NATO UNCLASSIFIED

Self-Defence of Information Systemsin Cyber-Space

A Critical Overview

Mario Couture', Robert Charpentier),
Michel Dagenais'™, Abdelwahab Hamou-L hadj"”, Abdelouahed Gherbi”

)) DRDC Valcartier, 2459, Pie-XI Blvd North, Queb&C, Canada, G3J 1X5
™) Ecole Polytechnique de Montréal, 2900 Edouard-MdinBlvd, Montreal, QC, Canada, H3T 1J4
™) Concordia University, 1455 Maisonneuve West, MealtrQC, Canada, H3G 1M8

) [Robert.Charpentier] [Mario.Couture] [Abdelouat@terbi] @ drdc-rddc.gc.ca
™ Michel.Dagenais@polymtl.ca

™) Abdelw@ece.concordia.ca

ABSTRACT

Nowadays information systems (I1Ss) that are utilized to support military operations are much more
complex than a decade ago. These new levels of complexity have brought important technical problems
that need to be addressed. For example, timing-related software bugs in multi-core and multi-processor
contexts have become much harder to solve in the laboratory with the current development environments.
This new technological complexity has also augmented the number of undetected software vulnerabilities
in systems. These become widely exposed to malicious exploitation when they are connected to unsafe
networks during operations. As the traditional security framework will probably continue to present
limitations, it is expected that cyber-security gaps will continue to get larger, making information systems
mor e vulnerable to increasingly sophisticated cyber-attacks.

New mechanisms and tools are needed to improve both deep software analyses in the laboratory and
refined surveillance of systems during operations. This paper presents an overview of important results
that were identified in six state of the art studies, and proposes new mechanisms and concepts that would
complement the ones that are currently used in our development and security environments.

1.0 INTRODUCTION

Nowadays information systems (ISs) that are utllize support military operations are much more
complex than a decade ago. They now involve compuwmploying central processing units that have
evolved from simple processors to symmetric or asginic multi-processor (SMP/ASMP), non-uniform
memory access (NUMA) and more recently multi-corgteams (SMP/ASMP on a single chip) [1]. ISs are
also geographically distributed; making heavy udenetworks to allow collaboration. This new
technological complexity makes them more adaptetirasponsive to real operational needs, but at the
same time it represents an important source ohteahproblems that must be addressed. For exartple,
brings on a number of new complex synchronizatiagsbas well as unknown vulnerabilities that are
increasingly harder to detect and solve [2]. As ¢8slve on a continual basis, it is believed tlmse
bugs and vulnerabilities will always be preserfiéided systems.

The act of connecting ISs to network environmenitgt(may contain hostile nodes) widely exposes
unknown software vulnerabilities of these ISs. Comal with the limitations of the traditional sedwri
framework in detecting and eradicating cyber-ttggdhe new complexity levels will contribute to
enlarging cyber-security gaps in the future. Thpeeked consequence is that military I1Ss will camnino

be the target of cyber-attacks of increasing fregueand sophistication in the future. Current

RTO-MP-IST-091 PAPER NBR -1

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

development and security frameworks thus need toripeoved with new mechanisms that will insure
deep and refined surveillance of ISs for debuggimnerability eradication and protection purposes.

DRDC Valcartier, like many other research commesitiaround the world, is exploring new
complementary strategies to significantly improfie tebugging and self-defence of ISs. A three-year
R&D project (herein called DRDC Project) [3] wadimted early in 2009. It aims to develop a newdfet
advanced mechanisms that will be utilized bothrmumilitary operations (online) for protection amd
laboratories (offline) for deep analysis of softevdincluding cyber-forensics). The main strategysists

in putting emphasis on tluesigned-for-tolerance-and-recovery paradigm, but at the same time integrating
and harmonizing with the traditionsdftware hardening paradigm (protecting against known attacks) [4,
5, 6].

This paper summarizes state of the art studiesviea¢ conducted during the first year of the DRDC
Project. The following emerging fields of self-defée systems design are covered: 1- mechanisms for
adapted surveillance and analysis of ISs (Secfip@-2nnovative utilization of new architecturatperns
(such as redundancy with diversity) in IS architees (Section 3); 3- mechanisms to improve software
resilience, self-adaptation and self-healing (®ectl). The level of technical details was purposept
moderate throughout the paper.

2.0 SURVEILLANCE AND ANALYSISOF INFORMATION SYSTEMS

The refined detection of unwanted software behasidu an information system involves the utilizatio
of a monitoring system that is able to quickly eotlinformation at specific locations (deep in $lygstem),
with appropriate resolution and very low performairopacts. The collected information is then aredyz
with the goal of deriving system health and detectinomalies in the system. This section presésts t
work that is being done to develop mechanismsffarient and effective monitoring.

Tracing allows the capture of sequences of events thairgeat during software execution, both in the
user and kernel spaces of a system. Combined wlir dechniques (such as sampling), it represents a
good option for software monitoring because it &asess to almost any information on the systemewhil

it is running. Specific tasks or functions (in tfeem of code) are added into the source or binagec
(source-level or binary-leveéhstrumentation), precisely where events need to be captured. Whese
special instructions are encountered, they genariiemation {race events and associated data) that are
collected inexecution traces, which can later be examined on demand for randodits or for the study

of specific problems in systems.

The following use case examples show that traciug loe utilized in many contexts. 1- Clusters of
servers: detailed execution traces can be genefaedcomputers in a cluster, which are then gligbal
analyzed online or offline; 2- online system moriitg: a distributed collaborative command and aaintr

IS in a battlefield is instrumented to continuougignerate execution traces for remote analysis and
detection of abnormal software behaviour; 3- embddtystems: the processes of embedded systems such
as high-end cellular phone handsets can be tracdddir duration (e.g. a phone call); 4- offlingndmic

deep analysis: for vulnerability discovery and @ation, cyber-forensics, malware analysis, etclin@n
software surveillance may provide indications redgey health, performance and the presence of
unwanted software behaviours or states while the {8nning.

Six state of the art studies (SOTA) were condugtéate following domains: 1- Adaptive fault probiry
Multi-level, multi-core distributed traces synchization, 3- Trace abstraction, analysis and caticeia4-
Automated fault identification, 5- System healthmtoring and corrective measure activation, and 6-
Trace directed modelling. This section presents\@rview of the first four; the last two SOTAs wile
described in a later publication.

PAPER NBR -2 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

2.1 Adaptivefault probing

A number of advanced tracing technologies are abil on the market. Valgrind (Valgrind, 2008),
DTrace [7], SystemTap [8] and GDB [9] are good eghkam that allow binary-level instrumentation.
DTrace was built for the Solaris and Open Solapesrating systems. Instrumentation of these systems
achieved through loadable kernel modules that dedirset of kernel probes which can be activated on
demand. Impacts on traced information systems eg#igible when probes are not activated, but tha da
extraction mechanism limits performance. Sourcelléracing and user space tracing are also possible
with DTrace. The SystemTAP tracer provides featuheg are similar to DTrace, but for the Linux
operating system. It works by processing scrifsfiln which users specify probe points and associat
handlers to them. While probing can be enableddswmously at regular time intervals, its architeet
disallows instrumentation of source-code that isched from NMI contexts. DTrace, SystemTap and
GDB are typically used to add a few trace pointsdbmrakpoints with a small performance overhead
(through a trap mechanism). Valgrind [10] is mommmonly used for pervasive monitoring of the
program (e.g. tracing every access to memory) avitbnsiderable slowdown.

Compilers, and source code parsing and transfoomadolkits are also available to automatically add
instrumentation code at specified points in thera®wode. For example, the GNU Compiler Collection
[11] provides a number of instrumentation compdatioptions for debugging and instrumentation
purposes. TXL and Javacc are other good examplber @acers, such as Evlog [12], LKST [13], and
LTT [14], allow manual insertions of trace pointss&rategic locations in the source code. DT AH][is

an architecture-independent tracer that was ihjt@dgsigned to enable developers of kernel drivelsg
events in a circular buffer. DTI API is usable iotlb user and interrupts contexts and the data is
transferred to user space with the Relay file systeénally, tracing or logging libraries are alseadable

for most programming languages (Java logging, .lMEging, and C++ logging).

Other tracers like K42 [16], FTrace and KTAU [1T¢available for Unix-like operating systems. KTAU
for example was developed for multiprocessor coensuand allows both the profiling and tracing o th
Linux kernel on a system-wide or per-process bdisiscapabilities are limited by the fact that eoted
information is provided in an aggregated form toitiresource utilization. FTrace is another redeader
that provides system-wide tracing information foinux kernel developers. It uses the trace point
mechanism as its primary instrumentation mechanisnspecialized trace analysis modules run inéern
space and generate either a trace or analysis timeléorm of textual output to the user. As oflitaux
2.6.29 implementation, FTrace does not handle NyWidsefully and the reliance on the scheduler clock
for timekeeping may cause timing errors under gertanditions. K42 is a research operating system
developed by IBM. It contains a built-in tracettie kernel.

None of these tracers meets all the objectiveh®fIRDC Project. The needed tracer had to provide:
system-wide instrumentation coverage, basic supjoortll Linux architectures, minimal performance
impact, near zero impact when not tracing, probenteancy for all kernel execution context handlers
(including NMIs and MCE), very high-frequency kerrevents recording with small overhead under
typical workloads, scaling to large multi-processsystems, predictable system real-time response
changes, the ability to send trace events throagmétwork or to hard disk, and the ability to dymnzally
activate and/or deactivate probes.

The Linux Trace Toolkit next generation (LTTng) [B3] was seen as the best solution because initial
requirements (all fulfilled in 2009 [2]) were petfly aligned with those of the DRDC Project. LTTisg
made of a kernel patch, a tool chain, and a trémeing and analysis program (called LTTV). It indas

a set of kernel instrumentation points that ardul$er debugging a wide range of bugs that aretiise
extremely challenging (such as performance problemparallel and real-time systems). LTTng allows
the tracing of the user space through markers dbl Bace points for x86-32 and x86-64 architectures

! The text in this section is an overview of the $Qffat can be found in Dr Desnoyers’ Ph. D. thi&is

RTO-MP-IST-091 PAPER NBR - 3

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

and the kernel space through trace points and msafke the following architectures: x86-32, x86-64,
SPARC, SPARC64, ppc, ppcb4, sh, sh64, is64, s39@SMB2/64, and ARM. It is being actively
developed at Ecole Polytechnique de Montréal (s295) and supported by enterprises such as Engsso
IBM, Google, Fuijitsu, Sony, and Wind River.

The source code instrumentation mechanism propbgedTTng (trace point; calledracepoint) was
officially incorporated into the mainline Linux kezl 2008.

The ability of LTTng to directly send trace evettisough the network, combined with the possibitify
dynamically activating and de-activating markersl arace points on demand represents an important
asset for local/remote system surveillance andrabrithe selection of both the focus and resolutén
observations in execution traces can theoretidalypased on results obtained from previous exatutio
trace analyses. This feedback-directed capabilitiie protection system would contribute to optienike
production of more precise diagnostics (and coptrath minimal performance impacts on systems.

2.2 Multi-level, multi-cor e distributed traces synchronization?

This section briefly introduces two mechanisms tbah be utilized for the synchronization of trace
events. It also describes how the selected syndaiion mechanism was adapted for execution traces.

Probes installed in the different software layenay be used to provide monitoring and tracing .ddtzre
precisely, each core within each processor gerseeagteady flow of events when tracing is activafed
event may thus be triggered by one core or anathdr as each core has its own clock (and associated
unique timing imperfections; e.g. drift [19]), evdmme-stamps do not all have the same referemse ti
frame. A mechanism is thus needed to synchromze-stamps generated by various clocks.

There are two ways of pursuing the synchronizatibevents that originate from distributed multi-eor
multi-processor systems: online synchronizationofftine synchronization. The former consists of
adjusting each clock during tracing. The most m@a&pproaches to online synchronization involve the
use of specialized hardware to physically distebatclock signal to each traced node [20]. It &oal
possible to rely on software-only methods, suctnadNetwork Time Protocol [21].

Offline synchronization is based on the analysiseeénts happening in multiple traces with a strict

ordering relationship. The algorithms proposed hd® et al. [22] form the seminal work in this area.

They analyze events corresponding to network packesmissions to map the time between the clotks o
two systems. This approach has been extendedder ldistributed systems [23]. Recent developments
include the use of linear programming [24] and Hozest messages [25].

The choice of offline synchronization was driventbg need to limit impacts on ISs; Duda's convelk hu
algorithm was thus extended for tracing. This asialguarantees that there will be no message iovesrs
(e.g. packets that appear to travel backwardsrig)tin the synchronized traces. It also suppliesiacy
bounds on the clock synchronization parametergs lariginal form, however, the convex hull algarit
does not supply accuracy bounds on time conversidms precision of the synchronization can only be
estimated. To solve this problem, the linear progréng approach of Sirdey was applied to the origina
convex hull algorithm. The objective function haseb modified to identify accuracy bounds on time
conversions at any point in the trace.

Through experimental study, we have identified sopa@ameters that affect trace synchronization
accuracy and precision. As an example, the usenetwork with lower latency or a higher message rat
improves trace synchronization; longer trace damatiowever reduces precision and accuracy. We've

% The text in this section was written by Mr BenjarRioirier (Ecole Polytechnique de Montréal).

3 Hypervisor, operating system, virtual machinetesyslibraries and applications.

PAPER NBR -4 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

OTAN
Self-Defence of Information Systems in Cyber-Space - A Critical Overview

shown that this can be detected through metricedoas apparent message latency and broadcast
reception times. During our experiments, we actdegesynchronization accuracy of +15 pus and an
estimated precision of 9 us.

2.3 Traceabstraction, analysisand correlation®

Once trace events are collected and synchronifeslr ¥olume needs to be reduced to make it
manageable. This process is callieate abstraction. It consists in extracting high-level abstractidrtsn
low-level trace events in order to facilitate thdarstanding, exploration, and analysis of traceerds.

Analysis may consist in comparing abstracted executaces that originate from different but redanid
nodes, which are simultaneously executing instanfebte same application. Comparison in this case
could reveal the presence of undesired softwaraviedrs. It would be very hard to directly compare
huge amount of trace events without impacting sygterformance. Execution traces need to be reduced
through trace abstraction before analysis. The b@elddirected capability introduced in Section 2.1
would involve the utilization of very fast mechanis (for abstraction and analysis) that have low
performance impacts on traced systems.

Our review of the literature on trace abstractio &orrelation techniques reveals that they can be
grouped into three main categories: pattern dewecthoise filtering, and visualization techniques.
Although most of these techniques have been applidte area of program comprehension and software
maintenance, we believe that they can be easilptadao security. This section presents resultthef
state of the art study and potential adaptatiayber-security.

23.1 Pattern detection

A trace pattern is defined as a sequence of events that is repeatecontiguously in an execution trace.
The more patterns are present in the trace, tisetie® is required to understand its content, sente
analyst does not need to look at the same sequert® Patterns, once detected, are often repleitbd
high level descriptions that are understandableurgans.

The detection of patterns requires the use of seane of similarity metrics to determine when two
sequences of events can be deemed similar. Fguuhi®se, several matching criteria have been geipo
[26, 27, 28, 29]. These criteria vary significantlgpending on the type of trace that is used. Qample

is to measure the distance between two given seqaaf events using the edit metric. A thresholedse
to be defined above which two sequences can bedesad similar. Many other matching criteria have
been the subject of several studies, with a focuthe analysis of routine call traces. Examplesuhe
comparing two call trees by treating their callaaet, ignoring the order of calls, limiting thack depth,
etc.

Although pattern detection techniques have beemvishito be useful in many applications, they suffer
from some limitations such as the difficulty of emstanding how the matching criteria can be contbine
and their impact on the resulting abstractions.

We followed a knowledge-based approach to detetténpa from system call traces generated from the
Linux kernel. We used these patterns to abstracthmicontent of kernel-space traces and turnewh the
into a more compact and readable form while pr@sgrine key information. To achieve this, we have
built a pattern library that contains key Linux og@ns for file, socket, and process managememt. T
patterns are described as state machines compbsiets @f events and states. The states conforthdo
modes of execution in an LTTng trace (e.g. USER_MNEOBYSCALL, etc), whereas the events represent
the system calls that appear in the trace.

* The text in this section is an overview of a stifanpaper that will be submitted for publicatity Dr W. Hamou-Lhadj and
Mr W, Fadel (Corcordia University).

RTO-MP-IST-091 PAPER NBR -5

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

To build the pattern library, we have studied thieuk kernel to understand the system call mechanism
We have also executed a number of applications avffarent operations and generated traces usiag th
LTTng tracer. We studied the generated traces deroto uncover the common patterns. The pattern
library has been validated by Linux kernel expewige are currently in the process of applying it to

abstract out the content of large system call gi@tiraces.

232 Noisefiltering

Execution traces tend to contain a considerableuaiof noise that clutters the trace without adding
much value to its content. Hamou-Lhadj and Letldg®ifi30] studied the concept of utility components,
which they defined as low-level implementation dsté.e. noise), and proposed a metric that messur
the extent to which a routine can be considered agility. They have developed a trace abstraction
method based on the removal of utilities. They warecessful in extracting high level abstractiaasnf
low-level trace events. Many other researcherseattat removing noise from traces can significantly
improve the quality of the extracted abstractioB§, [31, 32, 33, 28, 27, 34]. They propose tools tha
enable users to remove information from the trafere the abstraction process takes place.

When applied to Linux kernel system call traces haee investigated what constitutes noise by shgfyi
the Linux kernel and working with the users of thETng tracer. We have found that most memory
management operations, page faults, and hardwteglpts tend to appear anywhere in the trace in a
non-predictable way, and they do not add valuaiifierination to the system behaviour. As a result, we
categorized these operations as noise and proplogeicemoving them would result in better abstoadi

2.3.3 Visualization techniques

Several proposed techniques in the area of trasteagkion rely on some sort of visualization tecfuei to
allow the users to manipulate the trace accordiritpé needs of the task at hand. Using these wpobs|

an analyst can, for example, browse, animate, ,sfipeup events, hide specific events, or search the
traces. Bennett et al. [35] divided the featureplémented in trace analysis tools into two groups:
presentation features andinteraction features. They defined the former as the set of featuréscaihg the
layout in which the trace is displayed, such aswahg multiple views, hiding information and using
animation. Presentation features can be furthéd@ivaccording to the following attributes:

» Layout. This represents the way a trace is displayed.example, a system call trace can be
represented in a linear view. A routine call trésausually represented as a tree structure or a
UML sequence diagram. Many other layouts have peeposed including 3D layouts.

» Multiple Linked Views. These views display information about a tracedifferent levels of
abstraction. The views are linked in a way that esak easy for the user to move from one view
to another.

» Highlighting. Highlighting a part of the sequence correspontingser selection.

» Hiding. The ability to hide information such as noisespecific processes not needed for the task
at hand.

* Visual Attributes. Using colours and shapes that help users to nemogertain information. For
example, colour-coding can be used to distinguestet patterns so as to enable the user to quickly
spot the most important ones.

» Labels. The ability to add descriptions to patterns, lgdaeticular places in a trace, etc.

* Animation. The ability to animate the content of a tracepbgying dynamically the flow of

PAPER NBR -6 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

OTAN
Self-Defence of Information Systems in Cyber-Space - A Critical Overview

execution.

Interaction features, on the other hand, are timmpéemented to enable users to interact with tlod by
navigating, querying, and manipulating the traceteot [35]. They can be further divided as follows:

» Sdection. This feature enables users to select elemembaidpulate, filter, or slice.

» Focusing. This feature allows the user to focus on a palaicaspect of a trace (e.g. by collapsing
parts of a trace).

» Zooming and scrolling. This feature permits enlarging or reducing paftthe trace view as well
as moving up, down, left or right within the diagra

* Querying and dicing. Querying refers to identifying and filtering imfoation, while slicing refers
to selecting specific parts related to the selectedponent.

» Grouping. This feature groups events into patterns. Thigdcdcbe performed automatically (using
the pattern detection techniques discussed eaplienanually.

* Annotating. This feature is used to describe grouped everdis as patterns, to store user notes
while exploring the trace, and to provide messagesers sharing the trace.

* Saving and restoring views. Users can save the state of the trace after aetrace abstraction
techniques have been applied, for later re-use.

Mechanisms allowing abstraction of execution tragesthe context of cyber-protection are under
development.

2.4 Automated fault identification®

Continual analyses are made on abstracted exedusioes in order to detect system health degratatio
and the presence of undesired software behavigxressive swapping, lock contention, undue latency,
inefficient task scheduling, attempts to eraseesystogs, and modification of system files are some
examples of these. Some can be related to softdesign defects, others to inefficiencies or malisio
activities. As for the abstraction process, medrasifor automated fault identification must be vierst,
with low impact on traced systems. A similar appfo#o the one used for Intrusion Detection Systems
(IDS) is chosen to provide a flexible automated maeism for the identification of unwanted software
behaviours in execution traces. The main goal <av systems to trigger alarms during operatiwhen
specified problematic conditions, scenarios orguag are detected. This section summarizes the stat
the art study that was conducted in this domain.

There are two main types of ID8etwork-based IDS (NIDS) monitor the network, ankbst-based IDS
(HIDS) monitor host systems. IDS can further bad#d based on the techniques they use for detection
signature-based, anomaly-based and policy-based. Signature-based IDS define known attacks through
scenarios and their associated signatures. Coropari® observation with scenarios allow the detecti

of problems. Anomaly-based IDS work differently.ephinvolve two complementary phasedearning
phase anda detection phase. The learning phase consists in capturing norre@bkiours of the system,
while the detection phase compares observatiorts thé pre-learned behaviour and detects deviations
between the two. Policy-based IDS, finally, defimaicies that allow (or prevent) accesses to system
resources. Violations of these policies are comstiéntrusions. Six main types of languages (and

® The text in this section summarizes the work doyn®r B. Ktari and Mr H. Mohamed-Waly (Laval Univésg.

RTO-MP-IST-091 PAPER NBR -7

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

corresponding technologies that make use of tlgpihges) were examined. They were chosen based on
their potential adaptation for security and tracalgsis contexts. Note that this list is not exhiaes

Declarative languages model what is to be computed, rather than hows itomputed; the logic of
computation is considered rather than the contoal fof the program [36]. These languages are often
considered as domain specific because their syistaightly related to the domain in which they are
applied. Examples of technologies that make uskesfe languages are: the open source NIDS Snddt 200
[37, 38, 39] and the commercial SECnology 2009 .[4@jperative languages model the steps or
algorithms that represent attacks. Examples inclRUESSEL [41], DTrace [7], and SystemTap [8], with
their scripting languages.

Automata-based languages use finite state machines (FSM) to describe attacke system triggers a
transition from one state to another when speafients occur. An attack is a suite of states and
transitions between them. Some technologies basdtbM are: STATL [42], SMC [43], and Ragel [44,
45]. Temporal logic makes use of first-order logic (or its derivatives describe attacks. Statements about
trace events are built from atomic propositionsiciwtexpress the content of a trace. Temporal operat
allow specifying how atomic propositions shoulddveanged in order to constitute a security violatio
Chronicle [46] is an example that permits the redtgn of anomalies in a flow of eventSolicy-based
languages describe security policies rather than attackdicfPwiolations are considered attacks. As
mentioned, two intrusion detection techniques aslable: signature-based and anomaly-based. Blare
[47] is a policy-based intrusion detection syst®ulicies control the type of operations that cardbee

on system objects (including files, pipes, FIF@gkets, shared memory buffers, etc.).

Finally, Expert systems make use of inference rules to reproduce the ni#@gonade by an expert, and aid
in complex decision-making. The two main techniqugsd to infer new facts are forward chaining, Wwhic
starts with basic facts to deduce new ones, an#waad chaining, which starts from a proposed
hypothesis and proceeds to collect supportive egieleExamples of expert systems are ADelLe [48], P-
BEST [49], and LAMBDA [50].

Important properties that were identified in thisrtvand that will be studied more in depth arestisand
briefly described in the following lines:

1. Scenario based on multiple events. The language should allow the study of attaclsetaon the
occurrence of a sequence of events.

2. Non-Occurrence of events. The language should allow testing for the norda@nce of events.
3. Real-time constraints. The language should allow modelling of the timbegween events.
4. Counting. The language should allow modelling of repetisiah specific events.

5. Conditional transitions. The language should allow modelling transitiors1f events (or states)
that depend on one or many specific conditions.

6. Variables. The language should be able to save variables ahduld be possible to retrieve their
values upon request.

7. Grouping. The language should allow the grouping of specifariables into a structure and
checking whether a certain value appears in thatmgr

8. 9Yynthetic events. The language should allow the saving of scenanias knowledge base, which

PAPER NBR -8 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

could be used to describe more complex scenaritheifuture.

9. Knowledge acquisition. The language should allow the dynamic capture aading of
information.

10. Suitable for kernel tracing. The language should allow the modelling of malisi activities in
execution traces and their abstractions (bothen asd kernel spaces).

11. Online. The language should allow online detection.

The definition of a dedicated language and mechang be used in the context of trace analysis for
cyber-protection are under development.

3.0 REDUNDANCY AND DIVERSITY IN ARCHITECTURES

The ability to take reactive or proactive actionkew undesired states or behaviours are detected in
information systems is another important elemergrobnline feedback-directed protection systemsé&he
actions may range from the small scale (closingifipdnternet ports) to the larger scale (modifyithe
whole architecture of the system while in use)sTgction introduces an approach that consisiddimg
diversity to redundancy (under the form of new architectural patterns) smftware and hardware
architectures. For example, a set of two nodes [mameously running the same OS and the same
application is not a secure solution in the cylheedt context because the same method or mechaaism
be used to exploit the same vulnerability thatrespnt in both systems. Running two different lmilar
operating systems (such as BSD and Linux) will ificemtly lower chances that the whole system bl
successfully put down by the same cyber-attackerieit vulnerabilities in both operating systems are
relatively different. It is expected that these new architectural padtevill contribute to improving the
protection against cyber-attacks.

Even though the relevance of diversity to attadkremce has caught the interest of researchers5[1,
53], it is only recently that the utilization ofvdirsity in redundant architectures to build seco#ware
systems were recognized [54]. Some of the maj@ares programs that were launched in the last @ecad
with the goal of investigating intrusion toleranaesilience and survivability include MAFTIA [55],
OASIS [56], SRS [57] and ReSIST [58]. Essentiatlyp categories of architectures can be drawn from
these projects. The first one is represented by[BI(39)], SITAR [60], HACQIT [61], and DPASA [62].
They are instances of a general architectural maite which servers are shielded from end-users by
proxies. Monitoring and voting mechanisms are usetheck the health of the system, validate theltes
and detect abnormal behaviours. As this approaek dot involve the modification of applicationstbe
server side, it appears to be well suited when COT®gacy or closed-source applications have to be
integrated.

The second category of architectures (representd¢dWA [63, 64], MAFTIA [55, 65], and ITDOS [66])
use a middleware to provide intrusion tolerancectiomalities. It eliminates the need to build custo
solutions for each software application. Thesebai# aware of the intrusion tolerance servicesviuted
by the middleware services.

The evaluation of the extent to which security shiaved through these architectures is usually
approached usingiodel -based analysis techniques. The probabilistic approach represents a basiséory

of these evaluation techniques [67]. Qualitativerapches such as Scenarios Analysis using fa@s-tre
[68] are often used. Quantitative approaches asedan stochastic models (Semi Markov Processés [69
and Stochastic Reward Nets [70]). As an examplH, presents a state transition model that descthmes

® 1t is worth mentioning that redundant architecsufeith or without diversity) allow major softwangpgrades and other
maintenance operations without downtime.

RTO-MP-IST-091 PAPER NBR -9

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

behaviour of a generic intrusion-tolerant systefisTmodel has been used to describe the behaviour o
SITAR [70].

This state of the art study has identified a numtfeconcepts that could contribute to improving the
protection of information systems against cybeedits. These will be studied more in depth. The
following points group them and provide a brief atgstion.

* Redundancy with diversity. Our state of the art study revealed that diffenstrusion-tolerant and
survivable architectures such as DIT, SITAR, ITUMRASA, and the Willow architecture [72]
implemented the principle of diversity. Howevergamuestions regarding the manageability and
control of diversity, and consequently the diffdrlmvels of security that can be achieved, remain
to be addressed. Notwithstanding the existencérofeld mechanisms for adaptive redundancy
(such as in DIT), diversity models that are similarthe redundancy models (as defined by the
“Availability community”) do not exist at this mome Architectural patterns involving the
utilization of redundancy and diversity at differéevels or dimensiorisamust be developed for
the specific context of cyber-security, and testechany operational situations. While diversity
will contribute to reducing risks of correlated matability, it will induce an increase in
complexity levels that must be taken into accosnivall.

* Indirection. The principle of indirection consists in isolaior shielding from the end-users the
servers implementing system functionalities andiices. Essentially, it aims to hide systems’
implementations (and systems’ vulnerabilities amotitgr things) from “outside”, making more
complex the preparation of cyber-attacks. It islengented in a variety of architectures through
the use of proxies (such as in DIT, SITAR, DPASAS. flexibility to dynamically relocate
services (reactively or proactively) lowers the rit® of success of multi-staged cyber-attacks.
Proxies are thin interfaces having deterministibawgours that are much less complex than
servers’ functionalities. They are therefore easigurotect.

» Adaptive responses and reconfiguration. Intrusion-tolerant architectures involve mecharsighat
ensure the continuity of services even under atteok example, mechanisms are reactively or
proactively triggered to isolate components showinglesired software behaviours. Other
mechanisms make systems adapt to changing circocestaduring operations through
reconfiguration (such as in ITUA). Also, the inject of uncertainty in system responses may
contribute to making the systems unpredictable femmadversary’s point of view. Temporal
diversity varies the structure and/or the behavimfusystems with respect to time, while spatial
diversity consists in deploying different comporgeimiplementing the same functionalities.

* Monitoring. Behaviour monitoring and analysis are impor&latnents because they provide the
necessary information upon which efficient autooiatanual decision-making processes are
based. As LTTng and sibling software analysis meidmas allow deep continual feedback-
directed local and/or remote monitoring and analysi software behaviours of systems, they
appear to be the technology of choice. Their furgrtg will allow automatic and manual alarm
management as well.

* Communication infrastructure. The use of redundancy and diversity in architexs will involve
configuration management (such as the replicatiofuractionalities, components, etc.). Current
communication protocols such as group membershgiopol [73], totally ordered reliable
multicast protocol [74], and even the Byzantindtféalerant protocol [75] must be studied more

" Such as: hardware platforms and components, aftdagse (e.g. operating systems, software applioatiovirtualization
mechanisms, security mechanisms).

PAPER NBR - 10 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

in depth in order to identify potential solutiontioms for the context of redundant and diverse
architectures.

* Analysis techniques. Many architectural patterns involving redundamad diversity should be
available during operations in order to provideoinfation systems with the capability to face
different problematic situations. Their ability &oldress specific security requirements should be
characterized in the laboratory, prior to theitizdition in operations. Mechanisms allowing deep
analysis of these architectural patterns are themsded to generate full specifications and
mechanisms for online transition from one patterariother.

40 SOFTWARE RESILIENCE, SELF-ADAPTATION AND SELF-HEALING

Feedback-directed system protection (Section 2ill)aléo contribute to system optimization through
positive feedback. Ultimately it will make systersslf-adapt and self-heal. This section presents an
overview of the state of the art study that wasdomted in this relatively “new” domain.

A sdf-healing system is a system that attempts to heal itself from wtfen order to regain its normal
operational state prior to disruption [76]. Sel&hieg systems should also b#f-adaptive, attentive to the
changes triggered by the environment for improvedgomance or to simply adapt to various situations
[77]. Some researchers view self-healing systemssisanother type of fault-tolerant system, in ehi
detection and resistance to faults is an importamponent. Although self-healing systems must béso
equipped with some sort of fault detection mechanisis important to emphasize that the focusnghe
healing and recovery process rather than on faalyais and modelling as is the case for traditienalt-
tolerant systems. In other words, a self-healingiesy is more recovery-oriented and should be able t
restore itself to normalcy independently of theetypource, and severity of the fault. This maket s
design particularly suitable to security, espegiafi the military context, since understanding vas
types of faults caused by malicious attacks mightabtedious (and sometimes impractical) task, and
since—even if it is done successfully—the systdhhrseds to heal itself from other types of faults

One of the key aspects of a self-healing systeits Ebility to decide whether it is functioning pexly or

not. To this end, it is important to study what stitates a fiormal” or “healthy” behaviour of the system.
The common approach is to measure various chaisitterof the system in a laboratory environmeat th
can later be used as a baseline for comparisoraul fletection technique can then be developed by
observing, using monitoring capabilities, any dgwiss of the deployed system from these measurement
[78]. The obvious drawback of this approach is ihaloes not account for the changes that the syste
may undergo as its environment also changes. liti@uldit is difficult to anticipate the various ws the
system can be used before it is put in operati®h Bhaw argues that what constitutes a healthiesys
varies in time and from one user to another and therefore not reasonable to expect that the line
between a “healthy” and a “broken” state be cledd§ined in advance [79]. She proposes instead that
there is a gradual transition state that she thésdegraded state. Many other researchers (e.g. [78])
support this view, which has led to a self-heafingcess in which the key element is the need &ystem

to initiate rectification not only when it is inétbroken state but also (and more importantly) whstarts
exhibiting signs of decline, i.e., when the faulao attack has begun to take effect. This requif@sself-
healing system that it not only recovers from fabltit also continuously maintains its health.

A self-healing process encompasses three maintagivnaintaining the system health, detectingesys
failures, and recovering the system from the fasuin what follows, we describe each of thesevitiets
along with a brief discussion of the main technitieat are employed. Some of these techniques have
also been discussed in [78]:

1. Maintaining the system health. This activity consists of continuously checkirg thealth of the
system in order to maintain its normal functionaleveral strategies have been proposed, among

RTO-MP-IST-091 PAPER NBR - 11

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

which the most popular ones are based on a redondard diversity architecture [51, 52, and
80]. Other techniques include performance log asiglyin which performance measures are
collected and used for the diagnosis of systentieabftware aging and rejuvenation technigues
have also been employed [81, 82], which consistiafnosing the system based on empirically
studied signs of decline. Finally, some researchex& used architecture description languages
[83] to periodically compare the architecture rem@d from a running system with healthy
reference architecture.

2. Detecting system failures. Most existing fault detection techniques relysmme sort of run-time
monitoring and system probing technique. The ide#icompare the execution of a healthy
system to the execution of the system in operatiam.this purpose, a reference model of what
constitutes a healthy system is needed. The tesbsigised to build reference models vary
significantly from one study to another, includilige use of natural language processing
techniques [84], probabilistic context free gramend85], Markov chains [86, 87], metric
correlation models [88], machine learning [89], &tic execution [90], and architectural model-
based techniques [83]. These methods also varyndeme on whether the learning process is
performed online (i.e. during operation) or offliie a controlled environment), on the way they
deal with false positives, on whether they arefptat specific or not, etc. In addition, other
approaches such as scheduled announcements atgaihés and policy-based monitoring have
also been proposed. Checkpoints have been usederiodigally check the system for
responsiveness [91, 92]. Policy-based monitoriogriues have also been used in which a set of
policies (e.g. the amount of time it takes to exe@uparticular query) are established in advance
and the system is checked against these polici}s [9

3. Recovering the system health. System recovery techniques ensure that the systeavers from
an attack and returns back to its normal statdodigh existing techniques vary depending on the
type of system architecture on which they are applthey all share a common repair method
which consists of replacing a faulty component vatihealthy one, performing a clean-up, etc.
[78] A recovery strategy, however, must be guidgadlvecovery and repair plan that is designed
in advance.

Although the above techniques have been shown tséfil, our review of the literature shows thassmo
of them are still at the experimental stage andehaet been applied to large systems with stringent
security requirements. This hinders the evaluatiatheir effectiveness in the context of our reskar

In addition, there are many research issues thiateshain unaddressed. First, although most reteas
agree that knowledge of the system to be healetb(pgance data, system architecture, etc.) is ribéate

the healing process to be successful, little ha lsaid on how this knowledge should be represented
validated, and managed. This is particularly impotrtsince self-healing systems are expected to make
healing and recovery decisions based on this krdgeleThey are in many ways very similar to decision
support systems found in organizational and maregstudies, and in which information is the key
enabler to decision-making.

Another important question with regards to healsnghether the healing and recovery are achievéll wi
or without human intervention, and to which exteaman intervention is needed. It is also important
investigate techniques designed to help the anahgdte sense of the information collected from the
system, especially when run-time monitoring techagjare employed—since it is well recognized that
the amount of run-time information to be procedseds to be overwhelmingly large. There is alse&dn
for visualization techniques to visualize, in ahleamanner, the state of the system, its healtusstthe
sources of potential problems, etc., that can hal@nalyst use this information to analyze the aek
received from the system and make the necessangtadints. This important requirement for an assiste

PAPER NBR - 12 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

self-healing system is almost absent in most exjdiudies.

Finally, we believe that not all faults should beated the same, as is the case in most studibs @rea

of self-healing. In our view, there should be aceptable security range that requires system amtaptid
healing. This is particularly important in orderraduce the overhead associated with switching fvom
node to another in the context of redundant arctutes. We propose that a set of security modes be
defined based on the severity of the attacks ast@syhealth attributes. For example, security kstaan

be classified into severe, moderate, and mininmah minimal mode, an analyst may decide to termainat
the infected process, whereas a severe attacleadrtd a complete shut-down of the host node. ddhis

to the complexity of the determination of the progEeshold above which a system decline should be
considered as a fault.

5.0 CONCLUDING REMARKS

New inherent complexity levels of information sysginduce new complex bugs and vulnerabilities that
are much harder to solve than a decade ago. Betaseaditional security framework does not kepp u
with the cyber-security arms race, unsolved bugs \annerabilities have the opportunity of causing
dramatic damages during operations [94]. R&D effate underway in Canada to try to identify new
complementary mechanisms that would significanthpriove the decision-making process as well as
thoughtful analysis and response, while maximizimg time available for risk mitigation. The selette
approach is based on feedback-directed tracindysisand protection of both user and kernel spates
information systems. It allows the selection oftte focus and resolution of execution traces n2lyeis
mechanisms, and 3- correction mechanisms baseleoresults of the immediately preceding analyses
(which are conducted on a continual basis). Tecthrspecifications of the LTTng tracer insure thas t
tool will provide the necessary functionalities afhekibility to fully support the development of ih
approach.

State of the art studies presented in this papee fdentified a number of solution options that Vdou
contribute to address a number of important problémat remain to be solved. For example, an alyuorit

is currently being adapted to allow the synchraiora of trace events originating from local or
geographically distributed CPUs and cores in CRSE.utilization on a continual basis will allow the
production of synchronized execution traces that taen be sent for deep analysis. Abstraction
approaches allowing execution trace volume redociito higher-level behavioural objects (more
significant behaviours) were also identified. Based these approaches, new mechanisms producing
abstracted execution traces on a continual basiscamently being prototyped and tested. Based on
current approaches found in the scientific liter@tnew analysis mechanisms are also being pradtyp
and tested. The goals are to measure the heatifioofmiation systems as well as detect and apprebyiat
report potential anomalies and problems, and pmpesctive and proactive corrective measures.

New concepts and mechanisms improving softwardigrse, self-adaptation and self-healing are being
studied as well. For example, system redundancy diversity combined with carefully implemented

decentralization of system control appear to beoadgapproach for self-adaptation and basic healing
capabilities in 1Ss. The overviewed approaches stmhnically feasible at this time since nowadays
computing capabilities are greatly exceeding thematational requirements of modern decision systems

This article provides an overview of the curreatetof the art for the key technical topics. Aughenll be
pleased to exchange results from current S&T imrests with allies from the NATO community.

6.0 REFERENCES

[1] K.-P. Faxén (ed.), C. Bengtsson, M. Brorsson,Gtlahn, E. Hagersten, B. Jonsson, C. Kessler, B.
Lisper, P. Stenstrom, B. Svensson. Multicore coinpwuithe state of the art. Not published.

RTO-MP-IST-091 PAPER NBR - 13

NATO UNCLASSIFIED

NATO UNCLASSIFIED g?

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

(http://eprints.sics.se/3546/), [Accessed: Febru2dy0], 2008.

[2] M. Desnoyers. Low-impact operating system mgciPh.D. thesis, Ecole Polytechnique de Montréal,
202 pages, (http://ittng.org/content/documentatibesis), [Accessed: February, 2010], 2009.

[3] M. Couture, M. Dagenais, D. Toupin, R. CharpentG. Matni, M. Desnoyers, and P.-M. Fournier.
Monitoring and tracing of critical software systerasState of the work and project definition.
DRDC/RDDC Valcartier, TM 2008 144, December 2008.

[4] P. Verissimo, M. Correia, N. F. Neves, and Bus&. Intrusion-Resilient Middleware Design and
Validation. In Annals of Emerging Research in Imh@tion Assurance, Security and Privacy Services, H.
Raghav Rao and Shambhu Upadhyaya (eds.), Els20i@8,

[5] J. McDermott, A. Kim, and J. Froscher. Mergipgradigms of survivability and security: stochastic
faults and designed faults. In Proceedings of @32Norkshop on New Security Paradigms, Ascona,
Switzerland, August 18-21, 2003. C. F. Hempelmamh\& Raskin, Eds. NSPW '03. ACM, New York,
NY, pp. 19-25.

[6] H. Lala Jaynarayan. Intrusion Tolerant SystemsSeventh Pacific Rim International Symposium on
Dependable Computing (PRDC'00), Advanced Reseahd®s Agency, 2000.

[7] B. M. Cantrill, M. W. Shapiro, and A. H. Levérdl. Dynamic instrumentation of production systems.
In USENIX,
(http://www.sagecertification.org/events/usenix@dft/general/full_papers/cantrill/cantrill. pdf) [fessed:
February, 2010], 2004.

[8] V. Prasad, W. Cohen, F. C. Eigler, M. HuntK&niston, and B. Chen. Locating system problems
using dynamic instrumentation. In Proceedings ofe thOttawa Linux Symposium,
(http://sourceware.org/systemtap/systemtap-ols. pi€cessed: February, 2010], 2005.

[9] GDB. http://lwww.gnu.org/software/gdb/, [Accedsé&ebruary, 2010].

[10] Valgrind. http://valgrind.org/, [Accessed: Fahry, 2010].

[11] GNU Compiler Collection. http://gcc.gnu.orfAccessed: February, 2010].

[12] Evlog. http://evlog.sourceforge.net/, [AccessEebruary, 2010].

[13] LKST. http://lkst.sourceforge.net/, [Access&abruary, 2010].

[14] LTT. http://www.opersys.com/LTT/, [Accessecelfruary, 2010].

[15] DTI. http://sourceforge.net/projects/dti/, [fessed: February, 2010].

[16] O. Krieger, M. Auslander, B. Rosenburg, R. Wisniewski, J. Xenidis, D. Da Silva, and al. K42:
building a complete operating system. In EuroS¥ Proceedings of the 2006 EuroSys conference, pp.

133-145, 2006.

[17] A. Nataraj, A. Malony, S. Shende, and A. MsrrKernel-level measurement for integrated parallel
performance views: the KTAU project. In IEEE Intational Conference on Cluster Computing, 2006.

[18] LTTng. http://lttng.org/, [Accessed: Februa@10].

PAPER NBR - 14 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

i

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

[19] H. Marouani, M. Dagenais. Internal clock deftimation in computer clusters. Journal of Coraput
Systems, Networks, and Communications, articleofyme 2008, 2008.

[20] P. Ashton. The Amoeba Interaction Network:tidi Results. Publication TR-COSC 09/95,
Department of Computer Science, University of Cdntey, 1995.

[21] D. L. Mills. Precision synchronization of cooter network clocks. ACM SIGCOMM Computer
Communication Review 24(2), volume 24, AssociafienComputing Machinery, Inc, One Astor Plaza,
1515 Broadway, New York, NY, 10036-5701, USA,, 28-1994.

[22] A. Duda, G. Harrus, Y. Haddad, and G. Bern&stimating global time in distributed systems.dro
7th Int. Conf. on Distributed Computing SystemstliBevolume 18, 1987.

[23] J. M. Jezequel. Building a global time on piatamachines. Proceedings of the 3rd International
Workshop on Distributed Algorithms, LNCS, volume23936-147, 1989.

[24] R. Sirdey, and F. Maurice. A linear programgiipproach to highly precise clock synchronization
over a packet network. 40R: A Quarterly JournaDpErations Research 6(4), volume 6, Springer, 393—
401, 2008.

[25] B. Scheuermann, W. Kiess, M. Roos, F. Jarnel Bl. Mauve. On the Time Synchronization of
Distributed Log Files in Networks With Local Broadt Media. Networking, IEEE/ACM Transactions on
17(2), volume 17, 431-444, April 2009.

[26] R. J. Walker, G. C. Murphy, B. Freeman-Bensbn,Swanson, and J. Isaak. Visualizing Dynamic
Software System Information through High-level Misdén Proc. of the Conference on Object-Oriented
Programming, Systems, Languages, and Applicatipps271-283, 1998.

[27] A. Hamou-Lhadj, T. C. Lethbrridge, L. Fu. SEATA Usable Trace Analysis Tool. In Proc. of the
13th International Workshop on Program Comprehengip. 157-160, 2005.

[28] W. De Pauw, E. Jensen, N. Mitchell, G. Sewitsknd J. Vlissides, J. Yang. Visualizing the Exexu
of Java programs. In Proc. of the International iBamon Software Visualization, LNCS 2269, pp. 151-
162, 2002.

[29] A. Hamou-Lhadj A. and T. Lethbridge. An Effesit Algorithm for Detecting Patterns in Traces of
Procedure Calls. In Proc. of the 1st Internatioharkshop on Dynamic Analysis (WODA), Co-located
with ICSE, Portland, Oregon, USA, 2003.

[30] A. Hamou-Lhadj and T. C. Lethbridge. Summarigithe Content of Large Traces to Facilitate the
Understanding of the Behaviour of a Software Systdnternational Conference on Program
Comprehension (ICPC), Athens, Greece. pp. 181-2015.

[31] T. Systa, Understanding the Behaviour of Jaxagrams. In Proc. of the 7th Working Conference on
Reverse Engineering, pp. 214-223, 2000.

[32] T. Richner and S. Ducasse. Using Dynamic imimiion for the Iterative Recovery of Collaborations
and Roles. In Proc. of the 18th International Crariee on Software Maintenance, pp. 34-43, 2002.

[33] D. Jerding, J. Stasko, and T. Ball. Visualgimteractions in Program Executions. In Proc.h#f t
International Conference on Software Engineeripg,360-370, 1997.

RTO-MP-IST-091 PAPER NBR - 15

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

[34] B. Cornelissen, A. Zaidman, D. Holten, L. M@m A. van Deursen, and J. J. van Wijk. Execution
trace analysis through massive sequence and cirbuladle views. Journal of Systems & Software,
81(11), pp. 2252-2268, 2008.

[35] C. Bennett, D. Myers, M. A. Storey, D.M. Germd. Ouellet, M. Salois, and P. Charland. A Survey
and Evaluation of Tool Features for Understandimyd®se Engineered Sequence Diagrams. Journal of
Software Maintenance and Evolution: Research aadtiee, 20(4), pp. 291-315, 2008.

[36] J. W. Lloyd. Practical Advantages of DeclaratProgramming. In Joint Conference on

Declarative Programming, GULP-PRODE '94, 1994.

[37] Snort. http://www.snort.org/docs, [Accessedbfuary, 2010].

[38] Deadlock. http://en.wikipedia.org/wiki/DeadlgdAccessed: February, 2010].

[39] The Snort Project. Snort users manual vergi8tb, October 22, 2009.

[40] Secnology. http://www.secnology.com, [Accesdeebruary, 2010].

[41] A. Mounji Naji Habra, B. Le Charlier and |. Mdeu. Asax: Software architecture and rule-based
language for universal audit trail analysis. ComapuBecurity ESORICS 92, 648/1992:435-450, April
2006.

[42] S. T. Eckmann, G. Vigna, and R. A. KemmerefASL: An Attack Language for State-based
Intrusion Detection. Journal of Computer Secufity(1/2): 71-104, 2002.

[43] The state machine compiler. http://smc.sounagd.net/, [Accessed: February, 2010].
[44] Ragel. http://www.complang.org/ragel/, [AccedsFebruary, 2010].

[45] A. Thurston. Ragel State Machine Compiler et§uide, 2007. http://www.complang.org/ragel/,
[Accessed: February, 2010].

[46] B. Morin and H. Debar. Correlation of intrusicsymptoms: an application of chronicles. In
Proceedings of the 6th International Conferencdrenent Advances in Intrusion Detection, RAID '03,
pages 94-112, 2003.

[47] J. Zimmermann, L. Mé, and C. Bidan. An imprdweference of control model for policy-based
intrusion detection. In ESORICS, pages 291-3083200

[48] C. Michel, L. Mé, and L. M. Adele. An attaclestription language for knowledge-based intrusion
detection. In In Proceedings of the 16th IntermeticConference on Information Security, IFIP/SEQ20
pages 353-368, 2001.

[49] U. Lindgvist and P. A. Porras. Detecting corguuand network misuse through the production-based
expert system toolset (p-best)*. IEEE SymposiumSecurity and Privacy - Oakland, California, May
1999.

[50] F. Cuppens and R. Ortalo. Lambda: A languagenbdel a database for detection of attacks. In
Proceedings of the Third International WorkshopRmtent Advances in Intrusion Detection, RAID '00,
pages 197-216, London, UK, 2000.

PAPER NBR - 16 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

i

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

[51] P. E. Ammann and J. C. Knight. Data Diversiyt Approach to Software Fault Tolerance. IEEE
Transactions on Computers, vol. 37, no. 4, 1988.

[52] J. P. J. Kelly, T. I McVittie, and W. I. Yamato. Implementing Design Diversity to Achieve Fault
Tolerance. IEEE Software, 1991.

[53] Y. Deswarte, L. Blain, and J.-C. Fabre. IntomsTolerance in Distributed Computing Systems.BEE
Symposium on Security and Privacy, pp. 110-1211199

[54] S. Forrest, A. Somayaji, and D. H. Acley. Blitlg Diverse Computer Systems. In Proceedingsef th
Sixth Workshop on Hot Topics in Operating Systeh®87.

[55] D. Powell and R. Stroud. Conceptual Model @rdhitecture of MAFTIA. MAFTIA deliverable
D21, Technical Report CS-TR-787, University of Nastte upon Tyne, 2003.

[56] J.H. Lala. OASIS - Foundations of Intrusionldrant System. In Foundations of Intrusion Tolerant
System. 2003.[Organically Assured and Survivablérimation Systems], pp. x—xix, 2003, |IEEE
Computer Society, 2003.

[57] Self-Regenerative Systems (SRS). http://wwwpdanil/ipto/Programs/srs/srs.asp, [Accessed:
February, 2010].

[58] ReSIST. http://www.resist-noe.org/overview/oxiew.html, [Accessed: February, 2010].

[59] A. Valdes, M. Almgren, S. Cheung, Y. DeswaBe Dutertre, J. Levy, H. Saidi, V. Stavridou, ahd
Uribe. Dependable Intrusion Tolerance: Technologgmb. In 3rd DARPA Information Survivability
Conference and Exposition (DISCEX-IIl 2003), pp84230, IEEE Computer Society, 2003.

[60] F. Wang, F. Gong, R. Sargor, K. Goseva-Popawja, K. Trivedi, and F. Jou. SITAR: a scalable
intrusion-tolerant architecture for distributed\gees. In Foundations of Intrusion Tolerant SysteR3.

[61] J. C. Reynolds, J. E. Just, E. Lawson, LChugh, R. Maglich, and K. N. Levitt. The Designdan
Implementation of an Intrusion Tolerant Systeminiternational Conference on Dependable Systems and
Networks (DSN'2002), pp. 285?292, IEEE Computeriedpc2002.

[62] J. Chong, P. P. Pal, M. Atighetchi, P. Rulaeid F. W., Franklin. Survivability Architecture af
Mission Critical System: The DPASA. In 21st Annuabmputer Security Applications Conference
(ACSAC 2005), pp. 495-504, IEEE Computer Sociedg=®

[63] T. Courtney, J. Lyons, H. V. Ramasamy, W. ldn@&ers, M. Seri, M. Cukier, M. Atighetchi, P. Rubel
C. Jones, F. Webber, P. Pal, R. Watro, and J. God3®viding Intrusion Tolerance with ITUA.
International Conference on Dependable System$ahdorks (DSN), 2002.

[64] P. P. Pal, P. Rubel, M. Atighetchi, F. Webbat, H. Sanders, M. Seri, H. Ramasamy, J. Lyons, T.
Courtney, A. Agbaria, M. Cukier, J. M. Gossett, dndeidar. An architecture for adaptive intrusion-
tolerant applications: Experience with Auto-adaptand Reconfigurable Systems. Software — Practice &
Experience, 36(11-12), 1331-1354, 2006.

[65] P. Verissimo, N. F. Neves, C. Cachin, J. AriRp D. Powell, Y. Deswarte, R. J. Stroud, and I.
Welch. Intrusion-tolerant middleware: the road wboanatic security. IEEE Security & Privacy, 4(4%-5
62, 2006.

RTO-MP-IST-091 PAPER NBR - 17

NATO UNCLASSIFIED

NATO UNCLASSIFIED

Self-Defence of Information Systems in Cyber-Space - A Critical Overview ORGANIZATION

[66] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whore, and D. E. Bakken. Developing a
Heterogeneous Intrusion Tolerant CORBA System. Ha t Proceedings of the 2002 International
Conference on Dependable Systems and Networks (D3N pp. 239-248, Washington, DC, IEEE
Computer Society, 2002.

[67] B. Littlewood and L. Strigini. Redundancy abilversity in Security. 9th European Symposium on
Research in Computer Security (ESORICS '04), Lectlotes in Computer Science (LNCS), vol. 3193,
pp. 423-438, 2004.

[68] R.J. Stroud, I. S. Welch, J. P. Warne, an® PA. Ryan. A Qualitative Analysis of the Introsi-
Tolerance Capabilities of the MAFTIA Architectula. International Conference on Dependable Systems
and Networks (DSN 2004), pp. 453—, 2004 |IEEE Comp8bciety, 2004.

[69] B. B. Madan, K. Goseva-Popstojanova, K. Vaitgthan, and K. S. Trivedi. A method for modeling
and quantifying the security attributes of intrusimlerant systems. Perform. Eval., 56(1-4), 16518
2004.

[70] D. Wang, B. B. Madan, and K. S. Trivedi. Setyuanalysis of SITAR intrusion tolerance systém.
the proceedings of the 2003 ACM workshop on SubMizand self-regenerative systems (SSRS '03), pp.
23-32, ACM , 2003.

[71] K. Goseva-Popstojanova, F. Wang, R. Wang, bnd; K. Vaidyanathan, K. Trivedi, and B.
Muthusamy. Characterizing intrusion tolerant systemsing a state transition model. In the proceedaig
DARPA Information Survivability Conference & Exptisn Il, DISCEX '01, Vol. 2, pp. 211-221, 2001.

[72] J. Knight, D. Heimbigner, A. L. Wolf, A. Carama, J. Hill, P. Devanbu, and M. Gertz. The Willow
Architecture: Comprehensive Survivability for Lar§eale Distributed Applications. Technical Report
CU-CS-926-01, University of Colorado, DepartmenCaimputer Science, 2001.

[73] O. Rodeh, K. P. Birman, D. Dolev. The architee and performance of security protocols in the
ensemble group communication system: Using diamdadguard the castle. ACM Transactions on
Information and System Security 4(3): 289-319 (9(@2] (to be completed)

[74] C. Cachin, K. Kursawe, F. Petzold, V. Shoumc@e and Efficient Asynchronous Broadcast
Protocols. Advances in Cryptology, LNCS 2139, g1 %41, J. Kilian, ed., Springer-Verlag, 2001.

[75] M. Castro and B. Liskov. Practical Byzantinault-tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS), Volumés2Qge 4, November 2002.

[76] P. Koopman. Elements of the self-healing systeroblem space. In: Workshop on Software
Architectures for Dependable Systems (WADS2003grivational Conference on Software Engineering
(ICSE’03), Portland, Oregon, May 3—-11, 2003.

[77] R. Laddaga. Active software. 1st Internation&drkshop on Self-Adaptive Software, 2000.

[78] D. Ghosh, R. Sharman, H. R. Rao, and S. UpagthySelf-healing systems - survey and syntheasis. |
the Journal of Decision Support Systems, vol. 42 4n Elsevier, 2007.

[79] M. Shaw. Self-healing: softening precisioratmid brittleness. WOSS'02: Workshop on Self-Heglin
Systems, 2002.

[80] R. Sharman, H. R. Rao, S. Upadhyaya, P. KBollanocha, and S. Ganguly. Functionality defense

PAPER NBR - 18 RTO-MP-IST-091

NATO UNCLASSIFIED

NATO UNCLASSIFIED

i

Self-Defence of Information Systems in Cyber-Space - A Critical Overview

by heterogeneity: a new paradigm for securing systdn Proceedings of the 37th Hawaii International
Conference on System Sciences, 2004.

[81] Y. Hong, D. Chen, L. Li, and K. Trivedi. Clodeloop design for software rejuvenation. In
Proceedings of the Workshop on Self-Healing, Adaptind self-MANaged Systems (SHAMAN), 2002.

[82] Y. Huang, C. Kintala, N. Kolettis, and N. Dulkon. Software Rejuvenation: Analysis, Module and
Applications. In Proceedings of the 25th InternagilcSymposium on Fault-Tolerant Computing, 1995.

[83] R. De Lemos and J. L. Fiadeiro. An architeat@upport for self-adaptive software for treatiaglts.
In Proceedings of the First Workshop on Self-Haptiystems, 2002.

[84] H. Chen, G. Jiang, K. Yoshihira. Failure D¢ime in Large-Scale Internet Services by Principal
Subspace Mapping. IEEE Transactions on Knowleddgelata Engineering, 2007.

[85] E. Kiciman, A. Fox. Detecting and localizingication-level failures in Internet services. EEE
Transactions on Neural Networks, 2005.

[86] S. Forrest, S. A. Hofmeyr, A. Somayaji, T.lAangstaff. A Sense of Self for Unix Processes. riocP
of the 1996 IEEE Symposium on Security and Priva&ge6.

[87] S. Forrest, S. A. Hofmeyr and A. Somayaji. lution of Systemcall Monitoring. In Proc. ofeth
Annual Computer Security Applications Conferenqe,418-430, 2008.

[88] M. Jiang, M. A. Munawar, T. Reidemeister, Pal¥. System monitoring with metric-correlation
models: problems and solutions. In Proc. of theiégrnational conference on Autonomic computing, p
13-22, 2009.

[89] J. H. Perkins, S. Kim, S. Larsen, S. Amaralagl. Bachrach, M. Carbin, C. Pacheco, F. Sherwood
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,.ND. Ernst, and M. Rinard. Automatically patching

errors in deployed software. In Proceedings of #st ACM Symposium on Operating Systems
Principles, 2009.

[90] M. Costa, M. Castro, L. Zhou, L. Zhang, M. Railo. Bouncer: securing software by blocking bad
input. In Proc. of the ACM Symposium on Operatinygt®8ms Principles, pp. 117-130, 2007.

[91] C. Dabrowski and K. L. Mills. Understanding lfdeealing in service discovery systems. In
Proceedings of the First Workshop on Self-Healiggt&ns, 2002.

[92] Service Availability Forum. www.saforum.orgddcessed: February, 2010].

[93] J. Aldrich, V. Sazawal, C. Chambers, and DkiNoArchitecture-centric programming for adaptive
systems. In Proceedings of the First Workshop dikBmling Systems, 2002.

[94] S. Landau, M. R. Stytz, C. E. Landwehr, andBFSchneider. Overview of Cyber Security: A Crisis
of Prioritization. In IEEE Security and Privacy,lv8, no. 3, pp. 9-11, May/June, 2005.

RTO-MP-IST-091 PAPER NBR - 19

NATO UNCLASSIFIED

