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ABSTRACT  

Nowadays information systems (ISs) that are utilized to support military operations are much more 
complex than a decade ago. These new levels of complexity have brought important technical problems 
that need to be addressed. For example, timing-related software bugs in multi-core and multi-processor 
contexts have become much harder to solve in the laboratory with the current development environments. 
This new technological complexity has also augmented the number of undetected software vulnerabilities 
in systems. These become widely exposed to malicious exploitation when they are connected to unsafe 
networks during operations. As the traditional security framework will probably continue to present 
limitations, it is expected that cyber-security gaps will continue to get larger, making information systems 
more vulnerable to increasingly sophisticated cyber-attacks.  
New mechanisms and tools are needed to improve both deep software analyses in the laboratory and 
refined surveillance of systems during operations. This paper presents an overview of important results 
that were identified in six state of the art studies, and proposes new mechanisms and concepts that would 
complement the ones that are currently used in our development and security environments. 

1.0 INTRODUCTION 

Nowadays information systems (ISs) that are utilized to support military operations are much more 
complex than a decade ago. They now involve computers employing central processing units that have 
evolved from simple processors to symmetric or asymmetric multi-processor (SMP/ASMP), non-uniform 
memory access (NUMA) and more recently multi-core systems (SMP/ASMP on a single chip) [1]. ISs are 
also geographically distributed; making heavy use of networks to allow collaboration. This new 
technological complexity makes them more adapted and responsive to real operational needs, but at the 
same time it represents an important source of technical problems that must be addressed. For example, it 
brings on a number of new complex synchronization bugs as well as unknown vulnerabilities that are 
increasingly harder to detect and solve [2]. As ISs evolve on a continual basis, it is believed that these 
bugs and vulnerabilities will always be present in fielded systems. 

The act of connecting ISs to network environments (that may contain hostile nodes) widely exposes 
unknown software vulnerabilities of these ISs. Combined with the limitations of the traditional security 
framework in detecting and eradicating cyber-threats, the new complexity levels will contribute to 
enlarging cyber-security gaps in the future. The expected consequence is that military ISs will continue to 
be the target of cyber-attacks of increasing frequency and sophistication in the future. Current 
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development and security frameworks thus need to be improved with new mechanisms that will insure 
deep and refined surveillance of ISs for debugging, vulnerability eradication and protection purposes.  

DRDC Valcartier, like many other research communities around the world, is exploring new 
complementary strategies to significantly improve the debugging and self-defence of ISs. A three-year 
R&D project (herein called DRDC Project) [3] was initiated early in 2009. It aims to develop a new set of 
advanced mechanisms that will be utilized both during military operations (online) for protection and in 
laboratories (offline) for deep analysis of software (including cyber-forensics). The main strategy consists 
in putting emphasis on the designed-for-tolerance-and-recovery paradigm, but at the same time integrating 
and harmonizing with the traditional software hardening paradigm (protecting against known attacks) [4, 
5, 6]. 

This paper summarizes state of the art studies that were conducted during the first year of the DRDC 
Project. The following emerging fields of self-defence systems design are covered: 1- mechanisms for 
adapted surveillance and analysis of ISs (Section 2); 2- innovative utilization of new architectural patterns 
(such as redundancy with diversity) in IS architectures (Section 3); 3- mechanisms to improve software 
resilience, self-adaptation and self-healing (Section 4). The level of technical details was purposely kept 
moderate throughout the paper. 

2.0 SURVEILLANCE AND ANALYSIS OF INFORMATION SYSTEMS 

The refined detection of unwanted software behaviours in an information system involves the utilization 
of a monitoring system that is able to quickly collect information at specific locations (deep in the system), 
with appropriate resolution and very low performance impacts. The collected information is then analyzed 
with the goal of deriving system health and detecting anomalies in the system. This section presents the 
work that is being done to develop mechanisms for efficient and effective monitoring.  

Tracing allows the capture of sequences of events that occurred during software execution, both in the 
user and kernel spaces of a system. Combined with other techniques (such as sampling), it represents a 
good option for software monitoring because it has access to almost any information on the system while 
it is running. Specific tasks or functions (in the form of code) are added into the source or binary code 
(source-level or binary-level instrumentation), precisely where events need to be captured. When these 
special instructions are encountered, they generate information (trace events and associated data) that are 
collected in execution traces, which can later be examined on demand for random audits or for the study 
of specific problems in systems. 

The following use case examples show that tracing can be utilized in many contexts. 1- Clusters of 
servers: detailed execution traces can be generated from computers in a cluster, which are then globally 
analyzed online or offline; 2- online system monitoring: a distributed collaborative command and control 
IS in a battlefield is instrumented to continuously generate execution traces for remote analysis and 
detection of abnormal software behaviour; 3- embedded systems: the processes of embedded systems such 
as high-end cellular phone handsets can be traced for their duration (e.g. a phone call); 4- offline dynamic 
deep analysis: for vulnerability discovery and eradication, cyber-forensics, malware analysis, etc. Online 
software surveillance may provide indications regarding health, performance and the presence of 
unwanted software behaviours or states while the IS is running.  

Six state of the art studies (SOTA) were conducted in the following domains: 1- Adaptive fault probing, 2- 
Multi-level, multi-core distributed traces synchronization, 3- Trace abstraction, analysis and correlation, 4- 
Automated fault identification, 5- System health monitoring and corrective measure activation, and 6- 
Trace directed modelling. This section presents an overview of the first four; the last two SOTAs will be 
described in a later publication. 
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2.1 Adaptive fault probing1 

A number of advanced tracing technologies are available on the market. Valgrind (Valgrind, 2008), 
DTrace [7], SystemTap [8] and GDB [9] are good examples that allow binary-level instrumentation. 
DTrace was built for the Solaris and Open Solaris operating systems. Instrumentation of these systems is 
achieved through loadable kernel modules that define a set of kernel probes which can be activated on 
demand. Impacts on traced information systems are negligible when probes are not activated, but the data 
extraction mechanism limits performance. Source-level tracing and user space tracing are also possible 
with DTrace. The SystemTAP tracer provides features that are similar to DTrace, but for the Linux 
operating system. It works by processing script files in which users specify probe points and associate 
handlers to them. While probing can be enabled asynchronously at regular time intervals, its architecture 
disallows instrumentation of source-code that is reached from NMI contexts. DTrace, SystemTap and 
GDB are typically used to add a few trace points or breakpoints with a small performance overhead 
(through a trap mechanism). Valgrind [10] is more commonly used for pervasive monitoring of the 
program (e.g. tracing every access to memory) with a considerable slowdown. 

Compilers, and source code parsing and transformation toolkits are also available to automatically add 
instrumentation code at specified points in the source code. For example, the GNU Compiler Collection 
[11] provides a number of instrumentation compilation options for debugging and instrumentation 
purposes. TXL and Javacc are other good examples. Other tracers, such as Evlog [12], LKST [13], and 
LTT [14], allow manual insertions of trace points at strategic locations in the source code. DTI API [15] is 
an architecture-independent tracer that was initially designed to enable developers of kernel drivers to log 
events in a circular buffer. DTI API is usable in both user and interrupts contexts and the data is 
transferred to user space with the Relay file system. Finally, tracing or logging libraries are also available 
for most programming languages (Java logging, .NET logging, and C++ logging). 

Other tracers like K42 [16], FTrace and KTAU [17] are available for Unix-like operating systems. KTAU 
for example was developed for multiprocessor computers and allows both the profiling and tracing of the 
Linux kernel on a system-wide or per-process basis. Its capabilities are limited by the fact that collected 
information is provided in an aggregated form to limit resource utilization. FTrace is another recent tracer 
that provides system-wide tracing information for Linux kernel developers. It uses the trace point 
mechanism as its primary instrumentation mechanism. Its specialized trace analysis modules run in kernel-
space and generate either a trace or analysis under the form of textual output to the user. As of its Linux 
2.6.29 implementation, FTrace does not handle NMIs gracefully and the reliance on the scheduler clock 
for timekeeping may cause timing errors under certain conditions. K42 is a research operating system 
developed by IBM. It contains a built-in tracer in the kernel. 

None of these tracers meets all the objectives of the DRDC Project. The needed tracer had to provide: 
system-wide instrumentation coverage, basic support for all Linux architectures, minimal performance 
impact, near zero impact when not tracing, probe re-entrancy for all kernel execution context handlers 
(including NMIs and MCE), very high-frequency kernel events recording with small overhead under 
typical workloads, scaling to large multi-processor systems, predictable system real-time response 
changes, the ability to send trace events through the network or to hard disk, and the ability to dynamically 
activate and/or deactivate probes. 

The Linux Trace Toolkit next generation (LTTng) [2, 18] was seen as the best solution because initial 
requirements (all fulfilled in 2009 [2]) were perfectly aligned with those of the DRDC Project. LTTng is 
made of a kernel patch, a tool chain, and a trace viewing and analysis program (called LTTV). It includes 
a set of kernel instrumentation points that are useful for debugging a wide range of bugs that are otherwise 
extremely challenging (such as performance problems on parallel and real-time systems). LTTng allows 
the tracing of the user space through markers and GDB trace points for x86-32 and x86-64 architectures, 

                                                      
1 The text in this section is an overview of the SOTA that can be found in Dr Desnoyers’ Ph. D. thesis [2]. 
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and the kernel space through trace points and markers for the following architectures: x86-32, x86-64, 
SPARC, SPARC64, ppc, ppc64, sh, sh64, is64, s390, MIPS 32/64, and ARM. It is being actively 
developed at École Polytechnique de Montréal (since 2005) and supported by enterprises such as Ericsson, 
IBM, Google, Fujitsu, Sony, and Wind River.  

The source code instrumentation mechanism proposed by LTTng (trace point; called Tracepoint) was 
officially incorporated into the mainline Linux kernel 2008.  

The ability of LTTng to directly send trace events through the network, combined with the possibility of 
dynamically activating and de-activating markers and trace points on demand represents an important 
asset for local/remote system surveillance and control. The selection of both the focus and resolution of 
observations in execution traces can theoretically be based on results obtained from previous execution 
trace analyses. This feedback-directed capability of the protection system would contribute to optimize the 
production of more precise diagnostics (and control), with minimal performance impacts on systems. 

2.2 Multi-level, multi-core distributed traces synchronization2 

This section briefly introduces two mechanisms that can be utilized for the synchronization of trace 
events. It also describes how the selected synchronization mechanism was adapted for execution traces. 

Probes installed in the different software layers3 may be used to provide monitoring and tracing data. More 
precisely, each core within each processor generates a steady flow of events when tracing is activated. An 
event may thus be triggered by one core or another and, as each core has its own clock (and associated 
unique timing imperfections; e.g. drift [19]), event time-stamps do not all have the same reference time 
frame. A mechanism is thus needed to synchronize time-stamps generated by various clocks.  

There are two ways of pursuing the synchronization of events that originate from distributed multi-core 
multi-processor systems: online synchronization or offline synchronization. The former consists of 
adjusting each clock during tracing. The most precise approaches to online synchronization involve the 
use of specialized hardware to physically distribute a clock signal to each traced node [20]. It is also 
possible to rely on software-only methods, such as the Network Time Protocol [21]. 

Offline synchronization is based on the analysis of events happening in multiple traces with a strict 
ordering relationship. The algorithms proposed by Duda et al. [22] form the seminal work in this area. 
They analyze events corresponding to network packet transmissions to map the time between the clocks of 
two systems. This approach has been extended to larger distributed systems [23]. Recent developments 
include the use of linear programming [24] and broadcast messages [25]. 

The choice of offline synchronization was driven by the need to limit impacts on ISs; Duda's convex hull 
algorithm was thus extended for tracing. This analysis guarantees that there will be no message inversions 
(e.g. packets that appear to travel backwards in time) in the synchronized traces. It also supplies accuracy 
bounds on the clock synchronization parameters. In its original form, however, the convex hull algorithm 
does not supply accuracy bounds on time conversions. The precision of the synchronization can only be 
estimated. To solve this problem, the linear programming approach of Sirdey was applied to the original 
convex hull algorithm. The objective function has been modified to identify accuracy bounds on time 
conversions at any point in the trace.  

Through experimental study, we have identified some parameters that affect trace synchronization 
accuracy and precision. As an example, the use of a network with lower latency or a higher message rate 
improves trace synchronization; longer trace duration however reduces precision and accuracy. We've 
                                                      

2 The text in this section was written by Mr Benjamin Poirier (École Polytechnique de Montréal). 

3 Hypervisor, operating system, virtual machine, system libraries and applications. 
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shown that this can be detected through metrics based on apparent message latency and broadcast 
reception times. During our experiments, we achieved a synchronization accuracy of ±15 µs and an 
estimated precision of 9 µs. 

2.3 Trace abstraction, analysis and correlation4 

Once trace events are collected and synchronized, their volume needs to be reduced to make it 
manageable. This process is called trace abstraction. It consists in extracting high-level abstractions from 
low-level trace events in order to facilitate the understanding, exploration, and analysis of trace contents.  

Analysis may consist in comparing abstracted execution traces that originate from different but redundant 
nodes, which are simultaneously executing instances of the same application. Comparison in this case 
could reveal the presence of undesired software behaviours. It would be very hard to directly compare a 
huge amount of trace events without impacting system performance. Execution traces need to be reduced 
through trace abstraction before analysis. The feedback-directed capability introduced in Section 2.1 
would involve the utilization of very fast mechanisms (for abstraction and analysis) that have low 
performance impacts on traced systems. 

Our review of the literature on trace abstraction and correlation techniques reveals that they can be 
grouped into three main categories: pattern detection, noise filtering, and visualization techniques. 
Although most of these techniques have been applied in the area of program comprehension and software 
maintenance, we believe that they can be easily adapted to security. This section presents results of the 
state of the art study and potential adaptation to cyber-security. 

2.3.1 Pattern detection 

A trace pattern is defined as a sequence of events that is repeated non-contiguously in an execution trace. 
The more patterns are present in the trace, the less time is required to understand its content, since an 
analyst does not need to look at the same sequence twice. Patterns, once detected, are often replaced with 
high level descriptions that are understandable by humans.  

The detection of patterns requires the use of some sort of similarity metrics to determine when two 
sequences of events can be deemed similar. For this purpose, several matching criteria have been proposed 
[26, 27, 28, 29]. These criteria vary significantly depending on the type of trace that is used. One example 
is to measure the distance between two given sequences of events using the edit metric. A threshold needs 
to be defined above which two sequences can be considered similar. Many other matching criteria have 
been the subject of several studies, with a focus on the analysis of routine call traces. Examples include 
comparing two call trees by treating their calls as a set, ignoring the order of calls, limiting the stack depth, 
etc.  

Although pattern detection techniques have been shown to be useful in many applications, they suffer 
from some limitations such as the difficulty of understanding how the matching criteria can be combined 
and their impact on the resulting abstractions.  

We followed a knowledge-based approach to detect patterns from system call traces generated from the 
Linux kernel. We used these patterns to abstract out the content of kernel-space traces and turned them 
into a more compact and readable form while preserving the key information. To achieve this, we have 
built a pattern library that contains key Linux operations for file, socket, and process management. The 
patterns are described as state machines composed of lists of events and states. The states conform to the 
modes of execution in an LTTng trace (e.g. USER_MODE, SYSCALL, etc), whereas the events represent 
the system calls that appear in the trace. 
                                                      

4 The text in this section is an overview of a scientific paper that will be submitted for publication by Dr W. Hamou-Lhadj and 
Mr W, Fadel (Corcordia University). 
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To build the pattern library, we have studied the Linux kernel to understand the system call mechanism. 
We have also executed a number of applications with different operations and generated traces using the 
LTTng tracer. We studied the generated traces in order to uncover the common patterns. The pattern 
library has been validated by Linux kernel experts. We are currently in the process of applying it to 
abstract out the content of large system call execution traces. 

2.3.2 Noise filtering 

Execution traces tend to contain a considerable amount of noise that clutters the trace without adding 
much value to its content. Hamou-Lhadj and Lethbridge [30] studied the concept of utility components, 
which they defined as low-level implementation details (i.e. noise), and proposed a metric that measures 
the extent to which a routine can be considered as a utility. They have developed a trace abstraction 
method based on the removal of utilities. They were successful in extracting high level abstractions from 
low-level trace events. Many other researchers agree that removing noise from traces can significantly 
improve the quality of the extracted abstractions [26, 31, 32, 33, 28, 27, 34]. They propose tools that 
enable users to remove information from the trace before the abstraction process takes place.  

When applied to Linux kernel system call traces, we have investigated what constitutes noise by studying 
the Linux kernel and working with the users of the LTTng tracer. We have found that most memory 
management operations, page faults, and hardware interrupts tend to appear anywhere in the trace in a 
non-predictable way, and they do not add valuable information to the system behaviour. As a result, we 
categorized these operations as noise and proposed that removing them would result in better abstractions. 

2.3.3 Visualization techniques 

Several proposed techniques in the area of trace abstraction rely on some sort of visualization technique to 
allow the users to manipulate the trace according to the needs of the task at hand. Using these techniques, 
an analyst can, for example, browse, animate, slice, group events, hide specific events, or search the 
traces. Bennett et al. [35] divided the features implemented in trace analysis tools into two groups: 
presentation features and interaction features. They defined the former as the set of features affecting the 
layout in which the trace is displayed, such as showing multiple views, hiding information and using 
animation. Presentation features can be further divided according to the following attributes: 

• Layout. This represents the way a trace is displayed. For example, a system call trace can be 
represented in a linear view. A routine call trace is usually represented as a tree structure or a 
UML sequence diagram. Many other layouts have been proposed including 3D layouts.  

• Multiple Linked Views. These views display information about a trace at different levels of 
abstraction. The views are linked in a way that makes it easy for the user to move from one view 
to another. 

• Highlighting. Highlighting a part of the sequence corresponding to user selection. 

• Hiding. The ability to hide information such as noise, or specific processes not needed for the task 
at hand. 

• Visual Attributes. Using colours and shapes that help users to recognize certain information. For 
example, colour-coding can be used to distinguish trace patterns so as to enable the user to quickly 
spot the most important ones. 

• Labels. The ability to add descriptions to patterns, label particular places in a trace, etc.  

• Animation. The ability to animate the content of a trace by playing dynamically the flow of 
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execution. 

Interaction features, on the other hand, are those implemented to enable users to interact with the tool by 
navigating, querying, and manipulating the trace content [35]. They can be further divided as follows: 

• Selection. This feature enables users to select elements to manipulate, filter, or slice. 

• Focusing. This feature allows the user to focus on a particular aspect of a trace (e.g. by collapsing 
parts of a trace). 

• Zooming and scrolling. This feature permits enlarging or reducing parts of the trace view as well 
as moving up, down, left or right within the diagram.  

• Querying and slicing. Querying refers to identifying and filtering information, while slicing refers 
to selecting specific parts related to the selected component. 

• Grouping. This feature groups events into patterns. This could be performed automatically (using 
the pattern detection techniques discussed earlier) or manually. 

• Annotating. This feature is used to describe grouped events such as patterns, to store user notes 
while exploring the trace, and to provide messages to users sharing the trace. 

• Saving and restoring views. Users can save the state of the trace after several trace abstraction 
techniques have been applied, for later re-use. 

Mechanisms allowing abstraction of execution traces in the context of cyber-protection are under 
development. 

2.4 Automated fault identification5 

Continual analyses are made on abstracted execution traces in order to detect system health degradation 
and the presence of undesired software behaviours. Excessive swapping, lock contention, undue latency, 
inefficient task scheduling, attempts to erase system logs, and modification of system files are some 
examples of these. Some can be related to software design defects, others to inefficiencies or malicious 
activities. As for the abstraction process, mechanisms for automated fault identification must be very fast, 
with low impact on traced systems. A similar approach to the one used for Intrusion Detection Systems 
(IDS) is chosen to provide a flexible automated mechanism for the identification of unwanted software 
behaviours in execution traces. The main goal is to allow systems to trigger alarms during operations when 
specified problematic conditions, scenarios or patterns are detected. This section summarizes the state of 
the art study that was conducted in this domain. 

There are two main types of IDS: network-based IDS (NIDS) monitor the network, and host-based IDS 
(HIDS) monitor host systems. IDS can further be divided based on the techniques they use for detection: 
signature-based, anomaly-based and policy-based. Signature-based IDS define known attacks through 
scenarios and their associated signatures. Comparisons of observation with scenarios allow the detection 
of problems. Anomaly-based IDS work differently. They involve two complementary phases: a learning 
phase and a detection phase. The learning phase consists in capturing normal behaviours of the system, 
while the detection phase compares observations with the pre-learned behaviour and detects deviations 
between the two. Policy-based IDS, finally, define policies that allow (or prevent) accesses to system 
resources. Violations of these policies are considered intrusions. Six main types of languages (and 

                                                      
5 The text in this section summarizes the work done by Dr B. Ktari and Mr H. Mohamed-Waly (Laval University). 
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corresponding technologies that make use of these languages) were examined. They were chosen based on 
their potential adaptation for security and trace analysis contexts. Note that this list is not exhaustive. 

Declarative languages model what is to be computed, rather than how it is computed; the logic of 
computation is considered rather than the control flow of the program [36]. These languages are often 
considered as domain specific because their syntax is tightly related to the domain in which they are 
applied. Examples of technologies that make use of these languages are: the open source NIDS Snort 2009 
[37, 38, 39] and the commercial SECnology 2009 [40]. Imperative languages model the steps or 
algorithms that represent attacks. Examples include: RUSSEL [41], DTrace [7], and SystemTap [8], with 
their scripting languages.  

Automata-based languages use finite state machines (FSM) to describe attacks. The system triggers a 
transition from one state to another when specific events occur. An attack is a suite of states and 
transitions between them. Some technologies based on FSM are: STATL [42], SMC [43], and Ragel [44, 
45]. Temporal logic makes use of first-order logic (or its derivatives) to describe attacks. Statements about 
trace events are built from atomic propositions, which express the content of a trace. Temporal operators 
allow specifying how atomic propositions should be arranged in order to constitute a security violation. 
Chronicle [46] is an example that permits the recognition of anomalies in a flow of events. Policy-based 
languages describe security policies rather than attacks. Policy violations are considered attacks. As 
mentioned, two intrusion detection techniques are available: signature-based and anomaly-based. Blare 
[47] is a policy-based intrusion detection system. Policies control the type of operations that can be done 
on system objects (including files, pipes, FIFOs, sockets, shared memory buffers, etc.).  

Finally, Expert systems make use of inference rules to reproduce the reasoning made by an expert, and aid 
in complex decision-making. The two main techniques used to infer new facts are forward chaining, which 
starts with basic facts to deduce new ones, and backward chaining, which starts from a proposed 
hypothesis and proceeds to collect supportive evidence. Examples of expert systems are ADeLe [48], P-
BEST [49], and LAMBDA [50]. 

Important properties that were identified in this work and that will be studied more in depth are listed and 
briefly described in the following lines: 

1. Scenario based on multiple events. The language should allow the study of attacks based on the 
occurrence of a sequence of events. 

2. Non-Occurrence of events. The language should allow testing for the non-occurrence of events. 

3. Real-time constraints. The language should allow modelling of the timing between events. 

4. Counting. The language should allow modelling of repetitions of specific events. 

5. Conditional transitions. The language should allow modelling transitions from events (or states) 
that depend on one or many specific conditions. 

6. Variables. The language should be able to save variables and it should be possible to retrieve their 
values upon request. 

7. Grouping. The language should allow the grouping of specific variables into a structure and 
checking whether a certain value appears in that group. 

8. Synthetic events. The language should allow the saving of scenarios in a knowledge base, which 
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could be used to describe more complex scenarios in the future. 

9. Knowledge acquisition. The language should allow the dynamic capture and saving of 
information. 

10. Suitable for kernel tracing. The language should allow the modelling of malicious activities in 
execution traces and their abstractions (both in user and kernel spaces). 

11. Online. The language should allow online detection. 

The definition of a dedicated language and mechanism to be used in the context of trace analysis for 
cyber-protection are under development. 

3.0 REDUNDANCY AND DIVERSITY IN ARCHITECTURES 

The ability to take reactive or proactive actions when undesired states or behaviours are detected in 
information systems is another important element of an online feedback-directed protection system. These 
actions may range from the small scale (closing specific Internet ports) to the larger scale (modifying the 
whole architecture of the system while in use). This section introduces an approach that consists in adding 
diversity to redundancy (under the form of new architectural patterns) in software and hardware 
architectures. For example, a set of two nodes simultaneously running the same OS and the same 
application is not a secure solution in the cyber-threat context because the same method or mechanism can 
be used to exploit the same vulnerability that is present in both systems. Running two different but similar 
operating systems (such as BSD and Linux) will significantly lower chances that the whole system will be 
successfully put down by the same cyber-attack; inherent vulnerabilities in both operating systems are 
relatively different6. It is expected that these new architectural patterns will contribute to improving the 
protection against cyber-attacks.  

Even though the relevance of diversity to attack tolerance has caught the interest of researchers [51, 52, 
53], it is only recently that the utilization of diversity in redundant architectures to build secure software 
systems were recognized [54]. Some of the major research programs that were launched in the last decade 
with the goal of investigating intrusion tolerance, resilience and survivability include MAFTIA [55], 
OASIS [56], SRS [57] and ReSIST [58]. Essentially, two categories of architectures can be drawn from 
these projects. The first one is represented by DIT [59(39)], SITAR [60], HACQIT [61], and DPASA [62]. 
They are instances of a general architectural pattern in which servers are shielded from end-users by 
proxies. Monitoring and voting mechanisms are used to check the health of the system, validate the results 
and detect abnormal behaviours. As this approach does not involve the modification of applications on the 
server side, it appears to be well suited when COTS or legacy or closed-source applications have to be 
integrated. 

The second category of architectures (represented by ITUA [63, 64], MAFTIA [55, 65], and ITDOS [66]) 
use a middleware to provide intrusion tolerance functionalities. It eliminates the need to build custom 
solutions for each software application. These are built aware of the intrusion tolerance services provided 
by the middleware services. 

The evaluation of the extent to which security is achieved through these architectures is usually 
approached using model-based analysis techniques. The probabilistic approach represents a basis for many 
of these evaluation techniques [67]. Qualitative approaches such as Scenarios Analysis using fault-trees 
[68] are often used. Quantitative approaches are based on stochastic models (Semi Markov Processes [69] 
and Stochastic Reward Nets [70]). As an example, [71] presents a state transition model that describes the 

                                                      
6 It is worth mentioning that redundant architectures (with or without diversity) allow major software upgrades and other 

maintenance operations without downtime. 
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behaviour of a generic intrusion-tolerant system. This model has been used to describe the behaviour of 
SITAR [70].  

This state of the art study has identified a number of concepts that could contribute to improving the 
protection of information systems against cyber-threats. These will be studied more in depth. The 
following points group them and provide a brief description. 

• Redundancy with diversity.  Our state of the art study revealed that different intrusion-tolerant and 
survivable architectures such as DIT, SITAR, ITUA, DPASA, and the Willow architecture [72] 
implemented the principle of diversity. However, open questions regarding the manageability and 
control of diversity, and consequently the different levels of security that can be achieved, remain 
to be addressed. Notwithstanding the existence of limited mechanisms for adaptive redundancy 
(such as in DIT), diversity models that are similar to the redundancy models (as defined by the 
“Availability community”) do not exist at this moment. Architectural patterns involving the 
utilization of redundancy and diversity at different levels or dimensions7 must be developed for 
the specific context of cyber-security, and tested in many operational situations. While diversity 
will contribute to reducing risks of correlated vulnerability, it will induce an increase in 
complexity levels that must be taken into account as well. 

• Indirection. The principle of indirection consists in isolating or shielding from the end-users the 
servers implementing system functionalities and services. Essentially, it aims to hide systems’ 
implementations (and systems’ vulnerabilities among other things) from “outside”, making more 
complex the preparation of cyber-attacks. It is implemented in a variety of architectures through 
the use of proxies (such as in DIT, SITAR, DPASA). Its flexibility to dynamically relocate 
services (reactively or proactively) lowers the chance of success of multi-staged cyber-attacks. 
Proxies are thin interfaces having deterministic behaviours that are much less complex than 
servers’ functionalities. They are therefore easier to protect. 

• Adaptive responses and reconfiguration. Intrusion-tolerant architectures involve mechanisms that 
ensure the continuity of services even under attack. For example, mechanisms are reactively or 
proactively triggered to isolate components showing undesired software behaviours. Other 
mechanisms make systems adapt to changing circumstances during operations through 
reconfiguration (such as in ITUA). Also, the injection of uncertainty in system responses may 
contribute to making the systems unpredictable from an adversary’s point of view. Temporal 
diversity varies the structure and/or the behaviour of systems with respect to time, while spatial 
diversity consists in deploying different components implementing the same functionalities.  

• Monitoring.  Behaviour monitoring and analysis are important elements because they provide the 
necessary information upon which efficient automatic/manual decision-making processes are 
based. As LTTng and sibling software analysis mechanisms allow deep continual feedback-
directed local and/or remote monitoring and analysis of software behaviours of systems, they 
appear to be the technology of choice. Their fine tuning will allow automatic and manual alarm 
management as well. 

• Communication infrastructure.  The use of redundancy and diversity in architectures will involve 
configuration management (such as the replication of functionalities, components, etc.). Current 
communication protocols such as group membership protocol [73], totally ordered reliable 
multicast protocol [74], and even the Byzantine fault-tolerant protocol [75] must be studied more 

                                                      
7 Such as: hardware platforms and components, and software (e.g. operating systems, software applications, virtualization 

mechanisms, security mechanisms). 
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in depth in order to identify potential solution options for the context of redundant and diverse 
architectures.  

• Analysis techniques. Many architectural patterns involving redundancy and diversity should be 
available during operations in order to provide information systems with the capability to face 
different problematic situations. Their ability to address specific security requirements should be 
characterized in the laboratory, prior to their utilization in operations. Mechanisms allowing deep 
analysis of these architectural patterns are thus needed to generate full specifications and 
mechanisms for online transition from one pattern to another. 

4.0 SOFTWARE RESILIENCE, SELF-ADAPTATION AND SELF-HEALING 

Feedback-directed system protection (Section 2.1) will also contribute to system optimization through 
positive feedback. Ultimately it will make systems self-adapt and self-heal. This section presents an 
overview of the state of the art study that was conducted in this relatively “new” domain.  

A self-healing system is a system that attempts to heal itself from a fault in order to regain its normal 
operational state prior to disruption [76]. Self-healing systems should also be self-adaptive, attentive to the 
changes triggered by the environment for improved performance or to simply adapt to various situations 
[77]. Some researchers view self-healing systems as just another type of fault-tolerant system, in which 
detection and resistance to faults is an important component. Although self-healing systems must also be 
equipped with some sort of fault detection mechanism, it is important to emphasize that the focus is on the 
healing and recovery process rather than on fault analysis and modelling as is the case for traditional fault-
tolerant systems. In other words, a self-healing system is more recovery-oriented and should be able to 
restore itself to normalcy independently of the type, source, and severity of the fault. This makes such a 
design particularly suitable to security, especially in the military context, since understanding various 
types of faults caused by malicious attacks might be a tedious (and sometimes impractical) task, and 
since—even if it is done successfully—the system still needs to heal itself from other types of faults. 

One of the key aspects of a self-healing system is its ability to decide whether it is functioning properly or 
not. To this end, it is important to study what constitutes a “normal” or “healthy” behaviour of the system. 
The common approach is to measure various characteristics of the system in a laboratory environment that 
can later be used as a baseline for comparison. A fault detection technique can then be developed by 
observing, using monitoring capabilities, any deviations of the deployed system from these measurements 
[78]. The obvious drawback of this approach is that it does not account for the changes that the system 
may undergo as its environment also changes. In addition, it is difficult to anticipate the various ways the 
system can be used before it is put in operation [79]. Shaw argues that what constitutes a healthy system 
varies in time and from one user to another and it is therefore not reasonable to expect that the line 
between a “healthy” and a “broken” state be clearly defined in advance [79]. She proposes instead that 
there is a gradual transition state that she calls the degraded state. Many other researchers (e.g. [78]) 
support this view, which has led to a self-healing process in which the key element is the need for a system 
to initiate rectification not only when it is in the broken state but also (and more importantly) when it starts 
exhibiting signs of decline, i.e., when the fault or an attack has begun to take effect. This requires of a self-
healing system that it not only recovers from faults but also continuously maintains its health. 

A self-healing process encompasses three main activities: maintaining the system health, detecting system 
failures, and recovering the system from the failures. In what follows, we describe each of these activities 
along with a brief discussion of the main techniques that are employed. Some of these techniques have 
also been discussed in [78]: 

1. Maintaining the system health. This activity consists of continuously checking the health of the 
system in order to maintain its normal functionality. Several strategies have been proposed, among 
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which the most popular ones are based on a redundancy and diversity architecture [51, 52, and 
80]. Other techniques include performance log analysis, in which performance measures are 
collected and used for the diagnosis of system health. Software aging and rejuvenation techniques 
have also been employed [81, 82], which consist of diagnosing the system based on empirically 
studied signs of decline. Finally, some researchers have used architecture description languages 
[83] to periodically compare the architecture recovered from a running system with healthy 
reference architecture. 

2. Detecting system failures. Most existing fault detection techniques rely on some sort of run-time 
monitoring and system probing technique. The idea is to compare the execution of a healthy 
system to the execution of the system in operation. For this purpose, a reference model of what 
constitutes a healthy system is needed. The techniques used to build reference models vary 
significantly from one study to another, including the use of natural language processing 
techniques [84], probabilistic context free grammars [85], Markov chains [86, 87], metric 
correlation models [88], machine learning [89], symbolic execution [90], and architectural model-
based techniques [83]. These methods also vary depending on whether the learning process is 
performed online (i.e. during operation) or offline (in a controlled environment), on the way they 
deal with false positives, on whether they are platform specific or not, etc. In addition, other 
approaches such as scheduled announcements and checkpoints and policy-based monitoring have 
also been proposed. Checkpoints have been used to periodically check the system for 
responsiveness [91, 92]. Policy-based monitoring techniques have also been used in which a set of 
policies (e.g. the amount of time it takes to execute a particular query) are established in advance 
and the system is checked against these policies [93].  

3. Recovering the system health. System recovery techniques ensure that the system recovers from 
an attack and returns back to its normal state. Although existing techniques vary depending on the 
type of system architecture on which they are applied, they all share a common repair method 
which consists of replacing a faulty component with a healthy one, performing a clean-up, etc. 
[78] A recovery strategy, however, must be guided by a recovery and repair plan that is designed 
in advance. 

Although the above techniques have been shown to be useful, our review of the literature shows that most 
of them are still at the experimental stage and have not been applied to large systems with stringent 
security requirements. This hinders the evaluation of their effectiveness in the context of our research. 

In addition, there are many research issues that still remain unaddressed. First, although most researchers 
agree that knowledge of the system to be healed (performance data, system architecture, etc.) is needed for 
the healing process to be successful, little has been said on how this knowledge should be represented, 
validated, and managed. This is particularly important since self-healing systems are expected to make 
healing and recovery decisions based on this knowledge. They are in many ways very similar to decision 
support systems found in organizational and managerial studies, and in which information is the key 
enabler to decision-making. 

Another important question with regards to healing is whether the healing and recovery are achieved with 
or without human intervention, and to which extent human intervention is needed. It is also important to 
investigate techniques designed to help the analyst make sense of the information collected from the 
system, especially when run-time monitoring techniques are employed—since it is well recognized that 
the amount of run-time information to be processed tends to be overwhelmingly large. There is also a need 
for visualization techniques to visualize, in a usable manner, the state of the system, its health status, the 
sources of potential problems, etc., that can help an analyst use this information to analyze the feedback 
received from the system and make the necessary adjustments. This important requirement for an assisted 
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self-healing system is almost absent in most existing studies. 

Finally, we believe that not all faults should be treated the same, as is the case in most studies in the area 
of self-healing. In our view, there should be an acceptable security range that requires system adaption and 
healing. This is particularly important in order to reduce the overhead associated with switching from one 
node to another in the context of redundant architectures. We propose that a set of security modes be 
defined based on the severity of the attacks and system health attributes. For example, security attacks can 
be classified into severe, moderate, and minimal. In a minimal mode, an analyst may decide to terminate 
the infected process, whereas a severe attack can lead to a complete shut-down of the host node. This adds 
to the complexity of the determination of the proper threshold above which a system decline should be 
considered as a fault. 

5.0 CONCLUDING REMARKS 

New inherent complexity levels of information systems induce new complex bugs and vulnerabilities that 
are much harder to solve than a decade ago. Because the traditional security framework does not keep up 
with the cyber-security arms race, unsolved bugs and vulnerabilities have the opportunity of causing 
dramatic damages during operations [94]. R&D efforts are underway in Canada to try to identify new 
complementary mechanisms that would significantly improve the decision-making process as well as 
thoughtful analysis and response, while maximizing the time available for risk mitigation. The selected 
approach is based on feedback-directed tracing, analysis and protection of both user and kernel spaces of 
information systems. It allows the selection of: 1- the focus and resolution of execution traces, 2- analysis 
mechanisms, and 3- correction mechanisms based on the results of the immediately preceding analyses 
(which are conducted on a continual basis). Technical specifications of the LTTng tracer insure that this 
tool will provide the necessary functionalities and flexibility to fully support the development of this 
approach.  

State of the art studies presented in this paper have identified a number of solution options that would 
contribute to address a number of important problems that remain to be solved. For example, an algorithm 
is currently being adapted to allow the synchronization of trace events originating from local or 
geographically distributed CPUs and cores in CPU. Its utilization on a continual basis will allow the 
production of synchronized execution traces that can then be sent for deep analysis. Abstraction 
approaches allowing execution trace volume reduction into higher-level behavioural objects (more 
significant behaviours) were also identified. Based on these approaches, new mechanisms producing 
abstracted execution traces on a continual basis are currently being prototyped and tested. Based on 
current approaches found in the scientific literature, new analysis mechanisms are also being prototyped 
and tested. The goals are to measure the heath of information systems as well as detect and appropriately 
report potential anomalies and problems, and propose reactive and proactive corrective measures.  

New concepts and mechanisms improving software resilience, self-adaptation and self-healing are being 
studied as well. For example, system redundancy and diversity combined with carefully implemented 
decentralization of system control appear to be a good approach for self-adaptation and basic healing 
capabilities in ISs. The overviewed approaches seem technically feasible at this time since nowadays 
computing capabilities are greatly exceeding the computational requirements of modern decision systems.  

This article provides an overview of the current state of the art for the key technical topics. Authors will be 
pleased to exchange results from current S&T investments with allies from the NATO community. 
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