
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 1

Multi-Core Systems Modeling for Formal
Verification of Parallel Algorithms

Mathieu Desnoyers, Paul E. McKenney, Michel R. Dagenais

Abstract—Modeling parallel algorithms at the architecture
level permits to explore side-effects of weak ordering performed
by modern processors. Formal verification of such models with
model-checking can ensure that algorithm guarantees will hold
even in the presence of the most aggressive compiler and
processor optimizations.

This paper proposes a virtual architecture to model the effects
of such optimizations. It first presents theOoOmemframework
to model out-of-order memory accesses. It then presents the
OoOischedframework to model the effects of out-of-order in-
struction scheduling.

These two frameworks are explained and tested using weakly-
ordered memory interaction scenarios known to be affected by
weak ordering. Then, modeling of user-levelRCU (Read-Copy
Update) synchronization algorithms is presented. It uses the
virtual architecture proposed to verify that the RCU guarantees
are indeed respected.

Index Terms—C.0.d Modeling of computer architecture < 0.
General < C. Computer System Organization, C.1.2.g Parallel
processors< C.1.2 Multiple Data Stream Architectures (Mul-
tiprocessors) < C.1 Processor Architectures < C. Computer
System Organization, D.1.3. Concurrent Programming< D.1
Programming Techniques< D. Software/Software Engineering,
D.2.4.d Formal Methods< D.2.4 Software/Program Verification
< D.2 Software Engineering< D. Software/Software Engineer-
ing, D.2.4.e Model Checking< D.2.4 Software/Program Verifi-
cation < D.2 Software Engineering< D. Software/Software En-
gineering, D.4.1.f Synchronization< D.4.1 Process Management
< D.4 Operating Systems< D. Software/Software Engineering
D.4.5.f Verifcation < D.4.5 Reliability < D.4 Operating Systems
< D. Software/Software Engineering<,

I. I NTRODUCTION

FORMAL verification of synchronization primitives for
shared memory multiprocessor architectures is undoubt-

edly useful due to the architecture and context dependency of
bug occurrence. An algorithm can appear bug-free when used
in a large set of test cases. However, testing is unable to certify
that compiler optimizations done for a different invocation of
a synchronization primitive will work as expected. Portability
is also hard to certify with testing, because it would involve
testing the primitives on all architecture variants.

Our principal motivation is to create detailed architecture-
level models taking into account weak instruction scheduling
and memory access ordering able to verify the user-spaceRCU
(Read-Copy Update) implementations presented in (1). The

Manuscript received July X, 2009; revised Month Y, 2009
M. Desnoyers (mathieu.desnoyers@polymtl.ca) and M. R. Dage-

nais (michel.dagenais@polymtl.ca) are with the Computer and Software
Engineering Department, Ecole Polytechnique de Montreal.

Paul E. McKenney (paulmck@linux.vnet.ibm.com) is with the IBMLinux
Technology Center.

complexity level of these algorithms makes formal verification
well worthwhile.

This paper first depicts the modeling challenges, then sum-
marizes theLTL model-checking principles and introduces
to modeling of parallel algorithms. This is followed by a
presentation of the frameworks created to accurately model
real architectures. Finally, theRCU library modeling and its
verification are presented.

II. M ODELING CHALLENGES

Modeling multi-core systems for formal verification of par-
allel algorithm implementations brings interesting challenges.
These are caused by the architecture and compiler ordering
semantics. These challenges come from the presence of:

• compiler-level optimizations,
• execution of nested signal handlers,

on architectures with the following characteristics:

• shared-memory multiprocessor,
• weak memory-ordering,
• pipelined and superscalar,
• out-of-order instruction scheduling.

All these challenges are a direct result of our desire to model
algorithms for production use. If this was instead meant to
be only used for prototyping, we might be strongly tempted
to assume a non-optimizing compiler and almost inexistent
sequentially consistent machines to avoid dealing with op-
timization, out-of-order execution and out-of-order memory
access effects. We might also be tempted to assume signal
handlers out of existence as a simplification.

Concurrent algorithms have been modeled on weakly or-
dered systems in the past (2), and interrupts (similar to signals)
have been modeled as well (3). However, the methods used
in this past work to model weakly-ordered systems can result
in combinatorial explosion of the model. Models specifically
covering the x86 (4), as well as PowerPC and ARM (5)
architectures for parallel algorithm verification has alsobeen
proposed in the past. In this paper, we present a more general
approach that allows the model to more closely follow the
architecture behavior than the previousRCU models and to
take into account the weakest ordering amongst multiple
architectures, therefore modeling weak-ordering effectsmore
accurately.

To further reduce the computational requirements of the
validation process, we approximate the properties of the actual
hardware, but in all cases modeling weaker ordering than the
actual hardware provides. This weaker-ordering approximation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 2

ensures that any algorithm passing our validation will run
correctly on conforming hardware.

We propose a model representing the interprocessor in-
teractions, which we call ourvirtual architecture. In this
architecture, each Promela process represents a processor. To
model CISC architectures, complex instructions are divided
into micro-operations, which are then represented as atomic
Promela statements. It results in aRISC architecture, which al-
lows to easily detail micro-operations dependencies. Through
this article, micro-operation and instruction will be usedas
synonyms, given those apply to our RISC virtual architecture.

The models proposed here specifically use a data flow
representation of each processor, where each node repesents
a micro-operation and where each arc represents a data or
control dependency between micro-operations. This permits
to model accurately all possible micro-operation interleavings
as seen from the point of view of their visible effect outsideof
the processor. We model the interactions between processors
by creating a cache-memory interaction model.

III. M ODELING AND MODEL-CHECKING

This section summarizes the principles ofLTL model-
checking and presents an introduction to modeling of parallel
algorithms. It constitutes the background on which is con-
structed the rest of this article.

A. LTL Model-Checking

The verification is carried out using Promela (6), a special-
purpose modeling language that performs a full state-space
search. This in turn allows all possible execution histories
to be examined for specified classes of errors, including race
conditions and livelock conditions.

The equivalence between data flow analysis and model-
checking of abstract interpretations has been used (7; 8) to
model simple sequential programs. Data flow analysis has also
been used to verify properties of concurrent programs (9).

We represent our model in Promela and perform verification
of properties expressed asLTL (Linear Temporal Logic)
formulas1. The model description expresses atomic statements
executed by one or more processes. The Spin verifier (10; 11)
transforms the model into a Büchi (12) automaton. TheLTL
formulas are transformed in the negation of never-claims suited
for verification of the model. The Spin verifier visits all atomic
statements required to validate theLTL claims in all execution
orders allowed by the model. One sequence used to visit
atomic statements in a particular order forms a path.
LTL formalism allows basic logical operators within pred-

icates:
⇒: logical implication,

⇐⇒ : equivalence,
∧: conjunction,
∨: disjunction,
¬: negation.

To reason over the future of paths, temporal operators can
be applied to predicates:

1See the Promela reference for equivalentLTL symbolism http://spinroot.
com/spin/Man/ltl.html

G: Temporal operatoralways (a predicate will always
hold),

F: Temporal operatoreventually(a predicate must even-
tually become true),

U: Strong until (will hold until another predicate is
true).

Model checking permits to explore all execution scenarios
required to verify a specificLTL property. Unlike simulation-
based approaches, the model-checker only needs to generate
the states required to verify the property, rather than per-
forming an exhaustive state-space exploration. Each Promela
process being represented as an automaton, we can represent
the complete state-space generated by parallel processes by
performing the product of these automatons.

One major limitation is thatLTL model-checking is pspace-
complete. Reasoning about specific predicates to verify, allows
limiting the state-space to the subset required to verify the
predicates. This is why Spin enhances state-space exploration
with lossless compression techniques based on the charac-
teristics of the claims validated. For instance,Partial Order
Reduction(13) permits to merge states for which the partial
order does not affect the property to verify.

B. Introduction to Parallel Algorithm Modeling

As an introductory example, let us consider the verification
of the busy-waiting lock primitives, usually known asspinlock,
present in the PowerPC and Intel architectures of Linux kernel
2.6.30.

The spinlock implementation found in the PowerPC archi-
tecture is relatively straightforward: it consists of two states,
either 0 or non-zero. It uses the “lwarx” (Load Word and
Reserve Indexed) and “stwcx.” (Store Word Conditional
Indexed) instructions to atomically compare and update the
lock value. The store only succeeds if the memory location
has not been updated since the load.

As an example, a Promela model of this locking primitive
is presented in Figure 1. Line 1 contains the lock variable
definition, followed by a data access reference count defined
in Line 2. Lines 4–17 contain the spin lock primitive. The
inline function in Promela is close to that of the C language,
except that such functions in Promela have type-free argu-
ments, are not permitted to contain declarations, and do not
return any value. Lines 6–16 contain the busy-waiting loopdo
... od, stopped only by thebreak statement on Line 13
if the variablelock is 0. Theskip statement on Line 10
is an empty statement. It has no effect other than permitting
to follow the Promela grammar. Line 7 begins with “:: 1
->”, which indicates a condition always fulfilled. This lets the
statements following the “->” execute unconditionally. Line 7
ends with a very important keyword:atomic. It precedes
a sequence of statements, contained within brackets, which
is considered as indivisible. They are therefore executed in
a single execution step, similarly to an atomic instruction
executed by a processor. Lines 19–22 contain the unlock
function. Lines 24–33 contain the body of the processes, which
takes a spinlock, increments and decrements the reference
count, and releases the lock in an infinite loop. Two instances

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 3

1 byte lock = 0;
2 byte refcount = 0;
3
4 inline spin_lock(lock)
5 {
6 do
7 :: 1 -> atomic {
8 if
9 :: lock ->

10 skip;
11 :: else ->
12 lock = 1;
13 break;
14 fi;
15 }
16 od;
17 }
18
19 inline spin_unlock(lock)
20 {
21 lock = 0;
22 }
23
24 proctype proc_X()
25 {
26 do
27 :: 1 ->
28 spin_lock(lock);
29 refcount = refcount + 1;
30 refcount = refcount - 1;
31 spin_unlock(lock);
32 od;
33 }
34
35 init
36 {
37 run proc_X();
38 run proc_X();
39 }

Fig. 1. Promela Model for PowerPC Spinlock

of the process are run upon initialization byinit at Lines 35–
39.

This Promela code is represented by the diagram found in
Figure 2. Each node represents a Promela statement. A name is
added to most nodes to make interpretation easier. Each node
contains a Promela statement. Arrows connecting the nodes
represent how the model-checker can move between nodes.
Some require conditions to be active, e.g.(lock == 1), to
allow moving to the target node. TheSTEP++ statements on
the arrows represent that the execution counter is incremented.
A concurrent process may run between different steps, but not
while STEP stays invariant. The latter scenario happens in
the ATOMIC box, which represents the atomic sequence of
statements.

Safety of this locking primitive is successfully verified by
the Spin model-checker by verifying that the reference count
value is never higher than 1. This is performed by prepending
#define refcount_gt_one (refcount > 1) to
the model and by using the followingLTL formula. PowerPC
spinlock safety is verified by theLTL claim:

G
(

¬ refcount gt one
)

However, one major downside of this spinlock implementa-
tion is its lacks of fairness. A CPU always acquiring the same
spinlock in a loop could effectively starve other CPUs. This
can be verified using the followingLTL formula:

G
(

F (¬ np)
)

skip

UNLOCKED

lock = 0

UNLOCK

ref−−

ref++

TAKE LOCK

lock = 1

TRY LOCK

skip

(lock == 0)

STEP invariant

STEP++

STEP++

STEP++

STEP++ STEP++

STEP++

(lock == 1)

ATOMIC

C
R

IT
IC

A
L

S
E

C
T

IO
N

Fig. 2. Diagram Representation of PowerPC Spinlock Model

The keyword np_ has a special meaning: it is true if
all system states do not correspond to progress states. We
modify the code from Figure 1 to insert such progress states:
this involves separating the process body in two different
definitions to add aprogress: keyword within the infinite
loop in one of them. Using the Spin verifierweak fairness
option lets it detect non-progress cycles involving more than
one process. This corresponds to starvation of a process by
one or more other processes.

Ticket spinlocks used for the Intel spinlock implementation
found in Linux correct the fairness problem identified in the
PowerPC architecture. The Promela implementation is omitted
due to space considerations, but the state diagram is presented
at Figure 3. The new elements added to this graphs are the
LOW_HALF() and HIGH_HALF() primitives, which select
half lower and upper bits of the lock, respectively.

The Spin model-checker verifies that this model is safe and
fair, under certain conditions. Changing the number of bits
available for the low and high halves of the ticket lock as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 4

skip

UNLOCKED

READ TICKET

ticket = HIGH_HALF(lock)

HIGH_HALF(lock)++

WAIT TICKET

skip

ref++

ref−−

UNLOCK

LOW_HALF(lock)++

INC TICKET

(LOW_HALF(lock) != ticket)

STEP++

STEP++

(LOW_HALF(lock) == ticket)

STEP++

STEP++

STEP++

STEP++

STEP++

ATOMIC

STEP invariant

C
R

IT
IC

A
L

S
E

C
T

IO
N

Fig. 3. Diagram Representation of Intel Ticket Spinlock Model

well as the number of processes shows that fairness is only
ensured when the number of processes fits in the number of
bits available for each half.

IV. W EAKLY-ORDEREDMEMORY FRAMEWORK

A. Architecture

Modeling out-of-order memory accesses performed by pro-
cessors at a level consistent with their hardware implemen-
tation is important to enable accurate modeling of side-
effects that can be caused by missing memory barriers in
synchronization algorithms. The bugs within this categoryare
hard to reproduce, mainly because they are dependent on
the architecture, execution context and timing between the
processors. Therefore, testing the implementation might not
be sufficient to certify the absence of bugs.

To model an algorithm including the effects of the memory
barriers required on various architectures, or more importantly
lack thereof, we choose to create a virtual architecture per-
forming the most aggressive memory reordering. The Alpha
21264 seems to be an especially interesting architecture with
respect to reordering, given its ability to reorder dependent
loads (14; 15). It also reorders loads after stores, stores after

loads, loads after loads and stores after stores. Even atomic
operations can be reordered with respect to loads and stores.

The Alpha architecture can reorder dependent loads in
addition to other memory accesses due to the design of its
caches. These are are divided into banks, which can each
communicate with main memory. If the channel between a
bank and memory is saturated, the updates of the less busy
channels could reach their destination before loads or stores
initiated earlier. Such extremely weak ordering can therefore
cause any sequence of loads and stores to different addresses,
including dependent loads, to be perceived in a different
order from the point of view of another processor. Indeed,
when memory content changes, in-cache view updates are not
guaranteed to reach the cache-lines in the same order the main
memory stores appear.

We name the weak memory ordering part of our virtual
architectureOoOmem, where OoO stands forOut-of-Order.
It models the exchanges between CPU cache-lines and main
memory. To model the worse possible case, each variable
belongs to a different cache-line and there is only one cache-
line per bank. These cache-lines are therefore free to be
updated (or not) with main memory between each instruction
execution.

Each CPU is modeled as a Promela process. Each variable is
represented with a main memory entry, a per-CPU entry and a
per-CPU dirty flag. Operations and accesses to these memory
entries are performed through Promela macros created as part
of the OoOmemframework to facilitate manipulation of the
variables. We call these the “primitives” of theOoOmem
framework. For each cache-local variable, theooo_mem()
primitive models the case where it is updated as well as the
case where it is not. This primitive must be called between
each cache-line access. This causes all possible interleaving
of exchanges between caches and memory to appear in the
set of generated execution traces.

Explicit memory ordering of loads and stores can be re-
spectively forced by using the primitivessmp_rmb() and
smp_wmb(). These memory barriers respectively send the
cache-local stores to memory and ensure that all in-memory
data is loaded into the local cache. The per-variable, per-CPU
dirty flag makes sure that a given CPU fetches data that it has
recently written from its emulated cache rather than fetching
stale data from main memory.

The primitivewrite_cached_var() updates the cache-
local version of a variable with a new value and sets the
dirty flag for this variable on the local CPU. The dirty flag
will let ooo_mem() andsmp_wmb() subsequently commit
this change to main memory. In addition, this ensures that
neitherooo_mem() nor smp_rmb() overwrite the cache-
local version before it has been committed to memory.

The read-side equivalent isread_cached_var(), which
loads a cache-local variable into the local process variables.

Modeling other architectures such as the Intel, PowerPC
and Sparc processor families, which do not permit to reorder
dependent loads, only requires replacing the conditional load
part of theooo_mem() primitive by a call tosmp_rmb().
As a result, the local cache is unconditionally updated by load-
ing all main memory variables into the non-dirty local cache-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 5

lines. The effects of independent loads reordering done by
these architectures is modeled by theOut-of-order Instruction
Scheduling Modelpresented at Section V.

B. Testing

In order to validate the accuracy of the framework, we use
architectural litmus tests for which results are known. One
such litmus test involves processor A performing consecutive
updates to a pair of variables, while processor B concurrently
reads these same variables in reverse order. We expect that
if the ordering is correct, whenever processor B sees the
updated second variable, it must eventually read the updated
first variable. This is expressed in the following pseudo-code
andLTL formula:

Pseudo-code modeled:

alpha = 0;
beta = 0;

Processor A Processor B
alpha = 1; x = beta;
smp_wmb(); smp_rmb();
beta = 1; y = alpha;

LTL claim to satisfy:

G
(

x = 1 ⇒ F (y = 1)
)

This model is verified successfully by the Spin verifier.
Error-injection is performed to ensure that the verifier would
appropriately generate the erroneous execution traces if the
required memory barriers were missing. This is performed by
removing thesmp_wmb() from Processor A orsmp_rmb()
from Processor B. Verifying these two altered models shows
the expected errors and execution traces: variables being either
stored to or loaded from memory in the wrong order fails to
verify the LTL claim.

V. OUT-OF-ORDER INSTRUCTIONSCHEDULING

FRAMEWORK

Although the OoOmemframework presented earlier rep-
resents exchanges between cache and memory accurately, it
does not reproduce all reordering performed at the processor
level regarding out-of-order micro-operation (RISC instruc-
tion) scheduling. This section explains how we model these
effects.

A. Architecture

Superscalar pipelined architectures leverage instruction-
level parallelism by allowing multiple instructions to start
concurrently and by reordering instruction completion. Itcan,
more aggressively, reorder the sequence in which independent
instructions are issued. Speculative execution can also cause
execution of instructions before their result is proven to be
needed. Such out-of-order instruction execution can be seen
on the Alpha 21264 (15).

Our virtual architecture framework for out-of-order instruc-
tion scheduling therefore encompasses all possible instruction
scheduling which can be done by either compiler optimizations

(lifting, combining reads, re-loading a variable to diminish reg-
ister pressure, etc.) or the processor. The weakest scheduling
possible is bounded by the dependencies between instructions.
In order to let the verifier explore all possible execution orders,
our virtual processor framework,OoOisched, provides:

• an infinite number of registers,
• a pipeline with an infinite number of stages,
• a superscalar architecture able to fetch and execute an

infinite number of instructions concurrently,
• and the ability to perform speculative instruction execu-

tion when they have no side-effect on cache.
As in the OoOmemframework, one Promela process rep-

resents one processor. A key element of this framework is to
have a compact instruction execution state and dependency
representation. We choose to use a per-processor set of tokens
to represent the dependencies with a single token per instruc-
tion. Tokens are produced by executing instructions and typi-
cally cleared only at the end of the instruction sequence. The
conditions required to activate an instruction are represented
by a set of tokens. Each token can be represented by a single
bit.

As an example, the dependencies of the test-case presented
in Section V-B are modeled in the Promela listing in Figure 4
and illustrated in Figure 5.

An instruction scheduling loop tests for every instructions
dependency constraints to execute them. Execution of instruc-
tion is non-deterministic: when the dependencies of multiple
instructions are met, any one of them may fire, but does
not have to. It therefore explores all the possible execution
orderings fitting within the dependency constraints. It proceeds
until the end of the loop, which consists in executing the
last instruction of the sequence. This last instruction clears all
the tokens and breaks the instruction scheduling loop. When
the bit allocated for an instruction is enabled, it inhibitsits
execution and enables its dependent instructions. The state of
each CPU’s execution is kept in a per-process data structure
containing the current execution state tokens.

In the Promela model presented in Figure 4, the macro
CONSUME_TOKENS(tokens, enable, inhibit) is
used as trigger to execute an instruction. The parameter
tokens is the token container of the current processor. The
scheduler is allowed to execute an instruction only if all
the enable tokens are active and all theinhibit tokens are
inactive. Its role is to check for pre-conditions for instruction
execution, but doesnot clear any token.

The macroPRODUCE_TOKENS(tokens, prod) adds
tokens identified byprod to tokens. It is typically used at
the end an instruction execution by producing its own token.
Finally, CLEAR_TOKENS(tokens, clear) clears all the
specified CPU tokens. It is typically used after the last instruc-
tion of the scheduling loop, but can also be used to partially
clear the token set to produce loops.

The diagram representing the Promela model in Figure 5
represents each instruction by a node. White arrows represent
unmet dependencies and black arrows correspond to depen-
dencies met. Colored nodes are those currently candidate for
execution: all their dependencies are met, which means that
all tokens they consume are enabled, and all the tokens that

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 6

inhibit their execution are cleared. The column on the left
represent the tokens associated with each instruction.

We choose this representation of the data and control
flow rather than more classic token-based models like Petri
networks (16) or coloured Petri networks (17) to allow easy
injection of faults in the model. This would be cumbersome to
do with a classic representation where one instruction would
produce a token that would be later consumed by a following
instruction. For instance, removing a read barrier or write
barrier from the model would require to completely modify
the dependency graph of the following instructions to make
sure they now depend on prior instructions. Failure to do
so would create an artificial synchronization barrier which
would not model the error injection correctly. Since the token
model provides the complete list of instruction dependencies,
errors can be injected by enabling the token corresponding
to the instructions to disable before entering the instruction
scheduling loop. The effect is the inhibition of the instruction
and satisfaction of all dependencies normally met when this
instruction is executed.

Given our virtual architecture models all possible sequences
of code execution allowed by the data dependencies, only a
few specific issues must be addressed to make sure compiler
optimizations are taken into account. In our framework, a
temporary per-process variable, corresponding to a processor
register, should never be updated concurrently by multiple
instructions.SSA (Static Single Assignment) (18) is an inter-
mediate representation typically used in compilers where each
variable is assigned exactly once. Using such representation
for registers would ensure to have no more than a single
instruction using a temporary register, but this would cost
additional state-space. Given this resource is limited, were-
use registers outside of their liveness region. There are only
two cases where we expect the compiler to re-use the result
of loads. The first case is when the compiler is instructed to
perform a singlevolatile access to load the variable to a
register. The second case is when an explicit compiler barrier
is added between the register assignment (load from cache)
and register use. In all other cases, re-use of loaded variables
will be taken into account by performing the two loads next to
each other due to speculative execution (prefetching) support
in the scheduler.

One limitation of this framework is that it adds an artificial
compiler barrier and core synchronization between consecutive
instruction scheduler executions. This would not take into
account side-effects caused by scheduler execution withina
loop. This is caused by the instruction’s inability to cross
the artificial synchronization generated by the last instruction
executed at the end of the scheduler loop. This last instruction
is required to clear all tokens before the next execution. Such
effect can be modeled by unrolling the loop.

Because the token container is already occupied by the
outermost execution of the scheduler, recursion is also not
handled by the framework. A supplementary container could
be used to model the nested execution. However, using a
different instruction scheduler for the nested context would
fail to appropriately model interleaving of instructions between
different nesting levels. Therefore, nested calls must be ex-

panded into the caller site.

B. Testing

Before introducing the more complexRCU model, we
present a test model for theOoOischedframework. This model
is based on both theOoOischedand OoOmemframeworks.
It models an execution involving two processors and two
memory locations. In this model, Processor A successively
writes to alpha and readsbeta. Processor B successively
writes to beta and then readsalpha. This verifies that at
least one processor reads the updated variable. This is shown
in the following pseudo-code. Dependency constraints applied
on instructions executed by Processor A are illustrated by
Figure 5.

Pseudo-code modeled:

alpha = 0;
beta = 0;
x = 1;
y = 1;

Processor A Processor B
alpha = 1; beta = 1;
smp_mb(); smp_mb();
x = beta; y = alpha;

LTL claim to satisfy:

G (x = 1 ∨ y = 1))

This model is successfully verified by the Spin verifier.
Error-injection is performed to ensure that the verifier would
appropriately generate the erroneous execution traces if the
required memory barriers were missing. This is performed by
either:

• completely removing thesmp_mb(),
• removing only thesmp_rmb() part of the barrier,
• removing only thesmp_wmb() part of the barrier,
• removing the implicit core synchronization provided by

thesmp_mb() semantics, which leaves the reads and the
writes free to be reordered.

Verifying these altered models shows the expected errors
and execution traces, where the read or write instructions being
reordered fails to verify theLTL claims.

Removing core synchronization from the model presented
in Section V-B permits verifying its behavior when injecting
errors. The diagram presented in Figure 6 shows a snapshot
of instruction execution with core synchronization removed. It
shows that two instructions are candidate for execution: either
alpha = 1 or x = beta. It this case, the store and load
can be performed in any order by the instruction scheduler.

As an example of the result of an error-injection, we present
an execution trace generated by the Spin model-checker. We
use the test model presented in Figure 4 with core synchro-
nization removed. This partial execution trace excludes the
empty execution andelse-statements for conciseness. Some
statements are also folded.

Lines 6–8 show the instruction scheduler from processor B
scheduling the two first instructions of this processor: produc-
tion of the initial token and error-injection by producing the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 7

1 #define PA_PROD_NONE (1 << 0)
2 #define PA_WRITE (1 << 1)
3 #define PA_WMB (1 << 2)
4 #define PA_SYNC_CORE (1 << 3)
5 #define PA_RMB (1 << 4)
6 #define PA_READ (1 << 5)
7
8 byte pa_tokens;
9

10 active proctype processor_A()
11 {
12 PRODUCE_TOKENS(pa_tokens, PA_PROD_NONE);
13
14 do
15 :: CONSUME_TOKENS(pa_tokens,
16 PA_PROD_NONE, PA_WRITE) ->
17 ooo_mem();
18 WRITE_CACHED_VAR(alpha, 1);
19 ooo_mem();
20 PRODUCE_TOKENS(pa_tokens, PA_WRITE);
21 :: CONSUME_TOKENS(pa_tokens,
22 PA_WRITE, PA_WMB) ->
23 smp_wmb();
24 PRODUCE_TOKENS(pa_tokens, PA_WMB);
25 :: CONSUME_TOKENS(pa_tokens,
26 PA_WRITE | PA_WMB,
27 PA_SYNC_CORE) ->
28 PRODUCE_TOKENS(pa_tokens, PA_SYNC_CORE);
29 :: CONSUME_TOKENS(pa_tokens,
30 PA_SYNC_CORE, PA_RMB) ->
31 smp_rmb();
32 PRODUCE_TOKENS(pa_tokens, PA_RMB);
33 :: CONSUME_TOKENS(pa_tokens,
34 PA_SYNC_CORE | PA_RMB,
35 PA_READ) ->
36 ooo_mem();
37 pa_read = READ_CACHED_VAR(beta);
38 ooo_mem();
39 PRODUCE_TOKENS(pa_tokens, PA_READ);
40 :: CONSUME_TOKENS(pa_tokens,
41 PA_PROD_NONE | PA_WRITE |
42 PA_WMB | PA_SYNC_CORE |
43 PA_RMB | PA_READ, 0) ->
44 CLEAR_TOKENS(pa_tokens,
45 PA_PROD_NONE | PA_WRITE |
46 PA_WMB | PA_SYNC_CORE |
47 PA_RMB | PA_READ);
48 break;
49 od;
50 }

Fig. 4. OoO Instruction Scheduling and Memory Frameworks Promela Test
Code, Processor A

core synchronization token ahead of the instruction scheduler
execution.

6: proc 1 (CPU_B) line 252 "mem.spin" (state 2)
[pb_tokens = (pb_tokens|(1<<PA_PROD_NONE))]

8: proc 1 (CPU_B) line 261 "mem.spin" (state 3)
[pb_tokens = (pb_tokens|(1<<PA_SYNC_CORE))]

Line 10 presents the trigger permitting activation of the
write instruction.
10: proc 1 (CPU_B) line 265 "mem.spin" (state 4)

[((!((pb_tokens&(1<<PA_WRITE)))
&& ((pb_tokens&(1<<PA_PROD_NONE))

==(1<<PA_PROD_NONE))))]

Lines 19–21 show processor B updating its alpha and beta
cache-view from memory. Processor B performs a random
cache update. In this execution trail, it loads alpha and beta
into its local cache.
19: proc 1 (CPU_B) line 125 "mem.spin" (state 30)

[(!(cache_dirty_alpha[_pid]))]
19: proc 1 (CPU_B) line 125 "mem.spin" (state 31)

[cached_alpha[_pid] = mem_alpha]
21: proc 1 (CPU_B) line 126 "mem.spin" (state 41)

[(!(cache_dirty_beta[_pid]))]
21: proc 1 (CPU_B) line 126 "mem.spin" (state 42)

Fig. 5. Instruction Dependencies of Out-of-Order Instruction Scheduling and
Memory Framework Test

Fig. 6. Instruction Dependencies of Out-of-Order Instruction Scheduling and
Memory Framework Test (Error Injection)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 8

[cached_beta[_pid] = mem_beta]

At Line 23, processor B writes to its cache view of beta
and sets the matching dirty flag.

23: proc 1 (CPU_B) line 267 "mem.spin" (state 53)
[cached_beta[_pid] = 1]

23: proc 1 (CPU_B) line 267 "mem.spin" (state 54)
[cache_dirty_beta[_pid] = 1]

A succinct high-level summary of the execution trail fol-
lows:

CPU B: writes to in-cache beta
CPU A: writes to in-cache alpha
CPU A: smp_rmb()
CPU B: smp_wmb()
CPU B: smp_rmb()
CPU B: reads alpha from its cache
CPU A: smp_wmb()
CPU A: reads beta from its cache

At the bottom of the execution trail, the state for which the
LTL condition did not hold is shown:

spin: trail ends after 161 steps
#processes: 1

mem_alpha = 1
cached_alpha[0] = 1
cached_alpha[1] = 0
cache_dirty_alpha[0] = 0
cache_dirty_alpha[1] = 0
mem_beta = 1
cached_beta[0] = 1
cached_beta[1] = 1
cache_dirty_beta[0] = 0
cache_dirty_beta[1] = 0
x = 0
y = 0
pa_tokens = 31
pb_tokens = 63

161: proc 0 (CPU_A) line 218 "mem.spin" (state 239)
2 processes created

At that point, bothpa_read and pb_read contain 0.
By examining the execution trace, we understand that this
behavior is made possible by letting processor A execute its
read memory barrier before the write memory barrier. This
is allowed because the removed core synchronization permits
reordering these unrelated types of barriers.

Therefore, even given the known model limitations regard-
ing loops and nesting, the instruction scheduling and weakly-
ordered memory architecture models are sufficient to model
RCU algorithms, as is shown in Section VI.

VI. READ-COPY UPDATE ALGORITHM MODELING

Read-Copy Update (RCU) is a synchronization primitive
allowing multiple readers of a data structure to execute concur-
rently with extremely low-overhead (1). Its main characteristic
is to provide linear read-side scalability as the number of
processor increases. It performs this by allowing multiple
copies of a data structure to exist at the same time. In a period
of time calledgrace period, each processor is allowed to see a
different copy of the data structure. TheRCU synchronization
guarantees specify a lower bound to the duration of the grace
period, after which no further references to old copies exist,
so that the underlying memory becomes reclaimable.

The main motivation for validating theRCU algorithms is
their complexity level. These algorithms are parallel and imply
inconsistent views between processors at a specific point in
time. Also, becauseRCU’s read-side primitives contain no

T
hr

ea
ds Reader 2

Reader 3

Reader 4

Reader 1

Updater

rcu_read_lock()

reads reads

reads reads

reads reads

reads

reclamationremoval

reads

Time

rcu_read_unlock()

rcu_assign_pointer()

synchronize_rcu()

reads

grace period

of pre−existing reads

Grace period
waits for completion

rcu_dereference()
Pre−existing reads

Fig. 7. Schematic of RCU Grace Period and Read-Side Critical Sections

standard mutual exclusion primitives, memory ordering must
be performed by these sameRCU primitives.

This section presents the model we created to verify if
the grace-period and publication guarantees are satisfied by
two RCU synchronization algorithms proposed in paper (1):
General-Purpose RCUand Low-Overhead RCU Via Signal
Handling. It also verifies that both updater and readers always
progress. We first describe the generalRCU model, which
is subsequently derived into a signal-based memory barrier
model.

A schematic for the high-level structure of anRCU-based
algorithm is shown in Figure 7. AnRCU grace period is
informally defined as any time period such that allRCU read-
side critical sections in existence at the beginning of that
period have completed before its end.

Here, each box labeled “Reads” is anRCU read-side crit-
ical section that begins with rcuread lock() and ends with
rcu read unlock(). Each row ofRCU read-side critical sections
denotes a separate thread, for a total of four read-side threads.
The two boxes at the bottom left and right of the figure denote
a fifth thread, this one performing anRCU update.

This RCU update is split into two phases, a removal phase
denoted by the lower left-hand box and a reclamation phase
denoted by the lower right-hand box. These two phases must
be separated by a grace period, which is determined by
the duration of the synchronizercu() execution. During the
removal phase, theRCU update removes elements from the
data structure (possibly inserting some as well) by issuingan
rcu assignpointer() or equivalent pointer-replacement primi-
tive. These removed data elements will not be accessible to
RCU read-side critical sections starting after the removal phase
ends, but might still be accessed byRCU read-side critical
sections initiated during the removal phase. However, by the
end of theRCU grace period, all of theRCU read-side critical
sections that might be accessing the newly removed data
elements are guaranteed to have completed, courtesy of the
definition of grace period. Therefore, thegrace-period
guarantee ensures that the reclamation phase, beginning
after the grace period ends, can safely free the data elements
removed previously.

The publication guaranteeensures that data accessed by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 9

the read-side through the rcudereference() primitive (always
executed between rcuread lock() and rcuread unlock()) will
see changes made by the write-side before publication of the
RCU pointer by rcuassignpointer.

The model which abstracts theRCU algorithm has one
updater and one reader process. It is based on theOoOmem
andOoOischedframeworks to verify that it satisfies the above-
mentioned guarantees when executed on a weakly-ordered
processor and memory architecture. In addition to global and
per-threadRCU synchronization variables, the data structures
required are a pointer to the currentRCU data and anarena: a
pool of free memory used by the memory allocator. All these
data structures are modeled with theOoOmemframework.

The updater process performs two loops which first update
data in a newly allocated arena entry from theOoOmem
model and then publishes a pointer to the new entry into
another sharedOoOmemvariable using a modeled rcuassign
pointer() primitive. At the same time the updater stores the
new pointer, the updater loads the previous value into its
local registers. It is reclaimed after a grace period passes. The
modeled synchronizercu() primitive is used to wait for such
grace period to reach a quiescent state. After that point, the
arena entry corresponding to the old pointer can be poisoned.

Memory reclamation is modeled by writingpoisondata into
the arena entry. In a valid model, the read-side should neversee
such poison value in the memory location it reads. This method
is used to detect inappropriate use of reclaimed memory.

The updater loops do not need to be unrolled because
the synchronizercu() primitive contains full memory barriers.
Poisoning alone could spill in the next loop and overlap with
stores to the newly allocated arena entry, but late-arriving
poisoning stores are not relevant to the characteristics we
validate.

The reader is modeled as one process entering two read-
side critical sections. Each consists of a lock and unlock pair,
between which are placed a rcudereference() and a read of the
corresponding arena entry. The first critical section holdstwo
nested read locks. The second critical section holds a single
nesting-level read lock. Given the outermost code of successive
read lock/unlock can spill on each other, such spilling caused
by reordering, prefetching and optimizations is modeled by
those two successive critical sections. The data read within
each critical section is saved to the globally visible dataread
first and dataread second variables to be used for verification.

The guarantees provided by theRCU algorithm are verified
with theLTL formula presented in (1), which makes sure the
reader never loads a poisoned arena entry. The Spin model-
checker checks for states which do not verify this claim. It
generates an error and presents a counter-example consisting
of a faulty execution trace when the claim is not satisfied.

G

data read first 6= POISON

∧

data read second 6= POISON

 (1)

To minimize the risk of modeling errors, we augment our
models with error-injection regression tests. For each of the
characteristic we need to validate, we create a model alteration
which is known not to satisfy the characteristic. This permits

to not only verify that the guarantees are sufficient to ensure
model correctness, but also that the modeled guarantees are
actually required, e.g. if a predicate is not satisfied, an error
will occur.

Removesmp_mb(): The first error injected is to remove
the memory barriers surrounding synchronizercu(). This is
known not to meet the grace period guarantee, as it would let
the pointer update spill over the whole grace period into the
following quiescent state. This would therefore let poisoning
occur before the pointer is updated.

Removesmp_wmb(): The second error we inject is to re-
move the write memory-barrier from the rcuassignpointer()
primitive. This is known not to meet the publication guaran-
tee, because the pointer could then be published before the
newly allocated arena entry is populated with non-poisoned
information.

Remove smp_rmb(): The third error is injected by re-
moving the read memory-barrier from the rcudereference()
primitive. On Alpha (andonly on Alpha), this is known not
to meet the publication guarantee because the reader’s cache
could be populated with the new pointer before the arena entry
is updated. We therefore expect the reader to see poisoned data.

Single grace-period phase:The fourth error-injection test
consists in altering synchronizercu() to only perform a single
grace-period phase. This is expected not to meet the grace
period guarantee by allowing a race condition between a reader
and two consecutive updates.

The reader code is modeled in an infinite loop to verify
updater’s progress when facing a steady flow of readers. The
reader and updater progress are tested in two different runs:

• For reader progress, a single progress statement is added
between each reader loop execution.

• On the updater-side, progress statements are added in
each update loop and an infinite loop containing a
progress statement is added at the end of the updater’s
process execution.

The weak fairness Spin option ensures that non-progress
errors are flagged only for cycles containing at least one
statement from each process, but not containing any special
progresslabels.

Remove smp_mb() from busy-loop: The fifth error in-
jected is to remove the memory barrier placed in the updater’s
busy loop waiting for a grace period phase to complete. This
injects an updater progress error by allowing the updater’s
cache to never read the eventually updated reader nesting
counter. On real systems, the bounded size of the buffers
between the CPU, cache and memory interconnects ensures
that the remote nesting counter is updated, but given our virtual
architecture model assumes infinitely-sized buffers, an explicit
memory barrier must be placed in the busy-loops to ensure
data is being read.

The signal-based memory barrier is modeled as a derivation
of the general model by changing the updater-side memory
barriers for a primitive which sends a signal and waits for
memory barrier execution from the reader-side, all this be-
tween two memory barriers. On the read-side, the memory
barriers are modeled by verifying, between each instruction
execution, if the execution status tokens appears to be in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 10

sequential execution order. If execution appears in sequential
order between two instructions, the reader process chooses
to either ignore any memory barrier request or to service
any number of memory barrier requests by issuing memory
barriers and informing the updater-side of the completion.

Due to the added complexity and therefore state-space size
explosion, modeling of read-side in signal handers nestingover
the updater and reader thread is performed using a different
model which assumes a sequentially ordered architecture with
the OoOmemweakly-ordered memory framework. Given that
signal handlers have the property to order the core execution
before and after they execute, it allows using the safety and
progress characteristics proven with theOoOischedframework
as lemma.

A. State-Space Compression

Given that the state-space required to perform the verifica-
tion can increase quickly, the following state-space compres-
sion techniques were used to perform the verifications.

Running the Spin model-checker to verify specificLTL
formulas transformed intonever claimspermits checking for
safety while performingPartial Order Reduction(13). This
model-checking approach discards relative statement order-
ing which does not matter for the property to verify. This
reduces the state-space size tremendously with a very small
performance impact, while preserving the safety and liveness
properties ofLTL.

Accepting a small performance impact (perceived slowdown
of a factor 1.3 on our models), theCOLLAPSE compres-
sion (11) can be used to reduce the state-space required
to perform verification by separating the state into sub-
components. The compression comes from the fact that one
state configuration for a specific process tends to reoccur in
different global data and other process states. It uses separate
descriptors as key to encode and search global data objects and
data objects belonging to each process. Each time the same
process state is encountered, it can be encoded with the same
per-process state descriptor instead of saving the whole state,
which saves precious state-space. A global state descriptor,
used to identify the overall state, therefore consists of a state
vector made of the global and per-process descriptors. This
lossless compression preserves the complete state-space.

Another possible lossless compression technique, the
DMA (Deterministic Finite Automaton) (11), can further di-
minish the state-space size by leveraging the high degree of
similarity between the different states. It represents thestate-
space using an encoding similar toBDDs (Binary Decision
Diagrams) (19; 20). However, this compression technique
incurs a prohibitive performance impact. Our tests on large
models show that state-space exploration is about 10 times
slower. Given that the non-compressed execution of some
verifications already takes about 24 hours, the computation
time required forDMA compression is considered to be beyond
our available computation time resources.

B. RCU Model-Checking Results

This section presents the Spin model-checker results for
three models: the general purpose user-spaceRCU model,

the signal-basedRCU model and the modeling of signal-
handler read-side. Test run results are presented along with
the resources required to perform the verification. These
verifications are performed on a Intel Core2 Xeon 2.0 GHz
with 16 GB RAM.

The only test result we really care about is whether the
verification succeeds or fails. For the unaltered model and for
progress verifications, theLTL claim or progress property are
expected to hold. Such successful verification are denoted as
PASS. For each error-injection run presented in Section VI,
the expected result is that the model-checker should detectthe
injected error, denoted asINJECT. The notationFNEG would
indicate that the model-checker was blind to an injected error.
This constitutes a “false negative”. These are not errors as
such, as not every bug necessarily results in a failure on every
architectures modeled. Finally, the notationFAIL indicates
that the model-checker detected a bug in the algorithm.

Additional information about the time and memory required
to run these verifications is only provided to show the amount
of computational resources needed for such verification. The
only requirement is that execution time and memory used fit
within our available resource limits.

Tables I and II present the result of the general-purpose
RCU model-checking using the Alpha and Intel/PowerPC
virtual architectures, respectively. The safety and progress
verifications are successful, and all error-injections generate
expected errors, except one: on the Intel/PowerPC architecture,
no error is generated when removing thesmp_rmb() on
the read-side. This shows that no read barrier is required on
these architectures due to the fact that dependent loads arenot
reordered.

TABLE I
GENERAL-PURPOSERCU VERIFICATION RESULTS FOR THEALPHA

ARCHITECTURE

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 1.06 2h33m

Removesmp_mb() INJECT 1.07 1h06m

Removesmp_wmb() INJECT 0.96 1h14m

Removesmp_rmb() INJECT 0.52 9m

Single grace-period phase INJECT 0.66 26m

Reader progress PASS 1.76 10h38m

Updater progress PASS 1.76 9h23m

Remove loopsmp_mb() INJECT 0.47 1m

Table III presents the verification result of the signal-based
RCU model for the Alpha virtual architecture. This verification
ensures signal-based memory barriers provide the memory
ordering guarantees and that no livelock nor deadlock can
occur. Progress verification requires to use theCOLLAPSE
Spin option to compress the state-space size. It takes 3.5
days to complete the updater progress verification. To reduce
the required CPU time, the reader progress and the updater
progress error-injection are performed on a simplified read-
side model with only a single, non-nested, critical section.
Updater progress has also been verified using this simpler
model and resulted in a successful progress verification.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 11

TABLE II
GENERAL-PURPOSERCU VERIFICATION RESULTS FOR THE

INTEL/POWERPC ARCHITECTURES

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 0.82 4m

Removesmp_mb() INJECT 1.96 16m

Removesmp_wmb() INJECT 0.79 5m

Removesmp_rmb() FNEG 0.82 6m

Single grace-period phase INJECT 0.61 1m

Reader progress PASS 1.28 23m

Updater progress PASS 1.28 23m

Remove loopsmp_mb() INJECT 0.47 0m

TABLE III
SIGNAL -BASEDRCU VERIFICATION RESULTS FOR THEALPHA

ARCHITECTURE

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 5.21 1d14h18m

Removesmp_mb() INJECT 0.59 13m

Removesmp_wmb() INJECT 5.17 1d14h33m

Removesmp_rmb() INJECT 1.20 2h43m

Single grace-period phase INJECT 3.09 5h45m

Reader progress PASS 0.89 2h02m

Updater progress PASS 11.73 4d15h13m

Remove loopsmp_mb() INJECT 0.472 1m

As in the Alpha signal-basedRCU verification, In-
tel/PowerPC model verification require to use the COLLAPSE
compression to fit in the available memory. Here we notice
that the test execution time for each progress verification is
approximately 4 hours and uses about 10 GB of memory.
As in the general purposeRCU model, the smp_rmb()
removal does not cause any error on Intel/PowerPC because
the architecture does not reorder dependent loads.

TABLE IV
SIGNAL -BASEDRCU VERIFICATION RESULTS FOR THEINTEL/POWERPC

ARCHITECTURES

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 6.98 1h43m

Removesmp_mb() INJECT 1.18 4m

Removesmp_wmb() INJECT 6.98 1h42m

Removesmp_rmb() FNEG 6.98 1h45m

Single grace-period phase INJECT 4.28 16m

Reader progress PASS 10.08 4h18m

Updater progress PASS 9.88 4h18m

Remove loopsmp_mb() INJECT 0.58 3m

Modeling of read-side signal handler nested over a reader
thread is presented in Table V. This model executes a read-
side critical section in a signal handler interrupting a reader
thread. We proceed to this verification to model a read-side
critical section in a signal handler, which generates execution
traces where a nested signal handler could deadlock with

an interrupted process, if the signal handler would busy-loop
waiting for the interrupted process.

TABLE V
GENERAL-PURPOSERCU SIGNAL -HANDLER READER NESTED OVER

READER VERIFICATION (NO INSTRUCTIONSCHEDULING)

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 4.35 10m

Removesmp_mb() INJECT 1.60 5m

Removesmp_wmb() INJECT 0.78 2m

Removesmp_rmb() INJECT 1.60 2m

Single grace-period phase INJECT 0.57 0m

Reader progress PASS 9.21 1h56m

Updater progress PASS 9.15 1h03m

Remove loopsmp_mb() INJECT 0.51 0m

Table VI is the results obtained by modeling an interrupting
read-side signal handler critical section nested over the updater
thread. It presents an interesting result: given all read-side
critical sections are contained within signal handlers nested
over the updater, no memory barrier is required to ensure
correctness because no cache-line exchange is required. Infact,
only a single process is executing.

TABLE VI
GENERAL-PURPOSERCU SIGNAL -HANDLER READER NESTED OVER

UPDATER VERIFICATION (NO INSTRUCTIONSCHEDULING)

Model PASS/FAIL Memory Time

Regression Test INJECT/FNEG (GB)

Unaltered model (safety) PASS 0.47 0m

Removesmp_mb() FNEG 0.48 1m

Removesmp_wmb() FNEG 0.47 1m

Removesmp_rmb() FNEG 0.47 0m

Single grace-period phase FNEG 0.47 0m

Reader progress PASS 0.47 1m

Updater progress PASS 0.47 1m

Remove loopsmp_mb() FNEG 0.47 1m

For each of the unaltered models checked, model cov-
erage includes all of theRCU model lines, but excludes
some OoOmemmodel operations which are not useful in
some contexts. For instance, theOoOmem“random” store
to memory will never be executed if a process never writes
into a given variable. Error injection runs do not need to
visit all the state space because they stop after the first error
encountered. Therefore, these self-testing runs do not need to
provide complete coverage.

C. RCU Verification Discussion

Results presented in Section VI-B demonstrate that we
were able to successfully verify theRCU algorithm models
in various execution scenarios with affordable computation
resources. The error-injection tests further demonstratethat
the model is able to detect defects that do not respect theRCU
guarantees.

In these tests, the number of updater has been limited to
one given we protect updater critical sections using a mutual

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 12

exclusion primitive already expected to be valid. The number
of reader is also fixed to one because the updater waits, in turn,
for each reader one after the other. The algorithm therefore
does not contain any reader-reader data or control dependency.

As expected, model of the read-side signal handler nested
over a RCU reader succeeds because theRCU read-side is
executed withO(1) computational complexity, which implies
that it never busy-loops.

The simplified read-side in signal handler model does not
perform instruction execution reordering. Given the proofpro-
vided by the previous verifications, the nested signal handler
execution can be modeled as being serialized with the rest of
the interrupted code because the operating system is called
before and after the signal handler. TheOoOmemmodel
is however still used to appropriately take the out-of-order
memory effects into account. This models the Alpha virtual
architecture, which is a superset of the Intel/PowerPC virtual
architecture, given it allows weaker memory ordering.

Verification of interrupting read-side signal handler critical
section nested over the updater thread interestingly showsthat
the read-side signal handler can nest over the updater without
causing progress error (no livelock nor deadlock). The single
grace-period phase test shows no error. This can be explained
by the fact that the execution trace which requires two grace-
period phases involves the reader seeing two updater updates.
This execution trace is impossible here because the updateris
being interrupted by the nested read-side signal.

Error-injection tests have been very useful to ensure model
completeness. For instance, trying the test-case presented in
Section V-B on theOoOmemmodel showed its limitations.
Changing thesmp_mb() into consecutivesmp_rmb() and
smp_wmb() (which are free to be reordered) did not produce
the expected error. This showed that we needed to model out-
of-order instruction scheduling to properly represent this class
of CPU instruction reordering effects, effectively leading to
the creation of theOoOischedmodel.

Another example where error-injection has been useful hap-
pened during theOoOisched-basedRCU model creation. The
OoOischedframework being based on a instruction schedul-
ing loop, we can only use the model coverage information
provided by Spin as indication that statements have been
reached at least once, but it tells nothing about the execution
orders visited. Instruction dependency implementation errors,
which inhibited execution of some instructions incorrectly,
were identified with the help of these error-injection tests.

We also created a model for uniprocessor execution of the
RCU algorithm. The code generated for this model has the
particularity that all memory barriers are replaced by compiler
barriers, exceptsmp_read_barrier_depends(), on Al-
pha, which is completely removed. In this model, a single
processor cache is used by both the reader and the writer
processes. No communication is required with main memory,
given all accesses are going through the locally cached vari-
ables. Therefore, out-of-order memory updates are disabled.
The results of the tests, not presented here for conciseness,
show that simply using compiler barriers suffice to provide
RCU safe against thread preemption on a uniprocessor system.

VII. F RAMEWORK DISCUSSION

Compared to models used previously forRCU verification,
the proposed framework covers more micro-architecture side-
effects. This includes, for instance, effects of data prefetch.
Moreover, the state-space size required by our framework has
been shown to be manageable on current computers when
modeling complex synchronization algorithms such asRCU.
This shows that it should be applicable to other parallel
algorithms with similar complexity level.

One of the major improvements of this modeling frame-
work is to allow a more regular description of algorithms. It
removes the need to account for low-level architecture side-
effects directly in the algorithm model by providing artefacts
which encapsulate the architecture behavior. This framework
therefore minimizes the risk of modeling error.

Due to its ability to model the weakest ordering possible,
altering the framework to model memory barriers specific to
architectures such as Alpha, Intel, PowerPC and even Sparc is
straightforward. Modeling specific architectures can by done
by creating the synchronization instructions implementedin a
given architecture and modifying the behavior of the cache-
memory synchronization to match the architecture behavior.
For instance, the PowerPC “lwsync” instruction2 can be
modeled as two instructions. The first instruction needed isa
smp_rmb() which depend on all prior loads, and upon which
depends all following loads and stores. The second instruction
is a smp_wmb(), which depends on all prior stores, but
upon which only the following stores depend. Such flexibility
in modeling the low-level synchronization primitives become
very handy to model the Sparc “membar” primitive, which
permits to only order either, some or all of:

• stores vs stores,
• stores vs loads,
• loads vs loads or
• loads vs stores.

In the case of theRCU algorithm model, we only need full
memory barriers.

We are aware of one recently proposed compiler opti-
mization not handled by our model. Value-speculative opti-
mizations (21; 22) performed by the compiler could cause
dependent loads to be performed out-of-order if the first data to
read is speculated, which would permit to read dependent data
in the wrong order. These dependency-breaking optimizations
are outside of the proposed model scope. Work in progress
for upcoming versions of the C++ standard include compiler
mechanisms designed to selectively suppress value specula-
tion (23; 24; 25).

VIII. C ONCLUSION

To accurately model the low-level multiprocessor interac-
tions at the architecture-level, we created a virtual architecture
performing the most aggressive optimizations still meeting
the instruction inter-dependencies. Memory access ordering is
expressed by modeling a processor cache with extremely weak

2lwsync - Lightweight synchronization: Orders loads with respect to
subsequent loads and stores. Orders stores with respect to other stores. Does
not order stores with respect to subsequent loads.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2009 13

ordering. A model of instruction dependencies deals with the
effects of out-of-order instruction execution.

Formal verification of both general-purposeRCU and signal-
based RCU has been performed on this virtual architec-
ture, therefore modeling the effects of out-of-order instruc-
tion execution and out-of-order memory accesses. The high
complexity-level of theseRCU algorithms caused by the high
degree of parallelism and extremely relaxed consistency se-
mantics can easily overwhelm human conception. This is why
validation at the lowest level of interprocessor interaction is
needed to certify that these algorithms perform the expected
synchronization.

Future work in this area could involve modeling value-
speculative compiler optimizations, to enable detection of
ordering problems which can occur when dependent mem-
ory accesses can be reordered dependency-breaking compiler
optimizations.

Modeling these algorithms on this virtual architecture lets
us demonstrate that all invocations of this algorithm primitives
will behave appropriately and that porting it to yet unforeseen
architectures will work as expected.

ACKNOWLEDGEMENTS

We owe thanks to Nicolas Gorse, Etienne Bergeron and
Alexandre Desnoyers for reviewing this paper, to Maged
Michael and Alan Stern for many illuminating discussions,
and to Kathy Bennett for her support of this effort.

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0719851. This
work is funded by Google, Natural Sciences and Engineering
Research Council of Canada, Ericsson and Defence Research
and Development Canada.

LEGAL STATEMENT
This work represents the views of the authors and does not necessarily represent the

view of Ecole Polytechnique de Montreal or IBM.

Other company, product, and service names may be trademarks or service marks of

others.

REFERENCES

[1] M. Desnoyers, P. E. McKenney, A. Stern, M. R. Da-
genais, and J. Walpole, “User-level implementations of
read-copy update,”to appear.

[2] P. E. McKenney, “Using Promela and Spin to verify
parallel algorithms,” August 2007, available: http://lwn.
net/Articles/243851/.

[3] P. E. McKenney and S. Rostedt, “Integrating and vali-
dating dynticks and preemptable RCU,” April 2008.

[4] A Better x86 Memory Model: x86-TSO, 2009.
[5] The semantics of power and ARM multiprocessor ma-

chine code. New York, NY, USA: ACM, 2008.
[6] G. J. Holzmann,The Spin Model Checker: Primer and

Reference Manual. Addison-Wesley, 2003.
[7] D. A. Schmidt, “Data flow analysis is model checking

of abstract interpretations,” inProceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, San Diego, California, 1998,
pp. 38–48.

[8] B. Steffen, “Data flow analysis as model checking,”
in Lectures Notes in Computer Sciences. Theoretical
Aspects of Computer Software: TACS, vol. 256, 1991,
pp. 346–364.

[9] M. Dwyer and L. A. Clarke, “Data flow analysis for
verifying properties of concurrent programs,” inIn Pro-
ceedings of the Second ACM SIGSOFT Symposium on
Foundations of Software Engineering. ACM Press,
1994, pp. 62–75.

[10] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and P. Schnoebelen. Springer-Verlag, 2001.

[11] G. J. Holzmann, “The SPIN model checker,”IEEE
Transactions on Software Engineering, 1997.

[12] J. van Leeuwen, Ed.,Handbook of theoretical computer
science (vol. B): formal models and semantics. Cam-
bridge, MA, USA: MIT Press, 1990.

[13] D. Peled, “Combining partial order reductions with on-
the-fly model-checking,”Formal Methods in System De-
sign, vol. 8(1), pp. 39–64, 1996.

[14] P. E. McKenney, “Memory ordering in modern micro-
processors, part II,”Linux Journal, July 2005.

[15] R. E. Kessler, “The Alpha 21264 microprocessor,”IEEE
Micro, vol. 19(2), pp. 24–36, March 1999.

[16] J. L. Peterson, “Petri nets,”ACM Computing Surveys
(CSUR), vol. 9(3), pp. 223–252, 1977.

[17] K. Jensen, “Coloured petri nets,”Petri Nets: Central
Models and Their Properties, vol. 254, pp. 248–299,
1987.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck, “Efficiently computing static single
assignment form and the control dependence graph,”
ACM Transactions on Programming Languages and
Systems, vol. 13, no. 4, pp. 451–490, Oct 1991. [Online].
Available: http://doi.acm.org/10.1145/115372.115320

[19] R. E. Bryant, “Graph-based algorithms for boolean func-
tion manipulation,” IEEE Transactions on Computers,
vol. C-35(8), pp. 677–691, 1986.

[20] ——, “Symbolic boolean manipulation with ordered
binary decision diagrams,”ACM Computing Surveys,
vol. 24, no. 3, pp. 293–318, 1992.

[21] C.-Y. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte,
“Value speculation scheduling for high performance pro-
cessors,”SIGPLAN Not., vol. 33, no. 11, pp. 262–271,
1998.

[22] C. ying Fu, M. D. Jennings, S. Y. Larin, and T. M.
Conte, “Software-only value speculation scheduling,”
Tech. Rep., 1998.

[23] P. E. McKenney, “C++ data-dependency ordering:
Atomics,” http://open-std.org/jtc1/sc22/wg21/docs/
papers/2007/n2359.html, 2007.

[24] ——, “C++ data-dependency ordering: Memory model,”
http://open-std.org/jtc1/sc22/wg21/docs/papers/2007/
n2360.html, 2007.

[25] ——, “C++ data-dependency ordering: Function
annotation,” http://open-std.org/jtc1/sc22/wg21/docs/
papers/2007/n2361.html, 2007.

