IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 1

Multi-Core Systems Modeling for Formal
Verification of Parallel Algorithms

Mathieu Desnoyers, Paul E. McKenney, Michel R. Dagenais

Abstract—Modeling parallel algorithms at the architecture complexity level of these algorithms makes formal verifimat
level permits to explore side-effects of weak ordering performed well worthwhile.

by modern processors. Formal verification of such models with This paper first depicts the modeling challenges, then sum-

model-checking can ensure that algorithm guarantees will hold . . e -
even in the presence of the most aggressive compiler andMarizes theLTL model-checking principles and introduces

processor optimizations. to modeling of parallel algorithms. This is followed by a
This paper proposes a virtual architecture to model the effects presentation of the frameworks created to accurately model

of such optimizations. It first presents the OCoOmemframework real architectures. Finally, thRCU library modeling and its
to model out-of-order memory accesses. It then presents the verification are presented.

OoOischedframework to model the effects of out-of-order in-
struction scheduling.

These two frameworks are explained and tested using weakly- [I. M ODELING CHALLENGES
ordered memory interaction scenarios known to be affected by
weak ordering. Then, modeling of user-levelRCU (Read-Copy Modeling multi-core systems for formal verification of par-
Update) synchronization algorithms is presented. It uses the ||| algorithm implementations brings interesting ceatjes.
virtual architecture proposed to verify that the RCU guarantees These are caused by the architecture and compiler ordering

are indeed respected. .
semantics. These challenges come from the presence of:
Index Terms—C.0.d Modeling of computer architecture < 0.

General < C. Computer System Organization, C.1.2.g Parallel ¢ compllgr-level optlmlzf':ltlons,
processors< C.1.2 Multiple Data Stream Architectures (Mul- « execution of nested signal handlers,

tiprocessors) < C.1 Processor Architectures < C. Computer on architectures with the following characteristics:
System Organization, D.1.3. Concurrent Programming< D.1

Programming Techniques < D. Software/Software Engineering, « shared-memory multiprocessor,

D.2.4.d Formal Methods < D.2.4 Software/Program Verification « weak memory-ordering,

< D.2 Software Engineering< D. Software/Software Engineer- « pipelined and superscalar,

ing, D.24.e Model Checklr_lg< D.24 Software/Program Verifi- « out-of-order instruction scheduling.

cation < D.2 Software Engineering< D. Software/Software En-) i

gineering, D.4.1.f Synchronization< D.4.1 Process Management All these challenges are a direct result of our desire to hode

< D.4 Operating Systems< D. Software/Software Engineering algorithms for production use. If this was instead meant to
D.4.5.f Verifcation < D.4.5 Reliability < D.4 Operating Systems pe only used for prototyping, we might be strongly tempted
< D. Software/Software Engineering<, to assume a non-optimizing compiler and almost inexistent
sequentially consistent machines to avoid dealing with op-

. INTRODUCTION timization, out-of-order execution and out-of-order meyno

ORMAL ificat f hronizati imit ; access effects. We might also be tempted to assume signal
veriiication of synchronization primitives for Qandlers out of existence as a simplification.

shared memory multiprocessor architectures is undoubt-

edly useful due to the architecture and context dependefhcyd%Concurrent algorithms have been modeled on weakly or-

bug occurrence. An algorithm can appear bug-free when u%ed’ed systems in the past (2), and interrupts (similar J
: . . ave been modeled as well (3). However, the methods used
in a large set of test cases. However, testing is unable tifycer.

. . . X in thi work to model weakly-order m n resul
that compiler optimizations done for a different invocatiof this past work to model weakly-ordered systems can result

a synchronization primitive will work as expected. Portiapi in combinatorial explosion of the model. Models specifigall
asy P . . pected. . covering the x86 (4), as well as PowerPC and ARM (5)
is also hard to certify with testing, because it would ineolv

testing the primitives on all architecture variants architectures for parallel algorithm verification has ate®n
. S . . roposed in the past. In this paper, we present a more general
Our principal motivation is to create detailed architeetur prop b pap P 9

level models taking into account weak instruction schedpli approach that allows the model to more closely follow the
9) . ey architecture behavior than the previoR€U models and to
and memory access ordering able to verify the user-sBatk

. . . ake into account the weakest ordering amongst multiple
(Read-Copy Update) implementations presented in (1). T Fchitectures, therefore modeling weak-ordering effectse

Manuscript received July X, 2009; revised Month Y, 2009 accurately‘ . .
M. Desnoyers (mathieu.desnoyers@polymtl.ca) and M. R. Dage- TO further reduce the computational requirements of the

nais (michel dagenais@polymtl.ca) are with the Computer aofiwdre validation process, we approximate the properties of theahc
Engineering Department, Ecole Polytechnique de Montreal. . . .
Paul E. McKenney (paulmck@linux.vnet.ibm.com) is with the |RNMhux hardware, but in all cases modeling weaker ordering than the

Technology Center. actual hardware provides. This weaker-ordering approt@na

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 2

ensures that any algorithm passing our validation will run G: Temporal operatoalways (a predicate will always

correctly on conforming hardware. hold),

We propose a model representing the interprocessor in- F: Temporal operatogventually(a predicate must even-
teractions, which we call ouwirtual architecture In this tually become true),
architecture, each Promela process represents a pracéssor U: Strong until (will hold until another predicate is
model Cl SC architectures, complex instructions are divided true).

into micro-operations, which are then represented as atomi \jodel checking permits to explore all execution scenarios
Promela statements. It results iRaSC architecture, which al- required to verify a specifit TL property. Unlike simulation-
lows to easily detail micro-operations dependencies. d@io pased approaches, the model-checker only needs to generate
this article, miCI‘O—Opel‘ation and instruction will be usasl the states required to Verify the property, rather than per-
synonyms, given those apply to our RISC virtual architeeturforming an exhaustive state-space exploration. Each Reome
The models proposed here specifically use a data flgpocess being represented as an automaton, we can represent
representation of each processor, where each node repesgyt complete state-space generated by parallel procegses b
a micro-operation and where each arc represents a datqoglrformmg the product of these automatons.
control dependency between micro-operations. This psrmit gpe major limitation is that TL model-checking is pspace-
to model accurately all possible micro-operation interiegs complete. Reasoning about specific predicates to verlfywyal
as seen from the point of view of their visible effect outside limiting the state-space to the subset required to verify th
the processor. We model the interactions between processgiedicates. This is why Spin enhances state-space explorat
by creating a cache-memory interaction model. with lossless compression techniques based on the charac-
teristics of the claims validated. For instané&rtial Order
1. M ODELING AND MODEL-CHECKING Reduction(13) permits to merge states for which the partial
This section summarizes the principles bTL model- order does not affect the property to verify.
checking and presents an introduction to modeling of palrall
algorithms. It constitutes the background on which is co%-

structed the rest of this article. Introduction to Parallel Algorithm Modeling

As an introductory example, let us consider the verification
A. LTL Model-Checking of the busy-waiting lock primitives, usually known sginlock

e . . . present in the PowerPC and Intel architectures of Linuxddern
The verification is carried out using Promela (6), a speci 6,30

purpose modeling language that performs a full state-spac'el_he spinlock implementation found in the PowerPC archi-

search. This in turn allows all possible execution hismri% .) : . .

. - . . ecture is relatively straightforward: it consists of twiates,
to be examined for specified classes of errors, including ragither 0 or non-zero. It uses thé viar x” (Load Word and
conditions and livelock conditions. '

The equivalence between data flow analysis and mod eserve Indexed) andstwex. ™ (Store Word Conditional

checking of abstract interpretations has been used (7; 8)rt1 exed) instructions to atomically compare and update the

model simple sequential programs. Data flow analysis has ng value. The store OU'V succeeds if the memory location
been used to verify properties of concurrent programs (9). as not been updated since the load. . . -
We represent our model in Promela and perform verificationAS an exa”.‘p'e'_ a P“’me'?‘ model of t.hls locking primitive
of properties expressed asTL (Linear Temporal Logic) IS prg;ented in Figure 1. Line 1 contains the lock vangble
formulasg. The model description expresses atomic statemelqgﬂmt'on’ fo_IIowed by a data_ access r_eference _co_u_nt defined
executed by one or more processes. The Spin verifier (10; irlr?L!ne 2 Lm_es .4_17 contz_am the spin lock primitive. The
transforms the model into ai@hi (12) automaton. TheTL I fl i ne function in Promela is close to that of the C language,

formulas are transformed in the negation of never-claintegu excetpt that sutch fun.;t'%nf n Ptrqmzla Ihavi type—frt(aje dargu-t
for verification of the model. The Spin verifier visits all ai@ ments, are not permitted to con'ain declarations, and do no

statements required to validate th&L claims in all execution return any value. Lines 6-16 contain the busy-waiting Idop

orders allowed by the model. One sequence used to vi_'?it' od, stopped only by thér eak statement on Line 13

atomic statements in a particular order forms a path. : the variablel ock is 0. Theski p statement on Line 1.0.
LTL formalism allows basic logical operators within pred'—S an empty statement. It has no effect other than permitting

; . to follow the Promela grammar. Line 7 begins with:“ 1
icates: S e . :
o - >" which indicates a condition always fulfilled. This letsth
=: logical implication, . “n .)
. equivalence statements following the->" execute unconditionally. Line 7
- ' ends with a very important keywordit oni c. It precedes

C g?sr?i::qrgit:;n' a sequence of statements, contained within brackets, which
: negjjation ' is considered as indivisible. They are therefore executed i

a single execution step, similarly to an atomic instruction
To reason over the future of paths, temporal operators cgfhcyted by a processor. Lines 19-22 contain the unlock

be applied to predicates: function. Lines 24—33 contain the body of the processes;hwhi
1See the Promela reference for equivalefit. symbolism http:/spinroot. takes a Sp'nIOCk' 'ncrement$ and. d_e?rements the. reference

com/spin/Man/ltl.html count, and releases the lock in an infinite loop. Two instance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 3

1 byte lock = 0;
2 byte refcount = 0;
s , UNLOCKED
4 inline spin_lock(lock) .
5 { skip
6 do
.. ; lock == 1)
7 01 -> atomic { (
8 if STEP++ STEP++
9 :: lock -> e (e Y I
10 ski p; . ATOMIC
11 1 else -> I
12 lock = 1; }
13 br eak; !
14 fi; |
15 } ;
16 od; |
17 } } (lock == 0)
8 , l STEP invariant
19 inline spin_unl ock(l ock) |
20 { }
21 lock = 0; I
22} i TAKE LOCK
23 | —
24 proctype proc_X() i =L
25 { :
26 do !
27 i1 -> R S STEP++
28 spi n_l ock(I ock);
29 refcount = refcount + 1; STEP++
30 refcount = refcount - 1; Z
31 spi n_unl ock(1 ock); O
32 od —
33} L_)
34 |
35 init %)
36 {
37 run proc_X(); z:l STEP++
38 run proc_X(); O
39 } =
=
. . ad
Fig. 1. Promela Model for PowerPC Spinlock O
STEP++

of the process are run upon initialization bgi t at Lines 35—
39.

This Promela code is represented by the diagram found in
Figure 2. Each node represents a Promela statement. A name is
added to most nodes to make interpretation easier. Each node
contains a Promela statement. Arrows connecting the nodes
represent how the model-checker can move between nodeg.2. Diagram Representation of PowerPC Spinlock Model
Some require conditions to be active, .jock == 1), to
allow moving to the target node. TH&TEP++ statements on
the arrows represent that the execution counter is incresden The keywordnp_ has a special meaning: it is true if
A concurrent process may run between different steps, Hut @il system states do not correspond to progress states. We
while STEP stays invariant. The latter scenario happens imodify the code from Figure 1 to insert such progress states:
the ATOM C box, which represents the atomic sequence tfis involves separating the process body in two different
statements. definitions to add @r ogr ess: keyword within the infinite

Safety of this locking primitive is successfully verified byloop in one of them. Using the Spin verifigveak fairness
the Spin model-checker by verifying that the reference toudption lets it detect non-progress cycles involving moranth
value is never higher than 1. This is performed by prependifge process. This corresponds to starvation of a process by
#define refcount_gt _one (refcount > 1) to one or more other processes.
the model and by using the followirigTL formula. PowerPC Ticket spinlocks used for the Intel spinlock implementatio

UNLOCK
lock =0

spinlock safety is verified by theTL claim: found in Linux correct the fairness problem identified in the
PowerPC architecture. The Promela implementation is erhitt
G (- refcountgt_one) due to space considerations, but the state diagram is peelsen

However, one major downside of this spinlock implement&t Figure 3. The new elements added to this graphs are the
tion is its lacks of fairness. A CPU always acquiring the same Y. HALF() and HI GH_HALF() primitives, which select

spinlock in a loop could effectively starve other CPUs. Thid2!f lower and upper bits of the lock, respectively.
can be verified using the followingTL formula: The Spin model-checker verifies that this model is safe and

fair, under certain conditions. Changing the number of bits
G (F(-np)) available for the low and high halves of the ticket lock as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, ®. Y, MONTH 2009 4
loads, loads after loads and stores after stores. Even @tomi
operations can be reordered with respect to loads and stores

UNLOCKED
skip
srep The Alpha architecture can reorder dependent loads in
++

,, ‘ addition to other memory accesses due to the design of its

| ATOMIC caches. These are are divided into banks, which can each
‘ READ TICKET
ticket = HIGH_HALF(lock)

communicate with main memory. If the channel between a
bank and memory is saturated, the updates of the less busy

INC TICKET
HIGH_HALF(lock)++

channels could reach their destination before loads oestor
STEP++ initiated earlier. Such extremely weak ordering can thaeef
cause any sequence of loads and stores to different adslresse
including dependent loads, to be perceived in a different
order from the point of view of another processor. Indeed,
when memory content changes, in-cache view updates are not
guaranteed to reach the cache-lines in the same order time mai
memory stores appear.

We name the weak memory ordering part of our virtual
architectureOoOmem where OoO stands forOut-of-Order
It models the exchanges between CPU cache-lines and main
memory. To model the worse possible case, each variable
belongs to a different cache-line and there is only one cache
line per bank. These cache-lines are therefore free to be
updated (or not) with main memory between each instruction
execution.

Each CPU is modeled as a Promela process. Each variable is
represented with a main memory entry, a per-CPU entry and a
per-CPU dirty flag. Operations and accesses to these memory
entries are performed through Promela macros created &s par
of the OoOmemframework to facilitate manipulation of the
variables. We call these the “primitives” of th®@oOmem

STEP++
STEP++
framework. For each cache-local variable, @eo_rnemn()

UNLOCK
LOW_HALF(lock)++
primitive models the case where it is updated as well as the

Fig. 3. Diagram Representation of Intel Ticket Spinlock Mbd case where i_t is not. This primitive must be C.a”ed_ b.etween
each cache-line access. This causes all possible intertpav
of exchanges between caches and memory to appear in the

well as the number of processes shows that fairness is offt Of generated execution traces.
ensured when the number of processes fits in the number ofXplicit memory ordering of loads and stores can be re-
bits available for each half. spectively forced by using the primitivesnp_r mb() and
snp_wb() . These memory barriers respectively send the
cache-local stores to memory and ensure that all in-memory
IV. WEAKLY-ORDERED MEMORY FRAMEWORK data is loaded into the local cache. The per-variable, fRig-C
dirty flag makes sure that a given CPU fetches data that it has
recently written from its emulated cache rather than fetghi
Modeling out-of-order memory accesses performed by prstale data from main memory.
cessors at a level consistent with their hardware implemen-The primitivewr i t e_cached_var () updates the cache-
tation is important to enable accurate modeling of sidéscal version of a variable with a new value and sets the
effects that can be caused by missing memory barriers dirty flag for this variable on the local CPU. The dirty flag
synchronization algorithms. The bugs within this categamy will let ooo_men() andsnp_wnb() subsequently commit
hard to reproduce, mainly because they are dependentthis change to main memory. In addition, this ensures that
the architecture, execution context and timing between theitherooo_nmen() nor snp_rnb() overwrite the cache-
processors. Therefore, testing the implementation might riocal version before it has been committed to memory.
be sufficient to certify the absence of bugs. The read-side equivalentisad_cached_var (), which
To model an algorithm including the effects of the memorlpads a cache-local variable into the local process vagabl
barriers required on various architectures, or more ingoaigt Modeling other architectures such as the Intel, PowerPC
lack thereof, we choose to create a virtual architecture pand Sparc processor families, which do not permit to reorder
forming the most aggressive memory reordering. The Alpltiependent loads, only requires replacing the conditioed |
21264 seems to be an especially interesting architectute wpart of theooo_mnen{() primitive by a call tosnp_r nb() .
respect to reordering, given its ability to reorder depahdeAs a result, the local cache is unconditionally updated lay{o
loads (14; 15). It also reorders loads after stores, stdites aing all main memory variables into the non-dirty local cache

| STEP invariant
I

(LOW_HALF(lock) == ticket)
STEP++

(LOW_HALF(lock) != ticket)
STEP++

STEP++

CRITICAL SECTION

A. Architecture

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 5

lines. The effects of independent loads reordering done {ifting, combining reads, re-loading a variable to dinsimireg-
these architectures is modeled by thet-of-order Instruction ister pressure, etc.) or the processor. The weakest schgdul

Scheduling Modepresented at Section V. possible is bounded by the dependencies between insmactio
In order to let the verifier explore all possible executiodess,
B. Testing our virtual processor framework)oOisched provides:

« an infinite number of registers,

« a pipeline with an infinite number of stages,

o a superscalar architecture able to fetch and execute an
infinite number of instructions concurrently,

In order to validate the accuracy of the framework, we use
architectural litmus tests for which results are known. One
such litmus test involves processor A performing conseeuti
updates to a pair of variables, while processor B concugrent - U .

. . «. and the ability to perform speculative instruction execu-
reads these same variables in reverse order. We expect that .
: LT tion when they have no side-effect on cache.
if the ordering is correct, whenever processor B sees the

updated second variable, it must eventually read the ugdate As ;n the OoOmemfra;\niworkl, one tPr?mglzaf processkrgp-t
first variable. This is expressed in the following pseuddeco resents one processor. /A key element of this framework 15 10
andLTL formula: have a compact instruction execution state and dependency

representation. We choose to use a per-processor set oistoke

Pseudo-code modeled: to represent the dependencies with a single token per @stru
al pha = 0: tion. Tokens are produced by executing instructions and typ
beta = 0; cally cleared only at the end of the instruction sequence. Th
Processor A Processor B conditions required to activate an instruction are remmt_
al pha = 1; x = beta; by a set of tokens. Each token can be represented by a single
snp_wib() ; snp_rmb(); bit
beta = 1; y = al pha; . .
As an example, the dependencies of the test-case presented
LTL claim to satisfy: in Section V-B are modeled in the Promela listing in Figure 4
and illustrated in Figure 5.
G (q; =1=F(y= 1)) An instruction scheduling loop tests for every instruction

dependency constraints to execute them. Execution olimstr

This model is verified successfully by the Spin verifietion is non-deterministic: when the dependencies of mieltip
Error-injection is performed to ensure that the verifier \dou instructions are met, any one of them may fire, but does
appropriately generate the erroneous execution tracdseif hot have to. It therefore explores all the possible exeoutio
required memory barriers were missing. This is performed loyderings fitting within the dependency constraints. ltceeds
removing thesnp_wnb() from Processor A osnp_rnb() until the end of the loop, which consists in executing the
from Processor B. Verifying these two altered models showvast instruction of the sequence. This last instructiomdeall
the expected errors and execution traces: variables béhgr e the tokens and breaks the instruction scheduling loop. When
stored to or loaded from memory in the wrong order fails tthe bit allocated for an instruction is enabled, it inhihits

verify the LTL claim. execution and enables its dependent instructions. The sfat
each CPU’s execution is kept in a per-process data structure
V. OUT-OF-ORDERINSTRUCTION SCHEDULING containing the current execution state tokens.
FRAMEWORK In the Promela model presented in Figure 4, the macro

CONSUME_TOKENS(t okens, enable, inhibit) is
s%d as trigger to execute an instruction. The parameter
)kensis the token container of the current processor. The
scheduler is allowed to execute an instruction only if all
%Iée enabletokens are active and all thiahibit tokens are
inactive. Its role is to check for pre-conditions for insttion
execution, but doemot clear any token.
) The macroPRODUCE_TOKENS(t okens, prod) adds
A. Architecture tokens identified byprod to tokens It is typically used at
Superscalar pipelined architectures leverage instmuctiche end an instruction execution by producing its own token.
level parallelism by allowing multiple instructions to ”ta Finally, CLEAR TOKENS(t okens, cl ear) clears all the
concurrently and by reordering instruction completiorcdh, specified CPU tokens. It is typically used after the lastrinst
more aggressively, reorder the sequence in which indepéndgon of the scheduling loop, but can also be used to partially
instructions are issued. Speculative execution can alesecaclear the token set to produce loops.
execution of instructions before their result is proven o b The diagram representing the Promela model in Figure 5
needed. Such out-of-order instruction execution can ba seepresents each instruction by a node. White arrows regresen
on the Alpha 21264 (15). unmet dependencies and black arrows correspond to depen-
Our virtual architecture framework for out-of-order ingtr dencies met. Colored nodes are those currently candidate fo
tion scheduling therefore encompasses all possible rtgiru execution: all their dependencies are met, which means that
scheduling which can be done by either compiler optimizegtioall tokens they consume are enabled, and all the tokens that

Although the OoOmemframework presented earlier rep
resents exchanges between cache and memory accuratel
does not reproduce all reordering performed at the proces
level regarding out-of-order micro-operatioRI (SC instruc-
tion) scheduling. This section explains how we model the
effects.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 6

inhibit their execution are cleared. The column on the leftanded into the caller site.
represent the tokens associated with each instruction.

We choose this representation of the data and contgl Testing
flow rather than more classic token-based models like Petri

networks (16) or coloured Petri networks (17) to allow eas ; X
L . . resent a test model for tli@oOischedramework. This model
injection of faults in the model. This would be cumbersome% based on both th@oOischedand OoOmemframeworks.

do with a classic representation where one instruction WOL1 S :
It models an execution involving two processors and two
produce a token that would be later consumed by a followin . . .
emory locations. In this model, Processor A successively

instruction. For instance, removing a read barrier or write .
writes to al pha and readset a. Processor B successively

barrier from the model would require to completely modify " . i o
the dependency graph of the following instructions to m%{\émes tobet a and then readal pha. This verifies that at

sure they now depend on prior instructions. Failure to §iﬁteigﬁos\:; Ceszgzéi?gs dt:eDuepdeantggn\(/:arf\(?rlleszir;r:tss;gr;r}ow
so would create an artificial synchronization barrier which gp ey y b

would not model the error injection correctly. Since theeiok on instructions executed by Processor A are illustrated by
model provides the complete list of instruction dependesci Figure 5.

errors can be injected by enabling the token corresponding®seudo-code modeled:

to the instructions to disable before entering the instonct

Before introducing the more compleRCU model, we

scheduling loop. The effect is the inhibition of the instiao E\Lan:o?;
and satisfaction of all dependencies normally met when this x =1
instruction is executed. Yo

Given our virtual architecture models all possible seqasnc Processor A Processor B
of code execution allowed by the data dependencies, only a i'mi.’ﬂﬁb(‘,l 2%;5()15
few specific issues must be addressed to make sure compiler x = beta; y = al pha;

optimizations are taken into account. In our framework, a

temporary per-process variable, corresponding to a psoces LTL claim to satisfy:

register, should never be updated concurrently by multiple

instructions.SSA (Static Single Assignment) (18) is an inter- Gz=1vy=1))

mediate representation typically used in compilers whahe]] -~) -~
variable is assigned exactly once. Using such representati 1hiS model is successfully verified by the Spin verifier.
for registers would ensure to have no more than a Singlféror-mjecnon is performed to ensure that the verifier lgou

instruction using a temporary register, but this would co§PPropriately generate the erroneous execution traceseif t
additional state-space. Given this resource is limited,reve €Quired memory barriers were missing. This is performed by

use registers outside of their liveness region. There atg offither:

two cases where we expect the compiler to re-use the result completely removing thenp_nb(),

of loads. The first case is when the compiler is instructed tos removing only thesmp_r nb()) part of the barrier,

perform a singlevol at i | e access to load the variable to a « removing only thesnp_wnb() part of the barrier,
register. The second case is when an explicit compilerdrarri « removing the implicit core synchronization provided by
is added between the register assignment (load from cache) thesnp_nb() semantics, which leaves the reads and the
and register use. In all other cases, re-use of loaded Vesiab ~ writes free to be reordered.

will be taken into account by performing the two loads next to Verifying these altered models shows the expected errors
each other due to speculative execution (prefetching) atippand execution traces, where the read or write instructieirgb

in the scheduler. reordered fails to verify th& TL claims.

One limitation of this framework is that it adds an artificial Removing core synchronization from the model presented
compiler barrier and core synchronization between corisecu in Section V-B permits verifying its behavior when injedin
instruction scheduler executions. This would not take intrrors. The diagram presented in Figure 6 shows a shapshot
account side-effects caused by scheduler execution wéhirof instruction execution with core synchronization renchvie
loop. This is caused by the instruction’s inability to crosshows that two instructions are candidate for executidheei
the artificial synchronization generated by the last irdiom al pha = 1 or x = bet a. It this case, the store and load
executed at the end of the scheduler loop. This last ingbructcan be performed in any order by the instruction scheduler.
is required to clear all tokens before the next executiomhSu As an example of the result of an error-injection, we present
effect can be modeled by unrolling the loop. an execution trace generated by the Spin model-checker. We

Because the token container is already occupied by thse the test model presented in Figure 4 with core synchro-
outermost execution of the scheduler, recursion is also nozation removed. This partial execution trace excludes th
handled by the framework. A supplementary container coudtnpty execution andl se-statements for conciseness. Some
be used to model the nested execution. However, usingstatements are also folded.
different instruction scheduler for the nested context Mou Lines 6—8 show the instruction scheduler from processor B
fail to appropriately model interleaving of instructionstlyeen scheduling the two first instructions of this processordpi
different nesting levels. Therefore, nested calls mustoe dion of the initial token and error-injection by produciniget

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009

1 #define PA_PROD_NONE (1 << 0)

2 #define PA_VRITE (1<<1)

3 #define PA_ VB (1 <<2)

4 #define PA_SYNC _CORE (1 << 3)

5 #define PA_RMB (1 << 4)

6 #define PA_READ (1 << 5) TOKENS
7 -
8 byte pa_tokens; 1
9

10 active proctype processor_A() —
11 {

12 PRODUCE_TOKENS(pa_t okens, PA PROD _NONE); _
13 1
14 do

15 1 CONSUME_TOKENS(pa_t okens, L
16 PA_PROD_NONE, PA_WR TE) ->

17 ooo_men(); I
18 VRl TE_CACHED VAR(al pha, 1);

19 ooo_men(); 0
20 PRODUCE_TOKENS(pa_t okens, PA WRI TE); L
21 11 CONSUME_TOKENS(pa_t okens,

22 PA WRI TE, PA WB) -> -
23 smp_wrb() ;

24 PRODUCE_TOKENS(pa_t okens, PA_WB); 0
25 11 CONSUME_TOKENS(pa_t okens, L
26 PA VWRI TE | PA WB,

27 PA_SYNC CORE) -> -
28 PRODUCE_TOKENS(pa_t okens, PA_SYNC_CORE) ;

29 :: CONSUME_TOKENS(pa_t okens, 0
30 PA_SYNC_CORE, PA RMB) -> L
31 smp_rnb();

32 PRODUCE_TOKENS(pa_t okens, PA RVB); -
33 ;. CONSUME_TOKENS(pa_t okens,

34 PA_SYNC_CORE | PA_RMB, 0
35 PA_READ) -> L]
36 ooo_nen();

g; pa_tr ﬁ;lg():_ READ_CACHED_VAR(bet a) ; Fig. 5. Instruction Dependencies of Out-of-Order InstiareScheduling and
39 PRODUCE_TOKENS(pa_t okens, PA_READ); Memory Framework Test
40 11 CONSUME_TOKENS(pa_t okens,

41 PA_PROD NONE | PA WRITE |

42 PA_ WVB | PA_SYNC_CORE |

43 PA_RVMB | PA_READ, 0) ->

44 CLEAR_TOKENS(pa_t okens,

45 PA PROD NONE | PA WRITE |

46 PA WWB | PA SYNC CORE |

47 PA RVMB | PA READ);

48 br eak;

49 od; TOKENS
50 }

Fig. 4. 000 Instruction Scheduling and Memory Frameworks Plarest
Code, Processor A

core synchronization token ahead of the instruction sdeedu

execution. F---- -
| Instruction di
6: proc 1 (CPUB) line 252 "mem spin" (state 2)
[pb_t okens = (pb_tokens| (1<<PA_PROD _NONE))]
8: proc 1 (CPUB) line 261 "nmem spin" (state 3)

[pb_t okens = (pb_tokens| (1<<PA_SYNC_CORE))] :

Line 10 presents the trigger permitting activation of the B
write instruction.

10: proc 1 (CPUB) line 265 "nmem spin" (state 4)
[(('((pb_tokens& 1<<PA WRITE)))
&& ((pb_t okens&(1<<PA_PROD_NONE))
==(1<<PA_PROD_NONE))))]

Lines 19-21 show processor B updating its alpha and beta
cache-view from memory. Processor B performs a random
cache update. In this execution trail, it loads alpha ana bet
into its local cache.

sabled

19: 1 (CPU_B) Ii 125 " in" (state 30 ;) .) .
proc [g! (cche 'dinft y_al ng[n ‘s)lp'd]n))](S ate 30) Fig. 6. Instruction Dependencies of Out-of-Order InstiartiScheduling and
19: proc 1 (CPUB) line 125 "mem spin" (state 31) Memory Framework Test (Error Injection)

[cached_al pha[_pi d] = nem al pha]

21: proc 1 (CPUB) line 126 "mem spin" (state 41)
[(!'(cache_dirty_beta[_pid]))]

21: proc 1 (CPUB) line 126 "mem spin" (state 42)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 8

Pre-existing reads

[cached_bet a[_pid] = nem beta] rcu_dereference()
.))) rcu_read_lock() rcu_read_unlock()
At Line 23, processor B writes to its cache view of beta \ \
. . |’ |
and sets the matching dirty flag. Reader1 [reads | | 'redds | | reads
23: proc 1 (CPUB) line 267 "mem spin" (state 53) N ‘ |
[cached beta[pid] = 1] % Reader 2 [read% [] ‘ reads ‘ |
23: proc 1 (CPU_B) line 267 "nem spin" (state 54) T
[cache_dirty_beta[_pid] = 1] g Reader 3 [reads | | :/ reads !
. . . . Reader 4 J reads | reads
A succinct high-level summary of the execution trail fol- = LV | | 1 |
lows: Updater ‘ removal ‘ grace period reclamation
CPU B: wites to in-cache beta Time 7 7 !
CPU A: wites to in-cache al pha \ ‘
CPU A1 snp_rnb() rcu_assign_pointer() :
CPU B: snp_wmb() B S! ;chronize reu() Gr?ce period i
CPU B: snp_rmb() V! - waits for (?or_npletlon
CPU B: reads alpha fromits cache of pre-existing reads
CPU A: snp_wnb())
CPU A: reads beta fromits cache Fig. 7. Schematic of RCU Grace Period and Read-Side CritieatiGhs

At the bottom of the execution trail, the state for which the

LTL condition did not hold is shown: . o .
standard mutual exclusion primitives, memory ordering tmus

;g'rgce;'s:'s' ends after 161 steps be performed by these sarR€U primitives.
mem al pha = 1 This section presents the model we created to verify if
cached_a SE:{ ‘ﬂ ; the grace-period and publication guarantees are satisfied b
cache_dirty_al pha[0] two RCU synchronization algorithms proposed in paper (1):
cache._di rty_al pha[1] General-Purpose RCland Low-Overhead RCU Via Signal
h [1 Handling It also verifies that both updater and readers always
cached_beta[1] = 1 progress. We first describe the geneREU model, which

cached_bet a[0]
cache_dirty_beta[0] . i R A .
cache_dirty_beta[1] is subsequently derived into a signal-based memory barrier

nn
oo

nn
o

o model.

pa_t okens = 31 A schematic for the high-level structure of &CU-based
161 proc o ?*é—,bf/';f”lsl e e opin (state 239) algorithm is shown in Figure 7. ARCU grace period is
2 processes created informally defined as any time period such thatR@U read-

At that point, bothpa_read and pb_r ead contain 0. Sld(f,' critical sections in eX|ste_nce at the beginning of that
eriod have completed before its end.

By examining the execution trace, we understand that UP'SHere each box labeled “Reads” is RCU read-side crit-
behavior is made possible by letting processor A execute 1%3 '

read memory barrier before the write memory barrier. Thlsal section that begins with rceead lock() and ends with
. y y oarrier. rciu_read_ unlock(). Each row oRCU read-side critical sections
is allowed because the removed core synchronization per

reordering these unrelated tvpes of barriers Menotes a separate thread, for a total of four read-sidadkre
9 . yp S Jhe two boxes at the bottom left and right of the figure denote
Therefore, even given the known model limitations regar

ing loops and nesting, the instruction scheduling and vyeakla fifth thread, this one performing update.

ordered memory architecture models are sufficient to mod IThiS update is split into two phases, a removal phase
. y an . . Jenoted by the lower left-hand box and a reclamation phase
RCU algorithms, as is shown in Section VI.

denoted by the lower right-hand box. These two phases must
be separated by a grace period, which is determined by
VI. READ-COPY UPDATE ALGORITHM MODELING the duration of the synchronizecu() execution. During the
Read-Copy UpdateRCU) is a synchronization primitive removal phase, th&®CU update removes elements from the
allowing multiple readers of a data structure to executeapn data structure (possibly inserting some as well) by issaimg
rently with extremely low-overhead (1). Its main charaistit rcu_assignpointer() or equivalent pointer-replacement primi-
is to provide linear read-side scalability as the number @fe. These removed data elements will not be accessible to
processor increases. It performs this by allowing multipleCU read-side critical sections starting after the removabkpha
copies of a data structure to exist at the same time. In agberiends, but might still be accessed BRZU read-side critical
of time calledgrace period each processor is allowed to see aections initiated during the removal phase. However, gy th
different copy of the data structure. TREU synchronization end of theRCU grace period, all of th&CU read-side critical
guarantees specify a lower bound to the duration of the grasections that might be accessing the newly removed data
period, after which no further references to old copiestexi®lements are guaranteed to have completed, courtesy of the
so that the underlying memory becomes reclaimable. definition of grace period Therefore, thegr ace- peri od
The main motivation for validating th&CU algorithms is guar ant ee ensures that the reclamation phase, beginning
their complexity level. These algorithms are parallel angly after the grace period ends, can safely free the data elesment
inconsistent views between processors at a specific pointr@moved previously.
time. Also, becausdRCUs read-side primitives contain no The publication guaranteeensures that data accessed by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 9

the read-side through the radereference() primitive (always to not only verify that the guarantees are sufficient to emsur
executed between rctead lock() and rcuread unlock()) will model correctness, but also that the modeled guarantees are
see changes made by the write-side before publication of thetually required, e.g. if a predicate is not satisfied, aorer
RCU pointer by rcuassignpointer. will occur.

The model which abstracts thBCU algorithm has one Removesnp_nb(): The first error injected is to remove
updater and one reader process. It is based orOt@mem the memory barriers surrounding synchronizei(). This is
andOoOischedrameworks to verify that it satisfies the aboveknown not to meet the grace period guarantee, as it would let
mentioned guarantees when executed on a weakly-ordetied pointer update spill over the whole grace period into the
processor and memory architecture. In addition to globdl afollowing quiescent state. This would therefore let poiagn
per-threadRCU synchronization variables, the data structurezccur before the pointer is updated.
required are a pointer to the currdR€U data and ararena a Removesnp_wnb() : The second error we inject is to re-
pool of free memory used by the memory allocator. All thes®ove the write memory-barrier from the rassign pointer()
data structures are modeled with tBeOmemframework. primitive. This is known not to meet the publication guaran-

The updater process performs two loops which first updaiee, because the pointer could then be published before the
data in a newly allocated arena entry from t®Omem newly allocated arena entry is populated with non-poisoned
model and then publishes a pointer to the new entry intoformation.
another share@oOmenvariable using a modeled rcassign Remove snp_r nb() : The third error is injected by re-
pointer() primitive. At the same time the updater stores thwoving the read memory-barrier from the rcereference()
new pointer, the updater loads the previous value into iimitive. On Alpha (andonly on Alpha), this is known not
local registers. It is reclaimed after a grace period pasdes to meet the publication guarantee because the reader'® cach
modeled synchronizecu() primitive is used to wait for such could be populated with the new pointer before the areng entr
grace period to reach a quiescent state. After that poiet, tis updated. We therefore expect the reader to see poisoteed da
arena entry corresponding to the old pointer can be poisonedSingle grace-period phaseThe fourth error-injection test

Memory reclamation is modeled by writiggisondata into consists in altering synchronizeu() to only perform a single
the arena entry. In a valid model, the read-side should remeer grace-period phase. This is expected not to meet the grace
such poison value in the memory location it reads. This meethperiod guarantee by allowing a race condition between sread
is used to detect inappropriate use of reclaimed memory. and two consecutive updates.

The updater loops do not need to be unrolled becauselhe reader code is modeled in an infinite loop to verify
the synchronizercu() primitive contains full memory barriers. updater’s progress when facing a steady flow of readers. The
Poisoning alone could spill in the next loop and overlap witteader and updater progress are tested in two different runs
stores to the newly allocated arena entry, but late-agivin « For reader progress, a single progress statement is added
poisoning stores are not relevant to the characteristics we between each reader loop execution.
validate. « On the updater-side, progress statements are added in

The reader is modeled as one process entering two read- each update loop and an infinite loop containing a
side critical sections. Each consists of a lock and unlodk pa progress statement is added at the end of the updater’s
between which are placed a radereference() and aread of the process execution.
corresponding arena entry. The first critical section holds The weak fairness Spin option ensures that non-progress
nested read locks. The second critical section holds aesinglrors are flagged only for cycles containing at least one
nesting-level read lock. Given the outermost code of sisiees statement from each process, but not containing any special
read lock/unlock can spill on each other, such spilling edusprogresslabels.
by reordering, prefetching and optimizations is modeled by Remove snp_nb() from busy-loop: The fifth error in-
those two successive critical sections. The data read mwithiécted is to remove the memory barrier placed in the updater’
each critical section is saved to the globally visible detad. busy loop waiting for a grace period phase to complete. This
first and dataread second variables to be used for verificationinjects an updater progress error by allowing the updater’s

The guarantees provided by tRE€U algorithm are verified cache to never read the eventually updated reader nesting
with the LTL formula presented in (1), which makes sure theounter. On real systems, the bounded size of the buffers
reader never loads a poisoned arena entry. The Spin modgitween the CPU, cache and memory interconnects ensures
checker checks for states which do not verify this claim. that the remote nesting counter is updated, but given oturalir
generates an error and presents a counter-example cogsisirchitecture model assumes infinitely-sized buffers, glieik
of a faulty execution trace when the claim is not satisfied. memory barrier must be placed in the busy-loops to ensure
data is being read.

The signal-based memory barrier is modeled as a derivation

G A @) of the general model by changing the updater-side memory
data_read_second # POISON barriers for a primitive which sends a signal and waits for

To minimize the risk of modeling errors, we augment oumemory barrier execution from the reader-side, all this be-
models with error-injection regression tests. For eachhef ttween two memory barriers. On the read-side, the memory
characteristic we need to validate, we create a model @itiara barriers are modeled by verifying, between each instroctio
which is known not to satisfy the characteristic. This pésmiexecution, if the execution status tokens appears to be in

data_read_first 2 POISON

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 10

sequential execution order. If execution appears in sda@enthe signal-basedRCU model and the modeling of signal-
order between two instructions, the reader process chookasdler read-side. Test run results are presented alorig wit
to either ignore any memory barrier request or to servitke resources required to perform the verification. These
any number of memory barrier requests by issuing memovegrifications are performed on a Intel Core2 Xeon 2.0 GHz
barriers and informing the updater-side of the completion. with 16 GB RAM.

Due to the added complexity and therefore state-space siz&he only test result we really care about is whether the
explosion, modeling of read-side in signal handers nestugg verification succeeds or fails. For the unaltered model and f
the updater and reader thread is performed using a differ@nbgress verifications, theTL claim or progress property are
model which assumes a sequentially ordered architectule wéxpected to hold. Such successful verification are denaed a
the OoOmenmweakly-ordered memory framework. Given thaPASS. For each error-injection run presented in Section VI,
signal handlers have the property to order the core exetutibie expected result is that the model-checker should detect
before and after they execute, it allows using the safety aimjected error, denoted dNJECT. The notatiorFNEG would
progress characteristics proven with theOischedramework indicate that the model-checker was blind to an injectedrerr

as lemma. This constitutes a “false negative”. These are not errors as
_ such, as not every bug necessarily results in a failure oryeve
A. State-Space Compression architectures modeled. Finally, the notati6Al L indicates

Given that the state-space required to perform the verifidivat the model-checker detected a bug in the algorithm.
tion can increase quickly, the following state-space caspr Additional information about the time and memory required
sion techniques were used to perform the verifications. to run these verifications is only provided to show the amount
Running the Spin model-checker to verify specifi@dL of computational resources needed for such verificatiom Th
formulas transformed intaever claimspermits checking for only requirement is that execution time and memory used fit
safety while performingPartial Order Reduction(13). This within our available resource limits.
model-checking approach discards relative statementr-orde Tables | and Il present the result of the general-purpose
ing which does not matter for the property to verify. Thi®RCU model-checking using the Alpha and Intel/PowerPC
reduces the state-space size tremendously with a very smaliual architectures, respectively. The safety and psgr
performance impact, while preserving the safety and ligeneverifications are successful, and all error-injectionsegate
properties ofLTL. expected errors, except one: on the Intel/PowerPC arthitsc
Accepting a small performance impact (perceived slowdowro error is generated when removing teep_rnb() on
of a factor 1.3 on our models), thEOLLAPSE compres- the read-side. This shows that no read barrier is required on
sion (11) can be used to reduce the state-space requitieekse architectures due to the fact that dependent loadoare
to perform verification by separating the state into subeordered.
components. The compression comes from the fact that one

. ; . . TABLE |
state configuration for a specific process tends to reoccur ingeyeraL-PURPOSERCU VERIFICATION RESULTS FOR THEALPHA
different global data and other process states. It usesatepa ARCHITECTURE
descriptors as key to encode and search global data objetts a
data objects belonging to each process. Each time the sanédel PASS/FAIL Memory | Time
process state is encountered, it can be encoded with the sam8egression Test INJECT/FNEG | (GB)
per-process state descriptor instead of saving the whate,st Unaltered model (safety) PASS 1.06 | 2h33m
which saves precious state-space. A global state desgripto Removesnp_nb() INJECT 1.07 | 1h06m
used to identify the overall state, therefore consists dfates Removesnp_wnb() INJECT 0.96 | 1hl4m
vector made of the global and per-process descriptors. ThisRemovesnp_r nb() INJECT 0.52 9m
lossless compression preserves the complete state-space. Single grace-period phas INJECT 0.66 26m

Another possible lossless compression technique, th&eader progress PASS 1.76 | 10h38m
DVA (Deterministic Finite Automaton) (11), can further di- Updater progress PASS 1.76 | 9h23m
minish the state-space size by leveraging the high degree_ofRemove loopsnp_nb() INJECT 0.47 im

similarity between the different states. It representssiate-

space using an encoding similar BDDs (Binary Decision Table Il presents the verification result of the signaldzhs
Diagrams) (19; 20). However, this compression techniquRCU model for the Alpha virtual architecture. This verification
incurs a prohibitive performance impact. Our tests on largmsures signal-based memory barriers provide the memory
models show that state-space exploration is about 10 tim@8lering guarantees and that no livelock nor deadlock can
slower. Given that the non-compressed execution of somecur. Progress verification requires to use @@.LAPSE
verifications already takes about 24 hours, the computati@pin option to compress the state-space size. It takes 3.5
time required foDIVA compression is considered to be beyondays to complete the updater progress verification. To educ

our available computation time resources. the required CPU time, the reader progress and the updater
. progress error-injection are performed on a simplified +ead
B. RCU Model-Checking Results side model with only a single, non-nested, critical section

This section presents the Spin model-checker results fdpdater progress has also been verified using this simpler
three models: the general purpose user-spgaCtl model, model and resulted in a successful progress verification.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009

TABLE Il
GENERAL-PURPOSERCU VERIFICATION RESULTS FOR THE
INTEL/POWERPC ARCHITECTURES

11

an interrupted process, if the signal handler would busy-lo
waiting for the interrupted process.

Model PASS/FAIL Memory | Time G 5 ROUS TABLAE \ 5 N
. ENERAL-PURPOSE| IGNAL-HANDLER READER NESTED OVER
Regression Test INJECT/FNEG (GB) READER VERIFICATION (NO INSTRUCTION SCHEDULING)
Unaltered model (safety) PASS 0.82 4m
Removesnp_nb() INJECT 1.96 | 16m Model PASS/FAIL Memory | Time
Removesnp_wnh() INJECT 0.79 5m Regression Test INJECT/FNEG (GB)
Removesnp_r nb() FNEG 0.82| 6m Unaltered model (safety) PASS 4.35 10m
Single grace-period phasg INJECT 0.61 Im Removesnp_mb() INJECT 1.60 5m
Reader progress PASS 1.28 | 23m Removesnp_wmb() INJECT 0.78 2m
Updater progress PASS 1.28 | 23m Removesnp_r mb() INJECT 1.60 om
Remove loopsnp_nb() INJECT 0.47] Om Single grace-period phasg INJECT 0.57 om
Reader progress PASS 9.21 | 1h56m
TABLE Updater progress PASS 9.15 | 1h03m
SIGNAL-BASED RCU VERIFICATION RESULTS FOR THEALPHA '
ARCHITECTURE Remove loopsnp_nb() INJECT 0.51 Oom

Model PASS/FAIL Memory Time
Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 5.21 | 1d14h18m
Removesnp_nb() INJECT 0.59 13m
Removesnp_wrb() INJECT 5.17 | 1d14h33m
Removesnp_r nb() INJECT 1.20 2h43m
Single grace-period phasg INJECT 3.09 5h45m

Reader progress PASS 0.89 2h02m

Updater progress PASS 11.73 | 4d15h13m
Remove loopsnp_nb() INJECT 0.472 1m

As in the Alpha signal-basedRCU verification, In-

tel/PowerPC model verification require to use the COLLAPSE Unaltered model (safety)
compression to fit in the available memory. Here we notice Removesnp_nb()

that the test execution time for each progress verification i

approximately 4 hours and uses about 10 GB of memory. Removesnp_r nb()

As in the general purpos®CU model, thesnp_rnb()

removal does not cause any error on Intel/PowerPC becausereader progress

the architecture does not reorder dependent loads.

TABLE IV
SIGNAL -BASED RCU VERIFICATION RESULTS FOR THEINTEL/POWERPC
ARCHITECTURES

TABLE VI

GENERAL-PURPOSERCU SIGNAL-HANDLER READER NESTED OVER

UPDATER VERIFICATION (NO INSTRUCTION SCHEDULING)

Table VI is the results obtained by modeling an interrupting
read-side signal handler critical section nested over fuater
thread. It presents an interesting result: given all radd-s
critical sections are contained within signal handlerstetes
over the updater, no memory barrier is required to ensure
correctness because no cache-line exchange is requitdt,In
only a single process is executing.

Model PASS/FAIL Memory | Time
Regression Test INJECT/FNEG (GB)

PASS 0.47 Oom

FNEG 0.48 Im

Removesnp_wnb() FNEG 0.47 Im

FNEG 0.47 Om

Single grace-period phasg FNEG 0.47 Oom

PASS 0.47 im

Updater progress PASS 0.47 1m

Remove loopsnp_nb() FNEG 0.47 Im

For each of the unaltered models checked, model cov-
erage includes all of thdRCU model lines, but excludes

Model PASS/FAIL Memory | Time
Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 6.98 | 1h43m
Removesnp_nh() INJECT 1.18 am
Removesmp_wnb() INJECT 6.98 | 1h42m
Removesnp_r nb() FNEG 6.98 | 1h45m
Single grace-period phasg INJECT 4.28 16m

Reader progress PASS 10.08 | 4h18m

Updater progress PASS 9.88 | 4h18m
Remove loopsnp_nb() INJECT 0.58 3m

some OoOmemmodel operations which are not useful in
some contexts. For instance, tl@Omem“random” store

to memory will never be executed if a process never writes
into a given variable. Error injection runs do not need to
visit all the state space because they stop after the first err
encountered. Therefore, these self-testing runs do nat tee
provide complete coverage.

C. RCU Verification Discussion

Results presented in Section VI-B demonstrate that we
were able to successfully verify theCU algorithm models

Modeling of read-side signal handler nested over a readervarious execution scenarios with affordable computatio

thread is presented in Table V. This model executes a readsources. The error-injection tests further demonstitade
side critical section in a signal handler interrupting adesa the model is able to detect defects that do not respedRhe
thread. We proceed to this verification to model a read-sidearantees.
In these tests, the number of updater has been limited to
traces where a nested signal handler could deadlock withe given we protect updater critical sections using a nhutua

critical section in a signal handler, which generates etiecu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 12

exclusion primitive already expected to be valid. The numbe VIl. FRAMEWORK DISCUSSION
of reader is also fixed to one because the updater waits,nn tur Compared to models used previously REU verification,
for each reader one after the other. The algorithm therefgyg, proposed framework covers more micro-architecture-sid
does not contain any reader-reader data or control depeyideRffects. This includes, for instance, effects of data pobfe

As expected, model of the read-side signal handler nest@dreover, the state-space size required by our framewask ha
over a RCU reader succeeds because ReU read-side is been shown to be manageable on current computers when
executed withO(1) computational complexity, which implies modeling complex synchronization algorithms suchR&L.

that it never busy-loops. This shows that it should be applicable to other parallel
The simplified read-side in signal handler model does nalgorithms with similar complexity level.
perform instruction execution reordering. Given the prowd- One of the major improvements of this modeling frame-

vided by the previous verifications, the nested signal reandwork is to allow a more regular description of algorithms. It
execution can be modeled as being serialized with the restrefnoves the need to account for low-level architecture-side
the interrupted code because the operating system is cakdigcts directly in the algorithm model by providing artet&
before and after the signal handler. T@Omemmodel which encapsulate the architecture behavior. This framlewo
is however still used to appropriately take the out-of-ord¢herefore minimizes the risk of modeling error.
memory effects into account. This models the Alpha virtual Due to its ability to model the weakest ordering possible,
architecture, which is a superset of the Intel/PowerPQuairt altering the framework to model memory barriers specific to
architecture, given it allows weaker memory ordering. architectures such as Alpha, Intel, PowerPC and even Sparc i
Verification of interrupting read-side signal handlericat Straightforward. Modeling specific architectures can byelo
section nested over the updater thread interestingly skiuats by creating the synchronization instructions implemerited
the read-side signal handler can nest over the updater wtithgiven architecture and modifying the behavior of the cache-
causing progress error (no livelock nor deadlock). ThelsingMeémory synchronization to match the architecture behavior
grace-period phase test shows no error. This can be exglaif@ instance, th? PowgrPG wsync” mstructpnz can be '
by the fact that the execution trace which requires two gracd®odeled as two instructions. The first instruction needeal is
period phases involves the reader seeing two updater pdatP_r M() which depend on all prior loads, and upon which
This execution trace is impossible here because the upigateiepends all following loads and stores. The second insoruct
being interrupted by the nested read-side signal. is a snmp_wnb(), which depends on all prior stores, but

Error-injection tests have been very useful to ensure modon Whi.Ch only the following store_s dgpend_. S.L.'Ch flexipilit
completeness. For instance, trying the test-case preﬂ;d!mtem modeling the low-level synchronlzatu’)’n prlm!nves bm
Section V-B on theDoOmemmodel showed its limitations. V€Y _handy to model the Spararénbar pr.|m|t|ve, which
Changing thesmp_nb() into consecutivesnp_r mb() and permits to only order either, some or all of:
smp_wmb() (which are free to be reordered) did not produce ¢ StOreés Vs stores,
the expected error. This showed that we needed to model oute Stores vs loads,
of-order instruction scheduling to properly represens tlass ¢ l0ads vs loads or
of CPU instruction reordering effects, effectively leaglito ¢ l0ads vs stores.
the creation of thédoOischedmodel. In the case of thdRCU algorithm model, we only need full

Another example where error-injection has been useful hdpemory barriers. . _
pened during th®©oOischeebasedRCU model creation. The ~We are aware of one recently proposed compiler opti-
OoOischedframework being based on a instruction scheduffization not handled by our model. Value-speculative opti-
ing loop, we can only use the model coverage informatidRizations (21; 22) performed by the compiler could cause
provided by Spin as indication that statements have begfPendentloads to be performed out-of-order if the first éat
reached at least once, but it tells nothing about the exautf®ad is speculated, which would permit to read dependeat dat
orders visited. Instruction dependency implementationrey N the wrong order. These dependency-breaking optimizatio
which inhibited execution of some instructions incorngctl @€ outside of the proposed model scope. Work in progress

were identified with the help of these error-injection tests OF upcoming versions of the C++ standard include compiler

We also created a model for uniprocessor execution of t echanisms designed to selectively suppress value specula
ion (23; 24; 25).

RCU algorithm. The code generated for this model has t
particularity that all memory barriers are replaced by cibenp
barriers, excepsnp_read_barri er _depends(), on Al- VIil. Conctusion

pha, which is completely removed. In this model, a single To accurately model the low-level multiprocessor interac-
processor cache is used by both the reader and the wriieps at the architecture-level, we created a virtual &echire
processes. No communication is required with main memoggrforming the most aggressive optimizations still megtin
given all accesses are going through the locally cached vdhe instruction inter-dependencies. Memory access orglési
ables. Therefore, out-of-order memory updates are didabléxpressed by modeling a processor cache with extremely weak

The results of the tests, not presented here for concisenes
P S §stync - Lightweight synchronization: Orders loads with respezt t

show that Slmply using compller barriers S_Uff'ce to prov'dﬁ.lbsequent loads and stores. Orders stores with respettteiostores. Does
RCU safe against thread preemption on a uniprocessor systeni.order stores with respect to subsequent loads.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, B. Y, MONTH 2009 13

ordering. A model of instruction dependencies deals with th[8] B. Steffen, “Data flow analysis as model checking,”

effects of out-of-order instruction execution. in Lectures Notes in Computer Sciences. Theoretical
Formal verification of both general-purpoB€U and signal- Aspects of Computer Software: TAC®I. 256, 1991,

based RCU has been performed on this virtual architec- pp. 346-364.

ture, therefore modeling the effects of out-of-order imstr [9] M. Dwyer and L. A. Clarke, “Data flow analysis for

tion execution and out-of-order memory accesses. The high verifying properties of concurrent programs,” lim Pro-

complexity-level of thes€kCU algorithms caused by the high ceedings of the Second ACM SIGSOFT Symposium on

degree of parallelism and extremely relaxed consisteney se Foundations of Software Engineering ACM Press,

mantics can easily overwhelm human conception. This is why 1994, pp. 62-75.

validation at the lowest level of interprocessor intemattis [10] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Peti

needed to certify that these algorithms perform the expecte L. Petrucci, and P. Schnoebelen. Springer-Verlag, 2001.

synchronization. [11] G. J. Holzmann, “The SPIN model checkelEEE
Future work in this area could involve modeling value- Transactions on Software Engineerjnp97.

speculative compiler optimizations, to enable detectidn §12] J. van Leeuwen, EdHandbook of theoretical computer

ordering problems which can occur when dependent mem- science (vol. B): formal models and semantic<am-

ory accesses can be reordered dependency-breaking compile bridge, MA, USA: MIT Press, 1990.

optimizations. [13] D. Peled, “Combining partial order reductions with on-
Modeling these algorithms on this virtual architectures let the-fly model-checking,Formal Methods in System De-
us demonstrate that all invocations of this algorithm ptiias sign vol. 8(1), pp. 39-64, 1996.
will behave appropriately and that porting it to yet unfaes [14] P. E. McKenney, “Memory ordering in modern micro-
architectures will work as expected. processors, part Il,Linux Journal July 2005.
[15] R. E. Kessler, “The Alpha 21264 microprocessoEEE
ACKNOWLEDGEMENTS Micro, vol. 19(2), pp. 24-36, March 1999.

We owe thanks to Nicolas Gorse, Etienne Bergeron abtf] J. L. Peterson, “Petri netsACM Computing Surveys
Alexandre Desnoyers for reviewing this paper, to Maged (CSUR)vol. 9(3), pp. 223-252, 1977.
Michael and Alan Stern for many illuminating discussiond17] K. Jensen, “Coloured petri netsPetri Nets: Central
and to Kathy Bennett for her support of this effort. Models and Their Propertiesvol. 254, pp. 248-299,
This material is based upon work supported by the National 1987.
Science Foundation under Grant No. CNS-0719851. TH8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
work is funded by Google, Natural Sciences and Engineering and F. K. Zadeck, “Efficiently computing static single
Research Council of Canada, Ericsson and Defence Research assignment form and the control dependence graph,

and Development Canada. ACM Transactions on Programming Languages. and
Systemsvol. 13, no. 4, pp. 451-490, Oct 1991. [Online].
LEGAL STATEMENT Available: http://doi.acm.org/10.1_145/115372.115320
This work represents the views of the authors and does not necessarily represen{ 48] R. E. Bryant, “Graph-based algorithms for boolean func
view of Ecole Polytechnique de Montreal or IBM. tion manipulation,”IEEE Transactions on Computers
Other company, product, and service names may be trademarks or service marks of /g, C-35(8), pp. 677-691, 1986.
others. [20] ——, “Symbolic boolean manipulation with ordered
binary decision diagrams,ACM Computing Surveys
REFERENCES vol. 24, no. 3, pp. 293-318, 1992.

[1] M. Desnoyers, P. E. McKenney, A. Stern, M. R. Daj21] C.-Y. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte,
genais, and J. Walpole, “User-level implementations of “Value speculation scheduling for high performance pro-
read-copy updatefo appear cessors,"SIGPLAN Not. vol. 33, no. 11, pp. 262-271,

[2] P. E. McKenney, “Using Promela and Spin to verify 1998.
parallel algorithms,” August 2007, available: http://lwn[22] C. ying Fu, M. D. Jennings, S. Y. Larin, and T. M.
net/Articles/243851/. Conte, “Software-only value speculation scheduling,”

[3] P. E. McKenney and S. Rostedt, “Integrating and vali- Tech. Rep., 1998.
dating dynticks and preemptable RCU,” April 2008. [23] P. E. McKenney, “C++ data-dependency ordering:

[4] A Better x86 Memory Model: x86-TS@009. Atomics,” http://open-std.org/jtcl/sc22/wg21/docs/
[5] The semantics of power and ARM multiprocessor ma- papers/2007/n2359.html, 2007.
chine code New York, NY, USA: ACM, 2008. [24] ——, “C++ data-dependency ordering: Memory model,”
[6] G. J. Holzmann,The Spin Model Checker: Primer and http://open-std.org/jtcl/sc22/wg21/docs/papers/2007
Reference Manual Addison-Wesley, 2003. n2360.html, 2007.
[7] D. A. Schmidt, “Data flow analysis is model checkind25] ——, “C++ data-dependency ordering: Function

of abstract interpretations,” iProceedings of the 25th annotation,” http://open-std.org/jtcl/sc22/wg21/docs
ACM SIGPLAN-SIGACT symposium on Principles of papers/2007/n2361.html, 2007.

programming languagesSan Diego, California, 1998,

pp. 38-48.

