
rate bottleneck, not the grace period. Therefore, in an ideal
scenario where pointers updates would be local to each thread,
RCUcould be expected to preserve its read-side scalability
characteristics even under frequent updates. Such local updates
could be ensured by appropriately designed list or hash table
data structures.

Figure 21 shows update overhead on a 64-core POWER5+,
with 32 reader and 32 updater threads. We can conclude that
RCU QSBRand general purpose approaches reach the highest
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update rates, even compared to mutexes. This is attributed
to the lower performance overhead for exchanging a pointer
compared to the multiple atomic operations and memory
barriers implied by acquiring and releasing a mutex. Mutex-
based benchmark performance seems to drop starting at 30000
updates per second with 32 updater threads. A similar effect
is present with only 4 updater threads (graph not presented
for brevity). Figure 19 seemed to show that update overhead
stayed constant even at higher update frequency for 4 updater
threads on the Xeon. Therefore, as the number of concurrent
updaters increases, mutex behavior seems to depend on the
architecture and on the specific GNU C Library version. Two
approaches seems to be very affected by increasing the number
of updaters. The reader-writer lock, where updaters clearly
seem to be starved by readers, has a maximum update rate
of 175 updates per second. Per-thread locks are limited to a
maximum update rate of 10000 updates per second with 32
reader threads.

Finally, Figure 22 presents, as previously done for Xeon,
how grace-period detection (idealRCU) compares toRCU
grace period with pointer exchange. Therefore, with appro-
priately designed data structures, better update localitywould
ideally lead to constant updater overhead as the update fre-
quency increases.

VI. CONCLUSIONS

We have presented a set ofRCUimplementations covering
a wide spectrum of application architectures.QSBRshows
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the best performance characteristics, but severely constrains
the application architecture by requiring each reader thread
to periodically pass through a quiescent state. Signal-based
RCU performs almost as well as doesQSBR, but requires
reserving a signal. Unlike the other two, general-purposeRCU
incurs significant read-side overhead. However, it minimizes
constraints on application architecture, requiring only that each
thread invoke an initialization function before entering its first
RCUread-side critical section.

Benchmarks demonstrate read-side linear scalability of the
RCUand per-thread lock approaches. It also shows that the
smallest read-side critical section duration for which reader-
writer locks, RCUand per-thread lock approaches are nearly
equivalent in terms of read-side performance impact grows
larger as the number of cores increases. These benchmarks also
show that, by performing memory reclamation in batch,RCU
approaches reach update rates much higher than reader-writer
locks, per-thread locks and mutexes on similar workloads
where updates are performed on a shared data structure.
Furthermore, given ideal data structures preserving update
cache locality,RCUapproaches are shown to have a constant
update overhead as update frequency increases. Therefore,the
upper-bound forRCUupdate overhead is demonstrated to be
far below lock-based overhead. Furthermore, it is still possible
to decreaseRCUupdate-side overhead even more by designing
data structures providing good update cache-locality.
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