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École Polytechnique de Montréal

mathieu.desnoyers@polymtl.ca

and

MICHEL R. DAGENAIS

Dept. of Computer and Software Eng.
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1. INTRODUCTION

Performance monitoring of multiprocessor high-performance computers deployed as
production systems (e.g. Google platform), requires tools to report what is being
executed on the system. This provides better understanding of complex multi-
threaded and multi-processes application interactions with the kernel.

Tracing the most important kernel events has been done for decades in the em-
bedded field to reveal useful information about program behavior and performance.
The main distinctive aspect of multiprocessor system tracing is the complexity
added by time-synchronization across cores. Additionally, tracing of interactions
between processes and the kernel generates a high information volume.

Allowing wide instrumentation coverage of the kernel code can prove to be es-
pecially tricky, given the concurrency of multiple execution contexts and multiple
processors. In addition to being able to trace a large portion of the executable code,
another key element expected from a kernel tracer is to be very low-overhead and
not disturb the normal system behavior. Ideally, a problematic workload should
be repeatable both under normal conditions and under tracing, without suffering
from the observer effect caused by the tracer. The LTTng [Desnoyers and Dagenais
2006] tracer (available at: http://www.lttng.org) has been developed with these
two principal goals in mind: provide good instrumentation coverage and minimize
observer effect on the traced system.

A state of the art review is first presented, showing how the various tracer re-
quirements bring their respective design and core synchronization primitive choice
in different directions and how LTTng differs. The K42 tracer will be studied in
detail, given the significant contribution of this research operating system. This
paper will discuss some limitations present in the K42 lockless algorithm, which
will bring us to the need for a new buffer management model. The algorithms
and equations required to manage the buffers, ensuring complete atomicity of the
probe, will then be detailed. The scalability of the approach will also be discussed,
explaining the motivations behind the choice of per-CPU data structures to provide
good processor cache locality. Performance tests will show how the tracer performs
under various workloads at the macro-benchmark and micro-benchmark levels.

2. STATE OF THE ART

In this section, we will first present a review of the requirements from the target
LTTng user-base in terms of tracing. This is a summary of field work done to identify
those requirements from real-world Linux users. Then, we will present the state-of-
the-art open source tracers. For each of these, their target usage scenarios will be
presented along with the requirements imposed. Finally, we will study in detail the
tracer in K42, which is the closest to LTTng requirements, explaining where LTTng

brings new contributions.
Previous work published in 2007 at the Linux Symposium [Bligh et al. 2007]

and Europar [Wisniewski et al. 2007] presented the user-requirements for kernel
tracing that are driving the LTTng effort. They explain how tracing is expected
to be used by Linux end-users, developers, technical support providers and system
administrators. The following list summarizes this information and lists which
Linux distributions integrate LTTng:
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—Large online service companies such as Google need a tool to monitor their pro-
duction servers and to help them solve hard to reproduce problems. Google have
had success with such tracing approach to fix rarely occuring disk delay issues
and virtual memory related issues. They need the tracer to have a minimal
performance footprint.

—IBM Research looked into debugging of commercial scale-out applications, which
are being increasingly used to split large server workloads. They used LTTng

successfully to solve a distributed filesystem-related issue.

—Autodesk, in the development of their next-generation of Linux audio/video edi-
tion applications, used LTTng extensively to solve soft real-time issues they faced.

—Wind River includes LTTng in their Linux distribution so their clients, already
familiar with Wind River VxWorks tracing solutions, can benefit from the same
kind of features they have relied on for a long time.

—Montavista has integrated LTTng in their Carrier Grade Linux Edition 5.0 for the
same reasons.

—SuSE is currently integrating LTTng in their next SLES real-time distribution,
because their clients, asking for solutions supporting a kernel closer to real-time,
need such tools to debug their problems.

—A project between Ericsson, Defence R&D Canada, NSERC and various univer-
sities is just starting. It aims at monitoring and debugging multi-core systems,
providing tools to automate system behavior analysis.

—Siemens has been using LTTng internally for quite some time now [Hillier 2008].

We will now look at the existing tracing solutions for which detailed design and
implementation documentation is publicly available. This study will focus on trac-
ers available under open-source license, given that closed-source tracers do not
provide such detailed documentation. The requirements fulfilled by each tracer as
well as their design choices will be exposed. Areas in which LTTng requirements
differ from these tracers will be outlined.
DTrace [Cantrill et al. 2004], first made available in 2003 and formally released as

part of Sun’s Solaris 10 in 2005, aims at providing information to users about the
way their operating system and applications behave by executing scripts performing
specialized analysis. It also provides the infrastructure to collect the event trace
into memory buffers, but aims at moderate event production rates. It disables
interrupts to protect the tracer from concurrent execution contexts on the same
processor and a sequence lock to protect the clock source usage from concurrent
modifications.
SystemTAP [Prasad et al. 2005] provides scriptable probes which can be connected

on top of Markers, Tracepoints or Kprobes [Mavinakayanahalli et al. 2006]. It is
designed to provide a safe language to express the scripts to run at the instru-
mentation site, but does not aim at optimizing probe performance for high data
volume, since it was originally designed to gather information exclusively from
Kprobes breakpoints and therefore expects the user to carefully filter out the un-
needed information to diminish the probe effect. It disables interrupts and takes
a busy-spinning lock to synchronize concurrent tracing site execution. The LKET

project (Linux Kernel Event Tracer) re-used the SystemTAP infrastructure to trace
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events, but reached limited performance results given it shared much of SystemTAP’s
heavy synchronization.

Ftrace, started in 2009 by Ingo Molnar, aims primarily at kernel tracing suited
for kernel developer’s needs. It primarily lets specialized trace analysis modules
run in kernel-space to generate either a trace or analysis output, available to the
user in text format. It also integrates a binary buffer data extraction which aims at
providing efficient data output. It is currently based on per-cpu busy-spinning locks
and interrupt disabling to protect the tracer against concurrent execution contexts.
It is currently evolving to a lockless buffering scheme.

The work on LTTng presented in this paper started back in 2006 to reach its
current level of testing and safety verification.

The K42 [Krieger et al. 2006] project is a research operating system developed
mostly between 1999 and 2006 by IBM Research. It targeted primarily large mul-
tiprocessor machines with high scalability and performance requirements. It con-
tained a built-in tracer simply named “trace”, which was an element integrated to
the kernel design per se. The systems targeted by K42 and use of lockless buffering
algorithms with atomic operations are similar to LTTng.

On the design aspect, a major difference between this research-oriented tracer
and LTTng is that the latter aims at being deployed on multi-user Linux systems,
where security is a concern. Therefore, simply sharing a per-cpu buffer, available
both for reading and writing by the kernel and any user process, would not be
acceptable on production systems. Also, in terms of synchronization, K42’s tracer
implementation ties trace extraction user-space threads to the processor on which
the information is collected. Although it removes needs for synchronization, it
also implies that a relatively idle processor cannot contribute to the overall tracing
effort when some processors are busier. Regarding CPU hotplug support, which is
present in Linux, an approach where the only threads able to extract the buffer data
would be tied to the local processor would not allow trace extraction in the event
a processor would go offline. Adding support for cross-CPU data reader support
would involve adding the proper memory barriers to the tracer.

Then, more importantly for the focus of this paper, studying in depth the lockless
atomic buffering scheme found in K42 indicates the presence of a race condition
where data corruption is possible. It must be pointed out that, given the K42

tracer uses large buffers compared to the typical event size, this race is unlikely to
happen, but could become more frequent if the buffer size is made smaller or larger
events were written, which LTTng tracer’s flexibility permits.

The K42 tracer [Wisniewski and Rosenburg 2003] divides the memory reserved
for tracing a particular CPU into buffers. This maps to the sub-buffer concept
presented in the LTTng design. In comparison, LTTng uses the “buffer” name to
identify the set of sub-buffers which are parts of the circular buffer. In the present
discussion, the term “buffer” will have the K42 semantic, but the rest of the paper
will use the LTTng semantic. K42 scheme uses a lockless buffer-space management
algorithm based on a reserve-commit semantic. Space is first reserved atomically in
the buffer, and then the data write and commit are done out-of-order with respect
to local interrupts. It uses a buffersProduced count, which counts the number of
buffers produced by the tracer, a buffersConsumed count, to keep track of the
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number of buffers read and a per-buffer bufferCount, to keep track of the amount
of information committed into each buffer.

In the K42 scheme, the buffersProduced count is incremented upon buffer space
reservation for an event crossing a buffer boundary. If other out-of-order writes
are causing the current and previous sub-buffer’s commit counts to be a modulo
of buffer size (because they would still be fully uncommitted), the userspace data
consumption thread can read non-committed (invalid) data because the buffer-
sProduced would make an uncommitted buffer appear as fully committed. This is
a basic algorithmic flaw that LTTng fixes by using a free-running per sub-buffer
commit count and by using a different buffer full criterion which depends on the
difference between the write count (global to the whole buffer) and its associated
per-subbuffer commit count, as detailed in Equation 1 in Section 4.2.

The formal verification performed by modeling the LTTng algorithms and using
the Spin model-checker permits to increase the level of confidence that such corner-
cases are correctly handled.

3. DESIGN

Tracing an operating system kernel poses interesting problems related to the ob-
server effect. In fact, tracing performed at the software level requires to modify
the execution flow of the traced system and therefore modifies its behavior and
performance. When deciding what code will be executed when the instrumentation
is reached, each execution context concerned must be taken into account.

This section describes how LTTng is designed to deal with kernel tracing, satisfy-
ing the constraints associated with synchronization of data structures while running
in any execution context, avoiding kernel recursion and inducing a very small per-
formance impact. It details a complete buffering synchronization scheme.

This section starts with a high-level overview of the tracer design. It is followed
by a more detailed presentation of the Channel component, an highly-efficient data
transport pipe. Synchronization of trace Control data structures, allowing to config-
ure tracing, is then exposed. This leads to the Data Flow presentation as seen from
the tracing probe perspective. Finally, the Atomic Buffering Scheme section details
the core of LTTng concurrency management, which brings innovative algorithms to
deal with write concurrency in circular memory buffers.

3.1 Components overview

Starting with a high-level perspective on the tracer design, Figure 1 presents the
component interactions across the boundary between kernel-space and user-space.

Kernel core and kernel modules are instrumented using either statically at the
source-code level with the Linux Kernel Markers and Tracepoints or dynamically
with Kprobes. Each instrumentation site identifies kernel core and module code
which must be traced upon execution. Both static and dynamic instrumentation
can be activated at runtime on a per-site basis to individually enable each event
type. An event maps to a set of functionally equivalent instrumentation sites.

When an instrumented code site is executed, the LTTng probe is called if the
instrumentation site is activated. The probe reads the trace session status and
writes an event to the channels.

Trace sessions contains the tracing configuration data and pointers to multiple
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Fig. 1. Tracer components overview.
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Fig. 2. Channel components.

channels. Although only one session is represented in Figure 1, there can be many
trace sessions concurrently active, each with its own trace configuration and its
own set of channels. Configuration data determines if the trace session is active
or not and which event filters should be applied.

From a high-level perspective, a channel can be seen as an information pipe with
specific characteristics configured at trace session creation time. Buffer size, tracing
mode (flight recorder or non-overwrite) and buffer flush period can be specified on
a per-channel basis. These options will be detailed in Section 3.2.
DebugFS is a virtual filesystem providing an interface to control kernel debugging

and export data from kernel-space to user-space. The trace session and channel
data structures are organised as DebugFS files to let lttctl and lttd interact with
them.

The user-space program lttctl is a command-line interface interacting with the
DebugFS file system to control kernel tracing. It configures the trace session before
tracing starts and is responsible for starting and stopping trace sessions.

The user-space daemon lttd also interacts with DebugFS to extract the channels
to disk or network storage. This daemon is only responsible for data extraction;
this daemon has absolutely no direct interaction with trace sessions.

3.2 Channels

After the high-level tracer presentation, let’s focus on the Channel components.
They are presented in Figure 2.

A channel is a pipe between an information producer and consumer (producer
and writer as well as consumer and reader will be respectively used as synonyms
thorough this paper). It serves as a buffer to move data efficiently. It consists of one
buffer per CPU to ensure cache locality and eliminate false-sharing. Each buffer is
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made of many sub-buffers where slots are reserved sequentially. Each sub-buffer is
exported by the lttd daemon to disk or to the network separately.

A slot is a sub-buffer region reserved for exclusive write access by a probe. This
space is reserved to write either a sub-buffer header or an event header and payload.
Figure 2 shows space being reserved. On CPU 0, space is reserved in sub-buffer
0 following event 0. In this buffer, the header and event 0 elements have been
complelety written to the buffer. They grey area represents slots for which asso-
ciated commit count increment has been done. Committing a reserved slot makes
it available for reading. On CPU n, a slot is reserved in sub-buffer 0 but is still
uncommitted. It is however followed by a committed event. This is possible due
to the non serial nature of event write and commit operations. This situation hap-
pens when execution is interrupted between space reservation and commit count
update and another event must be written by the interrupt handler. Sub-buffer 1,
belonging to CPU 0, shows a fully committed sub-buffer ready for reading.

Events written in a reserved slot are made of a header and a variable-sized payload.
The header contains information about the time stamp associated with the event
and the event type (an integer identifier). The event type information allows to
parse the payload and determine its size. The maximum slot size is bounded by the
sub-buffer size.

Channels can be configured in either of the two following tracing modes. Flight
recorder tracing is a mode where oldest buffer data is overwritten when a buffer is
full. Conversely, non-overwrite tracing discards (and counts) events when a buffer
is full. Those discarded events are counted to evaluate tracing accuracy. These
counters are recorded in each sub-buffer header allowing to identify which trace
region suffered from event loss. The former mode is made to capture a snapshot of
the system preceding execution at a given point. The latter is made to collect the
entire execution trace over a period of time.

3.3 Control

This section presents interactions with the trace session data structure depicted in
Figure 1 along with the required synchronization.

Information controlling tracing includes, for instance, the channel location and a
flag to specify if a specific set of buffers is active for tracing. This provides flexibility
so users can tune the tracer following their system’s workload. They can determine
how much memory space must be reserved for buffering the tracing data. They can
also configure each channel in flight recorder or non-overwrite mode. Selection of
tracing behavior can be tuned on a per-channel basis. The channel identifier forms
an intrinsic event categorization.

Tracing control is done by a kernel module, ltt-tracer, which updates the RCU

list of active traces. It protects the update operation from concurrent writes by
holding a mutex. Two types of data structure modifications can be done: the
data element can be updated atomically, in which case it is safe to perform the
modification without copying the complete trace control data structure as long as
the mutex is held. Non-atomic updates must be done on a copy of the trace control
structure, followed by a replacement of the old copy in the list by two successive
pointer changes in this precise order: first setting the pointer to next element within
the new copy and then setting the pointer to the new copy in the previous element.
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Then it waits for quiescent state, which allows memory reclamation of the old data
structure. This ensures no active data structure readers, the probes, still hold a
reference to the old structure when it is freed.

Tracing control operations include creating a new trace session, starting or stop-
ping tracing, and freeing a trace session. Providing an external callback to be called
for per-trace filtering is also possible. Upon new trace session creation, parameters
must be set such as channel’s buffer size, number of sub-buffers per buffer, tracing
mode and if tracing is enabled for each information channel.

Modification of buffer data structures by the ltt-tracer kernel module is only done
upon new trace session creation and deletion. Once the trace is started, the module
won’t modify these structures until tracing is stopped. It makes sure only the data
producers and consumers will touch the buffer management structures.

In order to provide the ability to export tracing information as a live stream, one
must ensure a maximum latency between the moment the event is written to the
memory buffers and the moment it is ready to be read by the consumer. However,
because the information is only made available for reading after a sub-buffer has
been filled, a low event rate channel might never be ready for reading until the final
buffer flush is done when tracing is stopped.
LTTng implements a per-CPU sub-buffer flush function which can be executed

concurrently with tracing. It shares many similarities with tracing an event. How-
ever, it won’t flush an empty sub-buffer because there is no information to send
and it does not reserve space in the buffer. The only supplementary step required
to stream the information is to call the buffer flush for each channel periodically in
a per-CPU timer interrupt.

3.4 Probe Data Flow

The tracing data flow from the probe perspective is illustrated in Figure 3. This
figure includes all data sources and sinks, including those which are not part of the
tracer per se, such as kernel data structures and hardware time stamps.

A probe takes event data from registers, the stack, or from memory every time
the instrumented kernel execution site is reached. A time stamp is then associated
with this information to form an event, identified by an event ID. The tracing
control information is read to know which channel is concerned by the information.
Finally, the resulting event is serialized and written to a circular buffer to be later
exported outside of kernel-space. The channels offer a producer-consumer semantic.

Instrumentation can be inserted either statically, at the source-code level, or dy-
namically, using a breakpoint. The former allows to build instrumentation into
the software and therefore identify key instrumentation sites, maintaining a stable
API. It can also restrain the compiler from optimizing away variables needed at
the instrumented site. However, in order to benefit from flexible live instrumenta-
tion insertion, without recompilation and reboot, it might be adequate to pay the
performance cost associated with a breakpoint, but one must accept that the local
variables might be optimized away and that the kernel debug information must be
kept around.

Source-code level instrumentation, enabled at runtime, is currently provided by
the Tracepoints [Corbet 2008] and the Linux Kernel Markers [Corbet 2007a], de-
veloped as part of the LTTng project and merged into the mainline Linux kernel.

ACM Journal Name, Vol. X, No. X, 07 2009.



10 · M. Desnoyers and M. R. Dagenais

Fig. 3. Probe data flow.

Dynamic instrumentation, based on breakpoints, is provided in the Linux kernel by
Kprobes [Mavinakayanahalli et al. 2006] for many architectures. LTTng, SystemTAP
and DTrace all use a combination of dynamic and static instrumentation. The de-
tails about the different instrumentation mechanisms are not, however, the focus
of this paper. The following section presents channel ring-buffer synchronization.

ACM Journal Name, Vol. X, No. X, 07 2009.



Lockless Multi-Core High-Throughput Buffering Scheme · 11

4. ATOMIC BUFFERING SCHEME

The atomic buffering scheme implemented in LTTng allows the probe to produce
data in circular buffers with a buffer-space reservation mechanism which ensures
correct reentrancy with respect to asynchronous event sources. These include mask-
able and non-maskable interrupts (NMIs). Preemption1 is temporarily disabled
around the tracing site to make sure no thread migration to a different CPU can
occur in the middle of probe execution.

Section 4.1 first presents the data structures used to synchronize the buffering
scheme. Then, algorithms performing interactions between producer and consumer
are discussed respectively in sections 4.2, 4.3, 4.3.1, 4.3.2 and 4.3.3.

4.1 Atomic data structures

On SMP (Symmetric Multiprocessing) systems, some instructions are designed to
update data structures in one single indivisible step. Those are called atomic oper-
ations. To properly implement the semantic carried by these low-level primitives,
memory barriers are required on some architecture (this is the case for PowerPC
and ARMv7 for instance). For the x86 architecture family, these memory barri-
ers are implicit, but a special lock prefix is required before these instructions to
synchronize multiprocessor access. However, to diminish performance overhead of
the tracer fast-path, we remove memory barriers and use atomic operations only
synchronized with respect to the local processor due to their lower overhead than
those synchronized across cores. They are the only instructions allowed to modify
the per-CPU data, to ensure reentrancy with NMI context.

The main restriction that must be observed when using such operations is to
disable preemption around all access to these variables, to ensure threads are not
migrated from one core to another between the moment the reference is read and the
atomic access. This ensures no remote core accesses the variable with SMP-unsafe
operations.

The two atomic instructions required are the CAS (Compare-And-Swap) and a
simple atomic increment. Figure 4 shows the data structures being modified by
those local atomic operations. Each per-CPU buffer has a control structure which
contains the write count, the read count, and an array of commit counts and com-
mit seq counters2. The counters commit count keep track of the amount of data
committed in a sub-buffer using a lightweight increment instruction. The commit
seq counters are updated with a concurrency-aware synchronization primitive each
time a sub-buffer is filled.

A local CAS is used on the write count to update the counter of reserved buffer
space. This operation ensures space reservation is done atomically with respect to
other execution contexts running on the same CPU. The atomic add instruction
is used to increment the per sub-buffer commit count, which identifies how much
information has actually been written in each sub-buffer.

The sub-buffer size and the number of sub-buffers within a buffer are limited
to powers of 2 for two reasons. First, using bitwise operations to access the sub-

1With fully-preemptible Linux kernels (CONFIG PREEMPT=y), the scheduler can preempted
threads running in kernel context to run another thread.
2The size of this array is the number of sub-buffers.
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Fig. 4. Producer-consumer synchronization.

buffer offset and sub-buffer index is faster than the modulo and division. The
second reason is more subtle: although the CAS operation could detect 32 or 64-bits
overflows and deal with them correctly before they happen by resetting to 0, the
commit count atomic add will eventually overflow the 32 or 64-bits counters, which
adds an inherent power of 2 modulo that would be problematic if the sub-buffer
size would not be power of 2.

On the reader side, the read count is updated using a standard SMP-aware CAS

operation. This is required because the reader thread can read sub-buffers from
buffers belonging to a remote CPU. It is designed to ensure that a traced workload
executed on a very busy CPU can be extracted by other CPUs which have more idle
time. Having the reader on a remote CPU requires SMP-aware CAS. This allows the
writer to push the reader position when the buffer is configured in flight recorder
mode. The performance cost of the SMP-aware operation is not critical because
updating the read count is only done once a whole sub-buffer has been read by the
consumer, or when the writer needs to push the reader at sub-buffer switch, when
a buffer is configured in flight recorder mode. Concurrency between many reader
threads is managed by using a reference count on file open/release, which only
lets a single process open the file, and by requiring that the user-space application
reads the sub-buffers from only one execution thread at a time. Mutual exclusion
of many reader threads is left to the user-space caller, because it must encompass
a sequence of multiple system calls. Holding a kernel mutex is not allowed when
returning to user-space.

ACM Journal Name, Vol. X, No. X, 07 2009.



Lockless Multi-Core High-Throughput Buffering Scheme · 13

4.2 Equations

This section presents equations determining buffer state. These are used by algo-
rithms presented in Section 4.3.

These equations extensively use modulo arithmetic to consider physical counter
overflows. On 64-bits architectures, equations are in modulo 264. On 32-bits archi-
tectures, they are modulo 232.

We first define the following basic operations. Let’s define

—|x| as length of x.

—a mod b as modulo operation (remainer of a

b
).

—
n

M
m

(x) as x bitwise AND 00 . . .011 . . .1
︸ ︷︷ ︸

n−m

00 . . .0
︸ ︷︷ ︸

m

,

formally: (x mod 2n) − (x mod 2m).

We define the following constants. Let

—|sbuf| be the size of a sub-buffer.
(power of 2)

—|buf| be the size of a buffer.
(power of 2)

—sbfbits = lg2(|sbuf|).

—bfbits = lg2(|buf|).

—nsbbits = bfbits− sbfbits.

—wbits be the architecture word size in bits.
(32 or 64 bits)

We have the following variables. Let

—wcnt be write counter mod 2wbits .

—rcnt be read counter mod 2wbits .

—wcommit be the commit counter commit seq mod 2wbits belonging to the sub-
buffer where wcnt is located.

—rcommit be the commit counter commit seq mod 2wbits belonging to the sub-
buffer where rcnt is located.

Less than one complete sub-buffer is available for writing when Equation 1 is
satisfied. It verifies that the difference between the number of sub-buffers produced
and the number of sub-buffers consumed in the ring buffer is greater or equal to
the number of sub-buffers per buffer. If this equation is satisfied at buffer switch,
it means the buffer is full.

wbits

M
sbfbits

(wcnt) −
wbits

M
sbfbits

(rcnt) ≥ |buf| (1)

Write counter and read counter masks are illustrated by Figure 5. These masks
are applied to wcnt and rcnt .

A buffer contains at least one sub-buffer ready to read when Equation 2 is sat-
isfied. The left side of this equation takes the number of buffers reserved so far,
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Fig. 5. Write and read counter masks.

masks out the current buffer offset and divides the result by the number of sub-
buffers per buffer. This division ensures the left side of the equation represents the
number of sub-buffers reserved. The right side of this equation takes the commit
count to which rcnt points and substracts |sbuf| from it. It is masked to clear the
top bits, which ensures both sides of the equation overflow at the same value. This
is required because rcnt reaches a 2wbits overflow sbfnb times more often than the
per-subbuffer rcommit counters. |sbuf| is substracted from rcommit because we
need to know when the commit seq is one whole sub-buffer ahead of the read count.

wbits

M
bfbits

(rcnt)

2nsbbits
=

wbits−nsbbits

M
0

(rcommit − |sbuf|) (2)

The sub-buffer corresponding to wcnt is in a fully committed state when Equa-
tion 3 is satisfied. Its negation is used to detect a situation where an amount of
data sufficient to overflow the buffer is written by concurrent execution contexts
running between a reserve-commit pair.

wbits

M
bfbits

(wcnt)

2nsbbits
=

wbits−nsbbits

M
0

(wcommit) (3)

Commit counter masks are illustrated by Figure 6. These masks are applied to
rcommit and wcommit .

The sub-buffer corresponding to rcnt is being written when Equation 4 is satisfied.
It verifies that the number of sub-buffers produced and consumed are equal.

wbits

M
sbfbits

(wcnt) =
wbits

M
sbfbits

(rcnt) (4)

4.3 Algorithms

Algorithms used to synchronize the producer and consumer are presented in this
section. It is followed by a presentation of the asynchronous buffer delivery algo-
rithm.
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Fig. 6. Commit counter masks.

4.3.1 Producer. This section presents the algorithms used by information pro-
ducer, the probe, to synchronize its slot reservation within the channels.

The overall call-graph presented in this section can be summarized as follow.
When an event is to be written, space is reserved by calling ReserveSlot(),
which calls TryReserveSlot() in a loop until it succeeds. Then, PushReader(),
SwitchOldSubbuf(), switchnewsubbuf and EndSwitchCurrent() (not expanded
in this paper for brevity) are executed out-of-order to deal with sub-buffer change.
After the event data is written to the slot, CommitSlot() is called to increment
the commit counter.

The write count and read count variables have the largest size accessible atomi-
cally by the architecture, typically 32 or 64 bits. Since, by design, the sub-buffer
size and the number of sub-buffers within a buffer are powers of two, a LSB (Least
Significant Bit) mask can be used on those counters to extract the offset within
the buffer. The MSBs (Most Significant Bits) are used to detect the improbable
occurrence of a complete buffer wrap-around nested on top of the local CAS loop in
flight recorder mode. Such overflow, if undetected, could cause a timestamp to go
backward in a buffer.

Such wrap-around could happen if many interrupts nest back-to-back on top of
a CAS loop. A worse-case scenario would be to have back-to-back nested interrupts
generating enough data to fill the buffer (typically 2 MB in size) and bring the write
count back to the same offset in the buffer. The CAS loop uses the most significant
counter bits to detect this situation. On 32-bits architectures, it permits to detect
counter overflow up to 4 GB worth of buffer data. On 64-bits architectures, it
detects up to 16.8 million TB worth of data written while nested over a CAS loop
execution. Given this amount of trace data would have to be generated by interrupt
handlers continuously interrupting the probe, it is considered that an operating
system facing such interrupt rate would simply be unusable. As an example of
existing code doing similar assumptions, the Linux kernel sequence lock, used to
synchronize the time-base, is made of a sequence counter also subject to overflow.

Slot reservation, presented in TryReserveSlot() and ReserveSlot() is per-
formed as follow. From a high-level perspective, the producer depends on the read
count and write count difference to know if space is still available in the buffers. If
no space is available in non-overwrite mode, the event lost count is incremented and
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Algorithm 1 TryReserveSlot(payload size)

Require: An integer payload size ≥ 0.

1: Read write count
2: Read time stamp counter
3: Calculate required slot size
4: Calculate slot offset
5: if Negation of Eqn. 3 then

6: Increment event lost count
7: slot size = FAIL
8: return slot size
9: end if

10: if Eqn. 1 (in non-overwrite mode) then

11: Increment event lost count
12: slot size = FAIL
13: return slot size
14: end if

15: Update buffer switch flags
16: return < slot size, slot offset, buffer switch flags >

Algorithm 2 ReserveSlot(payload size)

Require: An integer payload size ≥ 0
Ensure: slot offset is the only reference to the slot during all the reserve and

commit process, the slot is reserved atomically, time stamps of physically con-
secutive slots are always incrementing.

1: repeat

2: <slot size, slot offset, buffer switch flags>
= TryReserveSlot(payload size)

3: if slot size = FAIL then

4: return FAIL

5: end if

6: until CAS of write count succeeds

7: PushReader()
8: Set reference flag in pointer to current sub-buffer. Indicates

that the writer is using this sub-buffer.

9: SwitchOldSubbuf()
10: SwitchNewSubbuf()
11: EndSwitchCurrent()
12: return <slot size, slot offset>

the event is discarded. In flight recorder mode, the next sub-buffer is overwritten by
pushing the reader. Variables write count, read count and the commit seq array are
used to keep track of the respective position of the writer and the reader gracefully
with respect to counter overflow. Equations 1, 2, 3 and 4 are used to verify the
state of the buffer.
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Algorithm 3 CommitSlot(slot size, slot offset)

Require: An integer slot size > 0 and the slot offset

1: Compiler barrier3

2: Issue local add() to increment commit count of slot size
3: if Eqn. 3 then

4: commit seq old = commit seq
5: while commit seq old < commit count do

6: try CAS of commit seq. Expect commit seq old, new value written is
commit count. Save value read to commit seq old.

7: end while

8: end if

The write count is updated atomically by the producer to reserve space in the
sub-buffer. In order to apply monotonically increasing time stamps to events which
are physically consecutive in the buffer, the time stamp is read within the CAS loop.
This ensures that no space reservation succeeds between the time-stamp register
read and the atomic space reservation, and therefore ensures that a successful buffer-
space reservation and time-stamp read are indivisible one from another from a
CPU’s perspective. Such mechanisms to make many instructions appear to execute
atomically is however limited to operations not having side-effects outside of the
variables located on the stack or in registers which can be re-executed upon failure,
except for the single CAS operation which has side-effects when it succeeds. It is
therefore mostly limited to read operations and computation of the required slot
size for the event.

Once space is reserved, the rest of the operations are done out-of-order. It means
that if an interrupt nests over a probe, it will reserve a buffer slot next to the
one being written to by the interrupted thread, will write its event data in its
own reserved slot and will atomically increment the commit count before returning
to the previous probe stack. When a slot has been completely written to, the
CommitSlot() algorithm is used to update the commit count. It is also responsible
for clearing the sub-buffer reference flag if the sub-buffer is filled and updating
commit seq.

There is one commit seq per sub-buffer. It also increments forever in the same
way the write count does, with the difference that it only counts the per-subbuffer
bytes committed rather than the number of bytes reserved for the whole buffer. The
difference between the write count MSBs divided by the number of sub-buffers
and the commit seq MSBs (with the highest bits corresponding to the number of
sub-buffers set to zero) indicates if the commit count LSBs represent an empty,
partially or completely full sub-buffer.

As shown at the end of ReserveSlot(), switching between sub-buffers is done
out-of-order. It consists of two phases: the first detects, within the CAS loop, if a
buffer switch is needed. If it is the case, flags are set on the probe stack to make
the out-of-order code, following the loop, increments the sub-buffer commit counts

3The compiler barrier will be promoted to a write memory barrier by an interprocessor interrupt
sent by the read-side ReadGetSubbuf(), as explained thoroughly in Section 4.4.
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Algorithm 4 ForceSwitch()

Ensure: Buffer switch is done if sub-buffer contains data

1: repeat

2: Calculate the commit count needed to fill the current sub-buffer.
3: until CAS of write count succeeds

4: PushReader()
5: Set reference flag in pointer to current sub-buffer. Indicates

that the writer is using this sub-buffer.

6: SwitchOldSubbuf()
7: SwitchNewSubbuf()

of the sub-buffer we are switching out from and the sub-buffer switched into. The
sub-buffer switched out from will therefore have its commit count incremented of
the missing amount of bytes between the number of bytes reserved (and thus mono-
tonically incrementing) and the sub-buffer size. Switching to a new sub-buffer adds
the new sub-buffer header’s size to the new sub-buffer’s commit count. Another
case is also possible, which is when there is exactly enough event data to fit per-
fectly in the sub-buffer. In this case, a end switch current flag is raised so the
header information is finalized. All these buffer switching cases also populate the
sub-buffer headers with information regarding the current time stamp and padding
size at the end of the sub-buffer, prior to incrementing the commit count. Switch-
OldSubbuf(), SwitchNewSubbuf() and EndSwitchCurrent() are therefore
responsible for incrementing the commit count of the amount of padding added at
the end of a sub-buffer, clearing the reference flag when the sub-buffer is filled and
updating commit seq.

Pushing a reader, represented by PushReader(), is done by a writer in flight
recorder mode when it detects that the buffer is full. In that case, the writer sets
the read count to the beginning of the following sub-suffer.

Flushing the buffers while tracing is active, as done by pseudo-code ForceSwitch(),
is required to permit streaming of information with a bounded latency, between the
time events are written in the buffers and event delivery to user-space. It is a special-
case of normal space reservation which does not reserve space in the sub-buffer, but
forces a buffer switch if the current sub-buffer is non-empty. Buffer switch is called
from a periodical timer, configurable by the user to select how often buffer data
must be flushed.

4.3.2 Consumer. The consumer, lttd, uses two system calls, poll() and ioctl(),
to control the interaction with the memory buffers, and splice() as a mean to
extract the buffers to disk or to the network without extra copy. At kernel-level, we
specialize those three system calls for the virtual files presented by DebugFS. The
daemon waits for incoming data using poll(). This system call waits to be woken
up by the timer interrupt (see the AsyncWakeupReadersTimer() pseudo-code
in Algorithm 8). Once data is ready, it returns the poll priority to user-space. If
the tracer is currently writing in the last available sub-buffer of the buffer, a high
priority is returned. Pseudo-code ReadPoll() summarizes the actions taken by
the poll() system call.
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Algorithm 5 ReadPoll()

Ensure: Returns buffer readability state and priority

1: Wait on read wait wait queue.
2: if Eqn. 4 then

3: if Sub-buffer is finalized (freed by the tracer) then

4: Hang up.
5: return POLLHUP

6: else

7: No information to read.
8: return OK

9: end if

10: else

11: if Eqn. 1 then

12: High-priority read.
13: return POLLPRI

14: else

15: Normal read.
16: return POLLIN

17: end if

18: end if

Once the control has returned to user-space from the poll() system call, the
daemon takes a user-space mutex on the buffer and uses the ioctl() system call
to perform buffer locking operations. Its implementation uses the ReadGet-
Subbuf() and ReadPutSubbuf() algorithms. The former operation, detailed
in Algorithm 6, reserves a sub-buffer for reader and returns the read count. If the
lower-level buffer writing scheme would allow concurrent accesses to the reserved
sub-buffer between the reader and the writer, this value could be used to verify,
in the ReadPutSubbuf() operation, detailed in Algorithm 7, that the reader has
not been pushed by a writer dealing with buffers in flight recorder mode. However,
as we present below, this precaution is unnecessary because the underlying buffer
structure does not allow such concurrency.

The specialized ioctl() operation is responsible for synchronizing the reader with
the writer’s buffer-space reservation and commit. It is also responsible for making
sure the sub-buffer is made private to the reader to eliminate any possible race
in flight recorder mode. This is achieved by adding a supplementary sub-buffer,
owned by the reader. A table with pointers to the sub-buffers being used by the
writer allows the reader to change the reference to each sub-buffer atomically. The
ReadGetSubbuf() algorithm is responsible for atomically exchanging the refer-
ence to the sub-buffer about to be read with sub-buffer currently owned by the
reader. If the CAS operation fails, the reader does not get access to the buffer for
reading.

Given that sub-buffer management data structures are aligned on 4 or 8-bytes
multiples, we can use the lowest bit of the sub-buffer pointer to encode whether it is
actively referenced by the writer. This permits to ensure that the pointer exchange
performed by the reader can never succeed when the writer is actively using the
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Algorithm 6 ReadGetSubbuf()

Ensure: Take exclusive reader access to a sub-buffer.

1: Read read count.
2: Read the commit seq corresponding to the read count.
3: Issue a smp mb() (Memory Barrier on multiprocessor) to ensure commit seq

read is globally visible before sending the IPI (Interprocessor Interrupt).
4: Send IPI to target writer CPU (if differs from the local reader CPU) to issue a

smp mb(). This ensures that data written to the buffer and write count update
are globally visible before the commit seq write. Wait for IPI completion.

5: Issue a smp mb() to ensure the reserve count and buffer data read are not
reordered before IPI execution.

6: Read reserve count.
7: if Negation of Eqn. 2 then

8: return EAGAIN

9: end if

10: if Eqn. 4 (Only flight recorder) then

11: return EAGAIN

12: end if

13: if Writer is holding a reference to the sub-buffer about to be exchanged ∨
Exchange of reader/writer sub-buffer reference fails then

14: return EAGAIN

15: end if

16: return read count

Algorithm 7 ReadPutSubbuf(arg read count)

Require: read count returned by ReadGetSubbuf() (arg read count).
Ensure: Release exclusive reader access from a sub-buffer. Always succeeds even

if the writer pushed the reader, because the reader had exclusive sub-buffer
access.

1: new read count = arg read count + subbuffer size.
2: CAS expects arg read count, replaces with new read count
3: return OK

reference to write to a sub-buffer about to be exchanged by the reader.

4.3.3 Asynchronous buffer delivery. Because the probe cannot interact directly
with the rest of the kernel, it cannot call the scheduler to wake up the consumer.
Instead, this ready to read sub-buffer delivery is done asynchronously by a timer
interrupt. This interrupt checks if each buffer contains a filled sub-buffer and wakes
up the readers waiting in the read wait queue associated with each buffer accord-
ingly. This mechanism is detailed in Algorithm 8.

4.4 Memory Barriers

Although LTTng mostly keeps data local to each CPU, cross-CPU synchronization
is still required at those three sites:
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Algorithm 8 AsyncWakeupReadersTimer()

Ensure: Wake up readers for full sub-buffers

1: for all Buffers do

2: if Eqn. 2 then

3: Wake up consumers waiting on the buffer read wait queue.
4: end if

5: end for

—At initial time-stamp counters synchronization, done at boot-time by the op-
erating system. This heavy synchronization, if not done by the BIOS (Basic
Input/Output System), requires full control of the system.

—When the producer finishes writing to a sub-buffer, making it available for reading
by a thread running on an arbitrary CPU. This involves using the proper memory
barriers ensuring that all written data is committed to memory before another
CPU starts reading the buffer.

—At consumed data counter update, involving the appropriate memory barriers
ensuring the data has been fully read before making the buffer available for
writing.

The two points at which a sub-buffer can pass from one CPU to another is when
it is exchanged between the producer and the consumer and when it goes back
from the consumer to the producer, because the consumer may run on a different
CPU than the producer. Good care must therefore be taken to make sure correct
memory ordering between buffer management variables and the buffer data writes.
The condition which makes a sub-buffer ready for reading is represented by Eqn. 2,
which depends on the read count and the commit seq counter corresponding to
the read count. Therefore, before incrementing the sub-buffer commit seq, a write
memory barrier must be issued on SMP systems allowing out-of-order memory
writes to ensure the buffer data is written before the commit seq is updated. On
the read-side, before reading the commit seq, a read memory barrier must be issued
on SMP. It insures correct read ordering of counter and buffer data.
LTTng buffering uses an optimization over the classic memory barrier model.

Instead of executing a write memory barrier before each commit seq update, a
simple compiler optimization barrier is used to make sure data written to buffer
and commit seq update happen in program order with respect to local interrupts.
Given that the write order is only needed when the read-side code needs to check
the buffer’s commit seq value, Algorithm 6 shows how the read-side sends an IPI

to execute a memory barrier on the target CPU between two memory barriers on
the local CPU to ensure that memory ordering is met when the sub-buffer is passed
from the writer to the reader. This IPI scheme promotes the compiler barrier to
a memory barrier each time the reader needs to issue a memory barrier. Given
the reader needs to issue such barrier only once per sub-buffer switch, compared
to a write memory barrier once per event, this improves performance by removing
a barrier from the fast path at the added cost of an extra IPI at each sub-buffer
switch, which happen relatively rarely. With an average event size of 8 bytes and
a typical sub-buffer size of 1 MB, the ratio is one sub-buffer switch each 131072
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events. Given an IPI executing a write memory barrier on an Intel Core2 Xeon 2.0
GHz takes about 2500 cycles and that a local write memory barrier takes 8 cycles,
memory barrier synchronization speed is increased by a factor 419 to 1.

When the buffer is given back to the producer, a synchronized CAS is used to
update the read count, which implies a full memory barrier before and after the
instruction. The CAS ensures the buffer data is read before the read count is updated.
Given that the writer does not have to read any data from the buffer and depends
on reading the read count value to check if the buffer is full (in non-overwrite
mode), only the the read count is shared. The control dependency between the test
performed on read count and write to the buffer ensures the writer never writes to
the buffer before the reader has finished reading from it.

4.5 Buffer allocation

The lockless buffer management algorithm found in LTTng allows dealing with con-
current write accesses to segments of a circular buffer (slots) of variable length.
This concurrency management algorithm does not impose any requirement on the
nature of the memory backend which holds the buffers. The present section will
expose the primary memory backends supported by LTTng as well as the backends
planned for support in future versions.

The primary memory backend used by LTTng is a set of memory pages allo-
cated by the operating system’s page allocator. Those pages are not required to
be physically contiguous. This ensures that page allocation is still possible even
if memory is fragmented. There is no need to have any virtually contiguous ad-
dress mapping, which helps saving TLB (Translation Lookaside Buffer) entries and
limited amount of kernel-addressable available virtual address space (especially on
32-bits systems). These pages are accessed through a single-level page table which
performs the translation from a linear address mapping (offset within the buffer)
to a physical page address. Buffer read(), write() and splice() primitives abstract
the non-contiguous nature of the underlying memory layout by providing an API
which present the buffer as a virtually contiguous address space.
LTTng buffers are exported to user-space through the DebugFS file system. It

presents the LTTng buffers as a set of virtual files to user applications and allows
interacting with those files using open(), close(), poll(), ioctl() and splice() system
calls.
LTTng includes a replacement of RelayFS aiming at efficient zero-copy data ex-

traction from buffer to disk or to the network using the splice() system call. Earlier
LTTng implementation, using RelayFS, were based on mapping the buffers into user-
space memory to perform data extraction. However, this comes at the expense of
wasting precious TLB entries usually available for other use. The current LTTng

implementation uses the splice() system call. Its usage requires creating a pipe. A
splice() system call, implemented specifically to read the buffer virtual files, is used
to populate the pipe source with specific memory pages. In this case, the parts
of buffer to copy are selected. Then, a second splice() system call (the standard
pipe implementation) is used to send the pages to the output file descriptor, which
targets either a file on disk or a network socket.

Separating the buffer-space management algorithm from the memory backend
support eases the implementation of specialized memory backends, depending on

ACM Journal Name, Vol. X, No. X, 07 2009.



Lockless Multi-Core High-Throughput Buffering Scheme · 23

the requirements:

—Discontiguous page allocation (presented above) requires adding a software single-
level page table, but permits allocation of buffers at run-time when memory is
fragmented.

—Early boot-time page allocation of large contiguous memory areas requires low
memory fragmentation, but permits faster buffer page access because it does not
need any software page-table indirection.

—Video memory backend can be used by reserving video memory for trace buffers.
It allows trace data to survive hot reboots, which is useful to deal with kernel
crash.

5. EXPERIMENTAL RESULTS

This section presents the experimental results from the design implementation un-
der various workloads, and compares these with alternative existing technologies.

5.1 Methodology

To present the tracer performance characteristics, we first present the overhead of
the LTTng tracer for various types of workloads on various types of systems. Then,
we compare this overhead to existing state-of-the-art approaches.

The probe CPU-cycles benchmarks, presented in section 5.2, demonstrate the
LTTng probe overhead in an ideal scenario, where the data and instructions are
already in cache.

Then, benchmarks representing real-life workload, tbench and dbench, simulate
the load of a Samba server, respectively for network traffic and for disk traffic. A
tbench test on loopback interface shows the worse-case scenario of 8 client and 8
server tbench threads heavily using a traced kernel. Scalability of the tracer when
the number of cores increases is tested on the heavy loopback tbench workload.

Yet another set of benchmarks uses lmbench to individually test tracing overhead
on various kernel primitives, mainly system calls and traps, to show the performance
impact of active tracing on those important system components.

Finally, a set of benchmarks runs a compilation of the Linux kernel 2.6.30 with
and without tracing to produce a CPU intensive workload.

Probe CPU-cycles overhead benchmarks are performed on a range of architec-
tures. Unless specified, benchmarks are done on an Intel Core2 Xeon E5405 running
at 2.0 GHz with 16 GB of RAM. Tests are executed on a 2.6.30 Linux kernel with
full kernel preemption enabled. The buffers configuration used for high event-rate
buffers is typically two 1 MB sub-buffers, except for block I/O events, where per-
CPU buffers of eight 1 MB sub-buffers are used.

5.2 Probe CPU-cycles overhead

This test measures the cycle overhead added by a LTTng probe. The interest of
this test is to provide a per-event overhead lower bound. This is considered a
lower-bound because this test is performed in a tight loop, therefore favoring cache
locality. In standard tracer execution, the kernel usually trashes part of the data
and instruction caches between probe executions.
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Table I. Cycles taken to execute a LTTng 0.140 probe, Linux 2.6.30.

Architecture Cycles Core freq. Time
(GHz) (ns)

Intel Pentium 4 545 3.0 182
AMD Athlon64 X2 628 2.0 314
Intel Core2 Xeon 238 2.0 119
ARMv7 OMAP3 507 0.5 1014

Table II. tbench client network throughput tracing overhead.

Test Throughput Overhead
(MB/s) (%)

Mainline Linux kernel 12.45 0
Dormant instrumentation 12.56 0

Overwrite (flight recorder) 12.49 0
Normal tracing to disk 12.44 0

The number of cycles consumed by calling a probe from a static instrumentation
site passing two arguments, a long and a pointer, on Intel Pentium 4, AMD Athlon,
Intel Core2 Xeon and ARMv7 is presented in Table I. These benchmarks are done
in kernel-space, with interrupts disabled, sampling the CPU time-stamp counter
before and after 20,000 loops of the tested case.

Given that one local CAS is needed to synchronize the tracing space reservation,
based on the results published in [Desnoyers and Dagenais ], we can see that dis-
abling interrupts instead of using the local CAS would add 34 cycles to these probes
on Intel Core2, for an expected 14.3% slowdown. Therefore, not only is it inter-
esting to use local atomic operations to protect against non-maskable interrupts,
but it also improves the performance marginally. Changing the implementation to
disable interrupts instead of using local CAS confirms this: probe execution passes
from 240 to 256 cycles, for a 6.6% slowdown.

5.3 tbench

The tbench benchmark tests the throughput achieved by the network traffic por-
tion of a simulated Samba file server workload. Given it generates network traffic
from data located in memory, it results in very low I/O and user-space CPU time
consumption, and very heavy kernel network layer use. We therefore use this test
to measure the overhead of tracing on network workloads. We compare network
throughputs when running mainline Linux kernel, instrumented kernel and traced
kernel.

This set of benchmarks, presented in Table II, shows that tracing has very little
impact on the overall performance under network load on a 100 Mbps network card.
8 tbench client threads are executed for a 120s warm up and 600s test execution.
Trace data generated in flight recorder mode reaches 0.9 GB for a 1.33 MB/s trace
data throughput. Data gathered in normal tracing to disk reaches 1.1 GB. The
supplementary data generated when writing trace-data to disk is explained by the
fact that we also trace disk activity, which generates additional events. This very
little performance impact can be explained by the fact that the system was mostly
idle.

Now, given that currently existing 1 GB and 10 GB network cards can generate
higher throughput, and given the 100Mbps link was the bottleneck of the previous
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Table III. tbench localhost client/server throughput tracing overhead.

Test Throughput Overhead
(MB/s) (%)

Mainline Linux kernel 2036.4 0
Dormant instrumentation 2047.1 -1
Overwrite (flight recorder) 1474.0 28
Normal tracing to disk – –

Table IV. dbench disk write throughput tracing overhead.

Test Throughput Overhead
(MB/s) (%)

Mainline Linux kernel 1334.2 0
Dormant instrumentation 1373.2 -2
Overwrite (flight recorder) 1297.0 3
Non-overwrite tracing to disk 872.0 35

tbench test, Table III shows the added tracer overhead when tracing tbench run-
ning with both server and client on the loopback interface on the same machine,
which is a worse-case scenario in terms of generated throughput kernel-wise. This
workload consists in running 8 client threads and 8 server threads.

The kernel instrumentation, when compiled-in but not enabled, actually acceler-
ates the kernel. It can be attributed to modification of instruction and data cache
layout. Flight recorder tracing stores 92 GB of trace data to memory, which repre-
sents a trace throughput of 130.9 MB/s for the overall 8 cores. Tracing adds a 28%
overhead on this workload. Needless to say that trying to export such throughput
to disk would cause a significant proportion of events to be dropped. This is why
tracing to disk is excluded from this table.

5.4 Scalability

To characterize the tracer overhead when the number of CPU increases, we need
to study a scalable workload where tracing overhead is significant. The localhost
tbench test exhibits these characteristics. Figure 7 presents the impact of flight
recorder tracing on the tbench localhost workload on the same setup used for
Table III. The number of active processors varies from 1 to 8 together with the
number of tbench threads. We notice that the tbench workload itself scales linearly
in the absence of tracing. When tracing is added, linear scalability is invariant. It
shows that the overhead progresses linearly as the number of processors increases.
Therefore, tracing with LTTng adds a constant per-processor overhead independent
from the number of processors in the system.

5.5 dbench

The dbench test simulates the disk I/O portion of a Samba file server. The goal
of this benchmark is to show the tracer impact on such workload, especially for
non-overwrite tracing to disk.

This set of benchmarks, presented in Table IV, shows tracing overhead on a 8
thread dbench workload. Tracing in flight recorder mode causes a 3% slowdown
on disk throughput while generating 30.2 GB of trace data into memory buffers.
Normal tracing to disk causes a 35% slowdown on heavy disk operations.

Analysis of the buffer state in flight recorder mode shows that 30.2 GB worth
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Fig. 7. Impact of tracing overhead on localhost tbench workload scalability.

of data has been generated in 720 seconds, for a sustained trace throughput of
43.0 MB/s. In non-overwrite mode, the trace is written to the same disk dbench

is using. The tracing throughput is therefore significant compared to the available
disk bandwidth. It comes without surprise that only 23 GB of trace data has been
collected to disk in the non-overwrite trace, with a total of 21.8 million events lost.
This trace size difference is caused both by the events lost (only lost about 244 MB
of data given an average event size of 12 bytes) and, mostly, to the behavior change
generated by the added disk I/O activity for tracing. While the system is busy
writing large chunks of trace data, it is not available to process smaller and more
frequent dbench requests. This nicely shows how the tracer, in non-overwrite mode,
can affect disk throughput in I/O-heavy workloads.

5.6 lmbench

The lmbench test benchmarks various kernel primitives by executing them in loops.
We use this test to appropriately test the tracer overhead on a per-primitive basis.
Running lmbench on the mainline Linux kernel, flight recorder and non-overwrite
tracing kernels, helps understanding the performance deterioration caused by trac-
ing.

When running on a Intel Core2 Xeon E5405, the standard lmbench 3.0 OS test
generates 5.41 GB of trace data with the default LTTng instrumentation in 6 minutes
for a throughput of 150 MB/s. When writing to disk the total trace size reaches
5.5 GB due to the added traced disk I/O overhead.
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The “simple system call” test, which calls a system call with small execution
time in a tight loop, takes 0.1752 µs on the mainline Linux kernel. Compared
to this, it takes 0.6057 µs on the flight recorder mode traced kernel. In fact, the
benchmarks for flight recorder tracing and disk tracing are very similar, because
the only difference is the CPU time taken by the lttd daemon and the added disk
I/O.

The “simple system call” slowdown is explained by the fact that two sites are
instrumented: system call entry and system call exit. Based on measurements from
Table I, we would expect each event to add at least 0.119 µs to the system call.
In reality, they add 0.215 µs each to the system call execution. The reasons for
this additional slowdown is because supplementary registers must be saved in the
system call entry and exit paths and cache effect. The register overhead is the
same as the well-known ptrace() debugger interface, secure computing and process
accounting because these and LTTng all share a common infrastructure to extract
these registers.

Some system calls have more specific instrumentation in their execution path. For
instance, the file name is extracted from the open() system call, the file descriptor
and size are extracted from the read() system call. The performance degradation is
directly related to the number of probes executed. For the read() system call, the
mainline Linux kernel takes 0.2138 µs, when the flight recorder tracing kernel takes
0.8043 µs. By removing the “Simple system call” tracing overhead, this leaves a
0.1600 µs, which corresponds to the added event in the read() system call.

The page fault handler, a frequently executed kernel code path, is instrumented
with two tracepoints. It is very important due to the frequency at which it is called
during standard operation. On workloads involving many short-lived processes,
page faults, caused by copy-on-write, account for an important fraction of execution
time (4% of a Linux kernel build). It runs in 1.3512 µs on the mainline Linux kernel
and takes 1.6433 µs with flight recorder activated. This includes 0.146 µs for each
instrumentation site, which is close to the expected 0.119 µs per event. Non-cached
memory accesses and branch prediction buffer pollution are possible causes for such
small execution time variation from expected results.

Instrumentation of such frequently executed kernel code path is the reason why
minimizing probe execution time is critical to the tracer’s usability on heavy work-
loads.

Other lmbench results show that some instrumented code paths suffer from
greater overhead. This is mostly due to the use of a less efficient dynamic format-
string parsing method to write the events into the trace buffers. For instance, the
“Process fork+exit” test takes 211.5 µs to execute with tracing instead of 177.8 µs,
for an added overhead of 33.7 µs for each entry/exit pair. Based on execution trace
analysis of standard workloads, as of LTTng 0.140, events corresponding to pro-
cess creation and destruction where not considered to be frequently used compared
to page faults, system calls, interrupts and scheduler activity. If this becomes a
concern, the optimized statically-compiled version of the event serializer could be
used.
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Table V. Linux kernel compilation tracing overhead.

Test Time Overhead
(s) (%)

Mainline Linux kernel 85 0
Dormant instrumentation 84 -1
Overwrite (flight recorder) 87 3
Normal tracing to disk 90 6

5.7 gcc

The gcc compilation test aims at showing the tracer impact on a workload where
most of the CPU time is spent in user-space, but where many short-lived processes
are created. Building the Linux kernel tree is such scenario, where the make creates
one short-lived gcc instance per file to compile. This therefore shows mostly tracer
impact on process creation. This includes page fault handler instrumentation im-
pact, due to copy-on-write and lazy page population mechanisms when processes
are created and when executables are loaded. This also includes instrumentation
of scheduler activity and process state changes.

Table V presents the time taken to build the Linux kernel with gcc. This test is
performed after a prior cache-priming compilation. Therefore, all the kernel sources
are located in cache.

Tracing the kernel in flight recorder mode, with the default LTTng instrumenta-
tion, while compiling the Linux kernel, generates 1.1 GB of trace data for a 3%
slowdown. The results show, without surprise, that kernel tracing has a lower im-
pact on user-space CPU-bound workloads than I/O-bound workloads. Tracing to
disk requires 1.3 GB of data output. This is higher than the trace data generated
for flight recording due to the supplementary disk activity traced.

5.8 Comparison

Previous work on highly scalable operating systems has been done at IBM Research
resulting in the K42 operating system [Krieger et al. 2006], which includes a built-
in highly scalable kernel tracer based on a lockless buffering scheme. As presented
in Section 2, K42’s buffering algorithm contains rare race conditions which could
be problematic especially given LTTng buffer and event size flexibility. Being a
research operating system, K42 does not support CPU hotplug, nor distributing
tracing overhead across idle cores, and is limited to a subset of existing widely used
hardware, which provides a 64-bits cycle counter synchronized across cores.

The instrumentation used in LTTng has been taken from the original LTT project [Yagh-
mour and Dagenais 2000]. It consists of about 150 instrumentation sites, some
architecture-agnostic, others being architecture-specific. They have been ported to
the “Linux Kernel Markers” [Corbet 2007a] and then to “Tracepoints” [Corbet 2008]
developed as part of the LTTng project and currently integrated in the mainline
Linux kernel. The original LTT and earlier LTTng versions, used RelayFS [Zanussi
et al. 2003] to provide memory buffer allocation and mapping to user-space. LTTng
re-uses part of the splice() implementation found in RelayFS.

To justify the choice of using static code-level instrumentation instead of dy-
namic, breakpoint-based instrumentation, we must explain the performance im-
pact of breakpoints. These are implemented with a software interrupt triggered by
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Table VI. Comparison of lockless and interrupt disabling LTTng probe execution
time overhead, Linux 2.6.30.

Architecture IRQ-off Lockless Speedup
(ns) (ns) (%)

Intel Pentium 4 212 182 14
AMD Athlon64 X2 381 314 34
Intel Core2 Xeon 128 119 7
ARMv7 OMAP3 1108 1014 8

a breakpoint instruction temporarily replacing the original instructions to instru-
ment. The specialized interrupt handler executes the debugger or the tracer when
the breakpoint instruction is executed. An interesting result of the work presented
in this paper is that the LTTng probe takes less time to run than a breakpoint alone.
Tests running an empty Kprobe, which includes a breakpoint and single-stepping,
in a loop shows it has a performance impact of 4200 cycles, or 1.413 µs, on a 3 GHz
Pentium 4. Compared to this, the overall time taken to execute an LTTng probe is
0.182 µs, which represents a 7.8:1 acceleration compared to the breakpoint alone.

It is also important to compare the lockless scheme proposed to an equivalent so-
lution based on interrupt disabling. We therefore created an alternative implemen-
tation of the LTTng buffering scheme based on interrupt disabling for this purpose.
It uses non-atomic operations to access the buffer state variables and is therefore
not NMI-safe. Table VI shows that the lockless solution is either marginally faster
(7–8 %) on architectures where interrupt disabling cost is low, or much faster (34 %)
in cases where interrupt disabling is expensive in terms of cycles per instruction.

Benchmarks performed on DTrace [Cantrill et al. 2004], the Solaris tracer, on a
Intel Pentium 4 shows a performance impact of 1.18 µs per event when tracing all
system calls to a buffer. LTTng takes 0.182 µs per event on the same architecture, for
a speedup of 6.42:1. As shown in this paper, tracing a tbench workload with LTTng

generates a trace throughput of 130.9 MB/s, for approximately 8 million events/s
with an average event size of 16 bytes. With this workload, LTTng has a performance
impact of 28 %, for an workload execution time of 1.28:1. DTrace being 6.42 times
slower than LTTng, the same workload should be expected to be slowed down by
180 % and therefore have an execution time of 2.8:1. Therefore, performance-wise,
LTTng has nothing to envy [Corbet 2007b]. This means LTTng can be used to trace
workloads and diagnose problems outside of DTrace reach.

6. CONCLUSION

Overall, the LTTng kernel tracer presented in this paper presents a wide kernel code
instrumentation coverage, which includes tricky non-maskable interrupts, traps and
exception handlers, as well as the scheduler code. It has a per-event performance
overhead 6.42 times lower than the existing DTrace tracer. The performance im-
provements are mostly derived from the following atomic primitive characteristics:
local atomic operations, when used on local per-CPU variables, are cheaper than
disabling interrupts on many architectures.

The atomic buffering mechanism presented in this paper is very useful for trac-
ing. The good reentrancy and performance characteristics it demonstrates could
be useful to other parts of the kernel, especially drivers. Using this scheme could
accelerate buffer synchronization significantly and diminish interrupt latency.
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A port of LTTng has already been done to the Xen hypervisor and as a user-space
library as proofs of concept to permit studying merged traces taken from the hyper-
visor, the various kernels running in virtual machines, and user-space applications
and libraries. Future work includes polishing these ports and integrating them to
Xen. Work on modeling and formal verification by model-checking is currently
ongoing.
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