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Abstract …….. 

Monitoring, tracing and analysis of software execution are indispensable activities for the 
surveillance, protection and optimization of our national computing infrastructures. However, in 
recent years, our ability to monitor and analyze software execution has been seriously disrupted 
by the emergence of multi-core CPUs and the higher level of interconnectivity (between 
networked systems). These complex systems are already being deployed in our command and 
control operations. They operate at a much higher transaction rate and they fragment and execute 
their computing and communication tasks in parallel, leading to huge and extremely complex 
execution traces to analyze. Current analysis technology is thus overwhelmed by the new 
computing capability of these systems.  

Studies were conducted in 2008 in order to better define the next R&D effort that will be 
undertaken to address this problem. Among other things, the studies examined the feasibility of 
developing a feedback-directed diagnostic system based on the LTTng framework. Important 
risks associated with critical technical aspects of this R&D effort were identified and reduced. 
This document describes the work that was done as well as results and recommendations resulting 
from these feasibility studies. 

Résumé …..... 

Le suivi, le traçage et l’analyse de l’exécution logicielle sont des activités indispensables pour la 
surveillance, la protection et l’optimisation dans le cadre de notre infrastructure nationale 
informatique. Néanmoins, ces dernières années, notre capacité à suivre et analyser l’exécution 
logicielle a été profondément affectée par l’émergence des unités de calcul (CPU) multi cœurs et 
le haut niveau d’interconnexion (entre les systèmes mis en réseau). Ces systèmes complexes sont 
déjà déployés dans nos opérations de commandement et contrôle. Leur fonctionnement implique 
des taux de transaction plus élevés ; ceux-ci fragmentent et exécutent leurs tâches de 
communication et de calcul en parallèle, ce qui résulte en d’énormes traces d’exécution  
complexes à analyser. La technologie d’analyse actuelle est donc dépassée par la nouvelle 
capacité de calcul de ces systèmes. 

Des études ont été réalisées en 2008 afin de mieux définir les prochains efforts de R et D qui 
seront déployés  dans le but d’aborder ce problème. Parmi celles-ci, la possibilité de développer 
un système de diagnostic basé sur la rétroaction et utilisant l’environnement LTTng a été étudiée. 
Les risques importants associés aux aspects critiques de cet effort de R et D ont été identifiés et 
réduits. Ce document énumère et décrit le travail réalisé ainsi que les résultats et 
recommandations résultant de ces études de faisabilité. 
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Executive summary  

Tracing, monitoring and analysis of distributed mul ti-core 
systems: Selected feasibility studies  

Couture, M.; F. Lajeunesse-Robert; F. Prenoveau; M.  Dagenais; B. Ktari; DRDC 
Valcartier TR 2008-300; Defence R&D Canada – Valcar tier; April 2009. 

Modern military operations rely on sophisticated computing infrastructures that involve: 1) 
geographically distributed networked topologies supporting collaboration among distributed 
officers and 2) computational nodes having simple processors, symmetric or asymmetric multi-
processors (SMP/ASMP), non-uniform memory access (NUMA) and more recently multi-core 
(SMP/ASMP on a single chip) systems. This ever-increasing complexity along with disruptions 
from the complex and often hostile environments within which they interact makes their 
reliability extremely challenging to guarantee. The current analysis technology for surveillance, 
protection, optimization and debugging of these systems is overwhelmed by this complexity. 
Significant improvements and new developments must be put forward in order to improve both 
in-operation and in-laboratory deep system analysis.  

This objective is directly aligned with the following Defence S&T Strategy Technological 
Challenges (DRDC, 2006);  

• 1.5 - Software protection and countermeasures; and  

• 4.6 - Improvements in multi-purpose capability of new and existing systems.  

Studies were conducted in 2008 with the goal of defining the R&D effort that will be required in 
this domain in order to improve surveillance, protection, optimization and debugging of such 
complex systems (Dagenais, 2008a; Couture et al., 2008). Six main areas of R&D were 
identified: 1) Adaptive fault probing, 2) Multi-level, multi-core distributed trace synchronization, 
3) Trace abstraction, analysis and correlation, 4) Automated fault identification, 5) System health 
monitoring and corrective measure activation, and 6) Trace directed modelling. A joint project 
proposal involving Ericsson Canada, NSERC, DRDC Valcartier as well as a number of experts 
from different Canadian universities was then proposed to NSERC and DRDC for funding in 
2008 (Dagenais, 2008b; Couture and Charpentier, 2008). The tracing technology that was 
considered in this proposal was the LTTng framework (LTTng, 2008).  

The 2008 studies included a detailed analysis of critical technical aspects of the proposed project 
in order to identify and reduce major risks prior to the beginning of the proposed R&D project. 
They focused on the feasibility of developing a feedback-directed diagnostic system based on the 
LTTng framework. This document describes the work that was done and the results and 
recommendations of these feasibility studies. 

The work described in this document is divided into two main parts (R&D threads). They are:  

• R&D Thread 1: Mechanisms for monitoring, tracing and control. The aim of this thread 
was to verify the feasibility of extending the LTTng framework for: 1) network transfer of 
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execution traces, 2) latency transfer minimization, 3) LTTng remote control, and 4) 
continuous decoding of execution traces.  

• R&D Thread 2: Toward trace abstraction and analysis. The aim of this thread was to: 1) 
review the current work and technology in this domain, 2) analyze execution traces, 3) study 
the feasibility of abstracting and analyzing execution traces, and 4) study the feasibility of 
developing automatic mechanisms for trace analysis. 

Results and observations from R&D Threads 1 and 2 clearly show the great potential of the 
proposed R&D project. Each of the studied components (for the online monitoring, tracing and 
analysis of distributed multi-core systems) is clearly feasible and very promising. Four important 
challenges must be addressed. Actually, they can be considered as recommendations for the next 
R&D efforts. 

1. First, the overhead associated with the LTTng framework should be as low as possible to 
ensure it is widely applicable and effective.  

2. The second important challenge is to facilitate the integration of the different sources of data 
(e.g. static and dynamic, kernel and user level trace points) from different processor cores, 
virtual and physical machines and distributed systems. Moreover, the database structure must 
allow the addition of synthesized information to the event traces (e.g. state information, 
abstract higher level events, etc.).  

3. The third important challenge is related to the analysis of execution traces in real operational 
situations. Traces obtained from concurrent and parallel processes which are executed on 
distributed multi-core CPUs and make accesses to shared resources, must be analyzed. The 
“resolution issue” must be addressed as well.  

4. Finally, another important challenge consists in finding the most appropriate formalism for 
trace analysis, trace abstraction and fault detection. The Kleene algebra formalism is adequate 
for the certification process but not for the efficient online handling of huge execution traces. 
A formalism to solve these specific problems must be identified or developed. 
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Sommaire ..... 

Tracing, monitoring and analysis of distributed mul ti-core 
systems: Selected feasibility studies  

Couture, M.; F. Lajeunesse-Robert; F. Prenoveau; M.  Dagenais; B. Ktari; DRDC 
Valcartier TR 2008-300; R & D pour la défense Canad a – Valcartier; Avril 2009. 

De nos jours, les opérations militaires dépendent d’infrastructures informatiques qui impliquent : 
1) des topologies de réseau géographiquement réparties qui facilitent la collaboration entre 
officiers et 2) des nœuds de calcul comprenant des processeurs de calcul simples, symétriques, 
asymétriques (SMP/ASMP), des accès non uniformes à la mémoire (NUMA) et, plus récemment, 
les systèmes à processeurs multicœurs (systèmes SMP/ASMP sur une puce). Cette complexité 
toujours grandissante, de concert avec l’influence négative des environnements hostiles dans 
lesquels ces systèmes évoluent, rend leur fiabilité très difficile à garantir. La technologie 
d’analyse réalisant la surveillance, la protection, l’optimisation et le débogage de ces systèmes est 
maintenant rendue dépassée par cette complexité. Des améliorations significatives et de nouveaux 
développements doivent être mis de l’avant dans le but d’améliorer l’analyse système qui est 
réalisée tant sur le terrain qu’en laboratoire.  

Cet objectif est directement aligné sur les défis technologiques de la défense (DRDC, 2006) : 

• 1.5- Software protection and countermeasures; and  

• 4.6- Improvements in multi-purpose capability of new and existing systems.  

Des études ont été réalisées en 2008 dans le but de définir l’effort de R et D qui sera fait dans ce 
domaine afin d’améliorer la surveillance, la protection, l’optimisation et le débogage de ces 
systèmes complexes (Dagenais, 2008a ; Couture et al., 2008). Six directions de R et D ont été 
identifiées; elles sont : 1) Adaptive fault probing, 2) Multi-level, multi-core distributed traces 
synchronization, 3) Trace abstraction, analysis and correlation, 4) Automated fault identification, 
5) System health monitoring and corrective measure activation and 6) Trace directed modeling. 
Un projet conjoint impliquant Ericsson Canada, CRSNG, RDDC Valcartier et plusieurs experts 
provenant de différentes universités canadiennes a été proposé au CRSNG et à RDDC pour 
financement en 2008 (Dagenais, 2008b; Couture et Charpentier, 2008). La technologie de traçage 
qui a été avancée dans cette proposition est celle de l’environnement LTTng (LTTng, 2008). 

Parmi les études de 2008, l’analyse détaillée des aspects critiques du projet proposé a été réalisée 
dans le but d’identifier et de réduire les risques majeurs, et ce, avant le début du projet de R et D 
proposé. Leur centre d’intérêt a été orienté sur la possibilité de développer un système de 
diagnostic basé sur la rétroaction et l’utilisation de l’environnement LTTng. Ce document 
énumère et décrit le travail réalisé ainsi que les résultats et recommandations résultant de ces 
études de faisabilité. 

Le travail décrit dans ce document est divisé en deux parties principales (Sujets R et D) qui sont : 

• Sujet R et D 1 : Mécanismes pour le suivi, le traçage et le contrôle. Ce sujet avait pour 
but de vérifier la possibilité d’étendre l’environnement LTTng pour : 1) le transfert réseau 
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des traces d’exécution, 2) la minimisation de la latence de transfert, 3) le contrôle distant de 
LTTng et 4) le décodage continu des traces d’exécution. 

• Sujet R et D 2 : Vers l’abstraction et l’analyse des traces. Ce sujet avait pour but de : 1) 
faire une revue des travaux et de la technologie courante dans ce domaine, 2) analyser des 
traces d’exécution, 3) étudier la possibilité d’abstraire et d’analyser des traces d’exécution et 
4) étudier la possibilité de développer un mécanisme automatique d’analyse de traces. 

Les résultats et observations découlant des Sujets R et D 1 et 2 montrent clairement tout le 
potentiel du projet proposé. Chacune des composantes étudiées (pour le suivi, le traçage et 
l’analyse en ligne des systèmes répartis multicoeurs) est clairement réalisable et très prometteuse. 
Quatre défis importants doivent être surmontés. En fait, ils peuvent être considérés comme étant 
des recommandations pour le prochain effort de R et D.  

1. Premièrement, la charge de travail CPU associée à l’environnement de LTTng devrait être 
réduite autant que possible afin de lui assurer une applicabilité et une capacité étendue.  

2. Le second défi important consiste à faciliter l’intégration des différentes sources de données 
(statiques, dynamiques, des points de traçage dans les « kernel/user spaces ») provenant de 
différents cœurs de processeurs, de machines virtuelles et physiques, et de système répartis. 
De plus, la structure de la base de données utilisée doit permettre l’ajout d’information de 
synthèse aux éléments des traces d’exécution (états, abstractions haut niveau, etc.).  

3. Le troisième défi important est lié à l’analyse des traces d’exécution dans des situations 
opérationnelles réelles. Les traces obtenues de processus concurrents et parallèles, qui sont 
exécutés sur des systèmes multicœurs et qui font des accès aux ressources des systèmes, 
doivent être analysées. Le problème de la « résolution » doit être également abordé.  

4. Finalement, un autre défi important consiste à trouver le formalisme le plus approprié pour 
l’analyse des traces, l’abstraction des traces et la détection de fautes. Le formalisme de 
l’algèbre de Kleene est adéquat dans les processus de certification, mais il ne l’est pas pour la 
manipulation en ligne efficace des traces d’exécution qui sont énormes. Un formalisme doit 
être identifié ou développé pour aborder ces problèmes particuliers. 
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1 Improving robustness of command and control 
information systems  

Information systems became much more complex in the last decade in terms of technology 
evolution and the more demanding needs related to command and control (C2). Actually, their 
architecture is mainly determined by organizational forms of C2. Some important characteristics 
of current military C2 are given by Benaskeur and Blosgett (2008): 

• C2 is a distributed environment;  

• C2 has functional architectures such as surveillance, threat evaluation, etc.;  

• C2 is a complex process;  

• C2 deals with large volumes of data under stringent time constraints; 

• C2 can be influenced by deterministic/stochastic, episodic/sequential, static/dynamic 
environments; and  

• the decision-making process may be based upon single/multiple criteria.  

C2 can also be considered as: reactive (self-maintaining: fixed finality), responsive (goal seeking: 
variable but determined finality) or active (or pro-active) (purposeful: variable and chosen 
finality) (Couture, 2007). The complexity of supporting information systems arises from (among 
other factors): 

• the interaction of the non-functional requirements such as maintainability, performance, 
and security (Ellison and Woody, 2007b); 

• the higher level of interconnectivity between physically distributed C2 information systems; 

• the use of computational nodes involving simple processors, symmetric or asymmetric 
multi-processors (SMP/ASMP), non-uniform memory access (NUMA) and more recently 
multi-core systems (SMP/ASMP on a single chip)1.  

These characteristics are not unique to military domains. Actually, C2 often takes place (under 
different forms) in civilian organizations as well. For instance, the operational management of the 
complex computational infrastructure used by a telephony company is another similar complex 
C2.  

This complexity along with disruptions from complex and often hostile environments in which 
they are interacting makes their reliability extremely challenging to guarantee. The current 
analysis technology used to ensure effective and efficient surveillance, protection, optimization 
and debugging of these systems during operation is overwhelmed by this complexity. Significant 
improvements and new developments must be made in the concepts, algorithms and techniques in 
order to achieve and maintain the needed survivability capabilities in operation (Avizienis et al. 
2004; Neumann 2000; Neumann 2004).  

                                                   
1 A recent survey (Heikkila and Gulliksen, 2007) mentions that communications and military/aerospace are 
the most probable early adopters of multi-core processor boards. 
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1.1 Context of this work 

According to the methodology used2, preliminary studies and workshops were conducted in 2008 
in order to define the R&D effort that will be required in the domain of monitoring, tracing and 
analysis of distributed multi-core systems (Couture et al., 2008; Dagenais, 2008a). Six main areas 
of R&D (herein called Areas of R&D) were identified3: 1) Adaptive fault probing, 2) Multi-level, 
multi-core distributed trace synchronization, 3) Trace abstraction, analysis and correlation, 4) 
Automated fault identification, 5) System health monitoring and corrective measure activation, 
and 6) Trace directed modelling.  

A joint project involving Ericsson-Canada, NSERC, DRDC Valcartier as well as a number of 
experts from different Canadian universities was then proposed to NSERC and DRDC for 
funding in 2008 (Dagenais, 2008b; Couture and Charpentier, 2008). The main technology that 
was considered in this proposal was the LTTng framework (Desnoyers and Dagenais, 2006a; 
Desnoyers and Dagenais, 2006b; LTTng, 2008).  

Investigations of critical aspects of the proposed project were also conducted in 2008 in order to 
identify and reduce major technical risks. Their purpose was to study the feasibility of developing 
a feedback-directed diagnostic system based on the LTTng framework. This document describes 
the results and recommendations of these studies. 

1.2 Overarching methodology  

The methodology for defining DRDC Valcartier R&D projects consists of a suite of logically 
ordered phases (Figure 1), each of which builds on the results of the previous phases. This section 
provides a brief overview of each phase and establishes relationships with the current R&D effort. 

The first two phases are dedicated to the formulation of operational and technical needs and 
requirements. The process starts with the identification and description of operational problems. 
Needs and requirements are then iteratively refined by scientists with the active contribution of 
representatives from the end-user community and technology specialists (two opposing arrows 
between phases 0 and 1 in Figure 1).  

Based upon the results of the first two phases, scientists identify a number of potential solutions 
out of the scientific literature (phase 2). They typically require in-depth scientific investigations to 
be critically reviewed and validated.  

The third phase of the process consists in achieving a state-of-the-art4 (SOTA) regarding the 
problems, needs and solutions identified. The SOTA should allow the capture and integration of 
all relevant concepts, research, authors, organizations, technologies, processes, tools, etc., into a 
comprehensive view.  

                                                   
2 Described in Section 1.2. 
3 Areas of R&D are briefly described in Annex B. 
4 A SOTA on the monitoring and tracing of multi-core systems was made (Dagenais, 2008a).  
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In phase 4, international experts, civilian and military partners of DRDC, and academic and 
industry stakeholders are invited to elaborate on selected aspects of the identified solutions5. The 
main goals of the tutorial are: 

1. distribute the acquired knowledge among stakeholders; 

2. develop a more precise understanding of identified problems and needs;  

3. provide complete answers to attendees’ questions; and 

4. identify, define and start collaborations among stakeholders. 

(2) Identification of 
potential solutions

(3) State-of-the-art; SOTA

(4) Tutorial/workshop:
Refinement of 

solution options
(2-3 days)

(5) Feasibility studies on 
selected solution options 

($, time, risks; 2-6 months)

(6) Fund seeking 
(Partnership & client)

(7) Research project 
(~3 years, annual delivery)

(8) Scientific communication 
and demonstrations

(0) Formulation of 
problems and 

needs(1) Formulation of 
requirements

 

Figure 1. The Methodology phases. 

Just after the tutorial, a half-day workshop involving a limited number of partners is then held. 
Based upon acquired knowledge, participants discuss more specific problems and needs in greater 
depth. The aim of this workshop is to prioritize a number of solution options for subsequent 
feasibility studies.  

In phase 5, a number of feasibility studies are carried on in order to estimate the cost and 
technological risks that are associated with each selected solution option6. Based upon these 
results, R&D projects are then formally proposed for funding in phase 67, and then executed 
(phase 7). Ultimately, they lead to demonstrations in realistic environments, and other forms of 
publication (phase 8).  
                                                   
5 Couture et al., (2008) provide a description of the tutorial/workshop that was held at Ericsson’s Montreal 
offices in January 2008. 
6 This document represents the main output of this phase for this effort. 
7 Two project proposals were submitted: Couture and Charpentier (2008) and Dagenais (2008b). 
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The methodology (or process) shown in Figure 1 may be cycled through many times if many 
iterations are needed to build the complete solution. In this case, each iteration builds on the 
results of previous ones. 

1.3 Content of this document  

The work described in this document is divided into two separate but complementary threads 
(herein called R&D Threads). When considered together, both threads aim to study the 
feasibility of building an online feedback-directed diagnostic system for the tracing and analysis 
of C2 information systems during operation. They are briefly introduced in the following 
sections. 

1.3.1 R&D Thread 1: Mechanisms for monitoring, trac ing and control 

This R&D thread aims to identify and study concepts and mechanisms for the online generation, 
transfer and remote management of execution traces. Additional mechanisms for the remote 
control of the tracing software (LTTng, 2008) will also be studied8. The aim of this thread is the 
control-directed remote tracing of distributed software systems. The main tasks defining this 
thread are summarized below. 

1. Identify and validate mechanisms for the transfer of execution traces from one or many 
distributed multi-core computational nodes to a remote one. 

2. Identify and validate mechanisms for the reception and management of execution traces on a 
remote computational node. Mechanisms should assemble partial execution traces that 
originate from distributed, SMP and multi-core computational nodes. They should also make 
them available for analysis processes. 

3. Identify and validate mechanisms for the transfer of control commands between 
computational nodes (for the remote control of LTTng). 

4. Identify and validate mechanisms for the activation of the control of LTTng probes (based on 
the execution of transferred control commands). 

5. Evaluate the performance of all improved and developed mechanisms. 

1.3.2 R&D Thread 2: Toward trace abstraction and an alysis 

Tasks defining R&D Thread 2 are complementary to those of the previous thread. Essentially, 
this thread aims to identify and study mechanisms that will permit effective and efficient remote 
online analysis of the received data (execution trace elements)9.  

The main tasks defining this thread are summarized below.  

                                                   
8 Outcomes of these tasks will make a direct contribution to the following Areas of R&D: 1, 2 and 3 
(Annex B). 
9 Outcomes of these tasks will make a direct contribution to the following Areas of R&D: 3, 4, 5 and 6. 
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1. Review the scientific literature and works on formalisms for representing programs, 
execution traces, fault representation, as well as trace comparison, pattern and fault detection.  

2. Identify and evaluate mechanisms that will be used to generate theoretical representations of 
software applications in the trace analysis context, resulting in execution models. 

3. Simplify the trace abstraction and analysis problem by limiting the tracing to the user/kernel 
interfaces (e.g. system calls). Analyze limitations that are associated with this simplification.  

4. Study the content, structure and inherent logic of execution traces.  

5. Investigate the possibility of abstracting execution traces into higher-level behaviours. 
Compare execution traces with execution models in order to correlate observed events with 
process behaviours. 

6. Investigate the possibility of automating trace abstraction and analysis. 

1.4 Frequently used terms  

Frequently used technical terms in this document are defined below. The Glossary contains 
definitions of other terms. 

Computational node: a piece of hardware that is running software applications in operation. It 
may refer to computers, network devices, etc.  

Software application (or program) versus software system: these terms refer to two similar 
things that stand at two different conceptual levels. Software application (or program) refers to a 
piece of software (lower level), while software system refers to an aggregation of one or more 
software applications (higher level, the whole). Two examples will help clarify the difference 
between these terms. 1) Microsoft context: the software application would be MS Word and the 
software system would be MS Word plus the MS Windows XP operating system. 2) Linux 
distribution context: the software application would be a specific package and the software 
system would be the distribution as a whole (including the Linux kernel). 

Software component: components are smaller pieces of software applications, software systems 
and operating systems (e.g. a kernel module).  

Information system: a software system that is used by officers or operators during operations. 
For instance, it may involve many distributed collaborative software applications that are 
executed on many geographically distributed computational nodes. In the military context, they 
may be a command and control information system (C2IS). 

System: this general term includes any form of any sub-system. A system usually consists of one 
computational node, which runs software systems. 

Diagnostic system: a software application that monitors and/or traces executions of software 
systems. For instance, it may produce diagnostics regarding system health.  
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Online and continuous: the adjective “online” means in this document being in use during 
operations, and the adjective “continuous” means constant and uninterrupted. 

Execution trace: execution trace is defined in this document as a chronological suite of records 
resulting from observations that were made on a running system at different instants tn, during a 
specific period delta-t. More precisely, an execution trace contains information regarding specific 
events in the system that is generated by LTTng when its active probes were encountered and 
executed. 

Trace events (or elements): the content of an execution trace.  

The reader will find additional definitions in the Glossary of this document.  
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2 R&D Thread 1 – Mechanisms for monitoring, 
tracing and control 

This R&D thread aims to identify and study mechanisms for the online generation, transfer and 
remote management of execution traces. Additional mechanisms allowing the remote control of 
the tracing software (LTTng) will also be studied. The aim of this thread is the control-directed 
remote tracing of distributed software systems. This chapter provides a description of the 
work, observations and results achieved in this R&D thread.  

2.1 Initial premises 

Main premises considered in this thread are: 

1) Once appropriately adapted, the LTTng framework10 will transfer execution traces on 
a continuous basis to a remote computational node for further management and 
analysis. Minimal impacts will be observed on traced systems’ performance. 

2) It will be possible to decode and reassemble, on a continuous basis, chronological 
elements of execution traces which originate from one or many distributed and possibly 
multi-core systems.  

3) Remote control of each running instance of the LTTng framework (located on each 
distributed system) will be made possible on a continuous basis. The control consists in 
allowing the choice of both the focus and resolution11 of execution traces. 

2.2 Technological considerations  

2.2.1 The Use of Free Open Source Software – The LTTng framework 
and Linux 

The choice of using the LTTng framework and the Linux operating system (and more generally 
FOSS) was made in the early stages of this R&D effort. More information regarding this choice 
and potential advantages of using FOSS can be found in Couture et al. (2008), Carbone (2006a), 
Carbone (2006b), Carbone and Charpentier (2006), Carbone (2008) and Charpentier and Carbone 
(2004). 

                                                   
10 LTTng was chosen as the tracing system (Couture et al., 2008). A quick overview of this software can be 
found in Annex C. Some important references regarding LTTng are: Desnoyers and Dagenais (2006a); 
Desnoyers and Dagenais (2006b); Desnoyers and Dagenais (2008); Yaghmour, K. and M. R. Dagenais 
(2000); Yaghmour (2001); Bligh et al. (2007). 
11 The focus refers to the specific traced software objects or components and resolution refers to the 
number of active probes used. A higher number of well selected active probes will produce well focused 
execution traces, with the necessary levels of detail for the analysis of its elements. 
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One advantage (among others) of using the LTTng framework is that some of its components may 
be used with other types of operating system (that are not UNIX-like).  

2.2.2 Use of the client-server model 

The client-server model (Figure 2) was used in this project. This model was chosen for the 
following reasons. 

• Information systems (clients) may be geographically distributed: operations may involve 
the use of spatially distributed networked collaborative information systems. This model is 
particularly useful for geographically distributed officers that collaborate through networked 
information systems to achieve shared goals or missions. 

• Information systems (clients) and the software for trace management and analysis (on 
the server) is not necessarily executed on the same computational node: critical 
operations may require that system monitoring, tracing and analysis be achievable both 
locally and remotely. In some circumstances, remote analysis may be preferred. For 
instance, intense local trace analysis may seriously impact the performance of the 
computational node CPU(s). This problem would be solved if the workload associated with 
trace analysis were achieved remotely, freeing up the CPU(s) for operational computing 
tasks.  

Client
Traced system
Sends traces

Server
Receives traces
Analyses traces

TCP/IP

NetworksTCP/IP

TCP/IP

TCP/IP
Client

Traced system
Sends traces

Client
Traced system
Sends traces

 

Figure 2. The client-server model. 

Using this model, concurrent execution traces (on the clients’ side) are transferred to a centralized 
server. This server reassembles received execution traces and performs appropriate analysis on 
these traces (or delegates this analysis to other supporting computational nodes). The analysis of 
these traces characterizes the current health of each traced system as well as the whole distributed 
system. 
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2.2.3 Prototype architecture 

Figure 3 shows a view of the architecture that is studied in this R&D thread (as well as in the next 
chapter). It involves the use of the client-server model (Section 2.2.2). It allows the study of 
remote management and analysis of execution traces, as well as remote control of LTTng probes 
on the client’s side. The figure only shows one client for clarity purposes, but the reader should 
keep in mind that many distributed concurrent multi-core clients are considered in this study. 

The client (computational node 1) executes user’s programs and LTTng. In this work, additional 
components are added on the client side in order to: 1) transfer execution traces to remote server, 
and 2) receive and execute LTTng control commands. The reception of execution traces on the 
server side (computational node 2) is managed by the receiver component. Traces are then 
analyzed by other components and the knowledge regarding the health of the client system is 
produced. Based on this knowledge, a decision (involving humans) is made regarding what 
should be traced12 next. Control commands are then generated accordingly; and are sent and 
executed on the client by the controller component. 

Computational 
node 2Computational node 1 (Linux)

Client

Kernel

User 
applications

S.C.

Mon./Trac. 
(LTTng)

Control 
Effector

Receiver

Analysor

Controller

Transfer 
of events

Transfer of 
commands

Knowledge

Decision

Transmitter

Server

 

Figure 3. The prototype architecture used. 

Yellow/green rectangles in Figure 3 are studied in R&D Thread 1/2.  

2.2.4 Programming language 

C programming language was exclusively chosen in this R&D thread for performance and 
compatibility reasons13. 

                                                   
12 Only the control of the LTTng tracing probes is considered in this study. Further studies will consider the 
possibility of controlling user’s programs and the operating system as well. For instance, services could be 
started or stopped depending on the results obtained. 
13 Both the Linux kernel and LTTng are mainly programmed in C. 
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2.2.5 Computational nodes 

Both single-core (Intel Pentium 4, 1.70GHz) and multi-core (Intel Xeon, E5405, 2.00 GHz) 
computational nodes were used in this R&D thread. They were linked by a 10/100BASE-TX 
Ethernet switch.  

2.3 Workload for this R&D thread 

Preliminary investigations of the LTTng architecture yielded the identification of four main 
groups of feasibility studies that could be made. They are briefly introduced below. 

1. Support for network. Currently, the transfer of execution traces for online remote analysis is 
not allowed. Analysis is limited to complete traces that were already saved in local files on a 
hard disk (on the client’s side). The feasibility of transferring trace elements from clients to a 
remote server over the network for online remote analysis is studied. 

2. The flushing of data buffers. Before trace elements can be sent to the server, they are locally 
sent from the kernel space to user space (client side) via data buffers (using relay; Zanussi et 
al., 2003; RelayFS, 2008). The fact that these buffers are flushed only when they are full 
presents a problem. The feasibility of flushing these buffers on a more regular basis in order 
to reduce the latency of transfer is studied. 

3. Remote control. The feasibility of remote activation and deactivation of LTTng probes 
(client side) for the remote control of LTTng is studied. 

4. The continuous decoding of execution traces. Currently, execution traces are decoded by 
LTTV. LTTV is limited to reading complete execution traces that were pre-recorded on a hard 
disk. The feasibility of decoding execution traces that are transferred from clients to a server 
on a continuous basis is studied.  

Five main tasks for this R&D thread are identified. They are described below. 

Task 1 – The refactoring of selected LTTng components: 

The main goal of this preliminary task consists in facilitating code reuse for subsequent R&D 
work. LTTng’s components are studied in more depth in order to identify the source code that 
could be refactored, and achieve this refactoring. 

Task 2 – The transfer of execution traces over the network: 

A number of mechanisms must be put in place in order to allow the secure, efficient and effective 
transmission of execution traces from clients to server for remote analysis and control. This task 
involves, among other things, the study of transfer protocols and the modification of some LTTng 
components.  

Task 3 – The problem of latency transfer: 
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Internally, LTTng transfers execution trace events (or trace elements) from the kernel space to the 
user space through data buffers (client side). These buffers are flushed only when they are full. 
This mechanism may cause a latency problem if the rate of production of trace elements is not 
high enough; the data may be kept in buffers for long periods of time. This task aims to identify 
and test mechanisms that will flush these buffers, and thus reduce the time the data will reside in 
buffers.  

Task 4 – Remote control: 

Secure, efficient and effective remote control of LTTng probes represents an important advantage 
for the surveillance and protection of information systems in operation. The types of control that 
will be considered in this R&D thread are limited to the activation/deactivation of selected LTTng 
probes. Mechanisms to ensure such a control are studied and tested. They incorporate security 
and authentication functionality. 

Task 5 – The decoding of received execution traces: 

Raw execution traces must be decoded and transformed by LTTV before they can be analyzed. 
This task aims to study and test mechanisms for the remote management of execution traces.  

2.4 Exploration and analysis – Results and observat ions 

2.4.1 Technical description of an execution trace 

It is important at this point to provide a description of execution traces that are produced by 
LTTng. Terms and concepts that are defined in this section will be used throughout this chapter. 
The reader may refer to Figure 4 for an illustration of definitions and concepts. 

An execution trace is defined in this document as a chronological suite of records resulting from 
observations that were made on a running system at different instants tn, during a specific period 
delta-t. More precisely, an execution trace contains information regarding specific events in the 
system that is generated by LTTng when its active probes were encountered and executed.  

Execution traces are sub-divided into channels14. A channel gathers together events that are 
generated by a group of pre-selected probes. A tracefile is a sequence of events, which takes the 
form of a tracefile in the execution trace. There is one tracefile per running CPU for each channel. 
Tracefiles are then sub-divided into a number of fixed size blocks called sub-buffers. Each sub-
buffer contains many events (or elements). 

The concept of channel allows the segregation of traced events according to their importance or 
priority. If a problem occurs while tracing the execution of a system, the capture of events 
corresponding to prioritized channels would be captured before other channels.  

                                                   
14 Currently, LTTng has five channels. 
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Tracefiles are read by lttd process (Section 2.4.2) using a memory map of the sub-buffers. This 
process makes a reservation for a filled sub-buffer, reads its content and then releases it so that it 
can be refilled again.  

···

CPU 0

···

···

···

···

···

CPU 1

···

···

···
···

···

CPU n

···

···

···

···

···

···

···

···

···

Channel 0

Channel 1

Channel 2

Channel n

subbuffers buffer or tracefile

Trace

 

Figure 4. Composition of a LTTng execution trace. 

Note that LTTng is lockless, meaning the LTTng tracer may write in sub-buffers even if they are 
reserved by the process lttd. A sub-buffer may thus become “corrupted” if the tracer writes into it 
while the lttd process is reading it. The lttd process is notified of a corruption by a status code that 
is returned when a sub-buffer is released. This status code should be considered by lttd, and 
managed accordingly. 

For each channel, LTTng offers the possibility of specifying both the size and the number of sub-
buffers that are allocated in the kernel. 

2.4.2 Initial architecture of the LTTng framework 

Figure 5 provides an overview of some selected components of the current LTTng architecture. 
Modifications and new developments were added to this architecture in order to achieve 
described feasibility studies. The reader will find a more detailed description of LTTng in Annex 
C. These components are introduced below.  

ltt-armall
(Scripts)

LTTng

lttctl lttd lttv

FS
proc netlink relay

exec

 

Figure 5. Main components of LTTng – current version. 
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Components ltt-armall and ltt-disarmall (not shown) are sets of scripts that are used to activate or 
deactivate probes used by LTTng. The mapping of communication channels with probes15 is 
achieved by these scripts as well.  

The component lttctl is a command line application that creates, starts and stops the generation of 
execution traces through a netlink interface. It also starts the lttd daemon, which transfers 
execution traces (on hard disk) that were received from the kernel space through “relay”16 
(RelayFS, 2008; Zanussi et al., 2003).  

Execution traces that are saved on disk can be viewed with the LTTV component.  

2.4.3 Task 1 – Refactoring of selected LTTng components 

Preliminary investigations of components shown in Figure 5 have shown that there would be 
benefits associated with the refactoring of lttd.  

The work that was done in this task has allowed the extraction of the lttd  “execution trace 
reading functionality” and to refactor it as a reusable library. The main goal was to make 
execution traces directly available both locally and remotely for online trace analysis.  

The function prototypes that are available in this new library are listed in Figure 6.  

struct lttio_handle *lttio_ open (const char *channel_name, struct lttio_ops *ops, i nt 
flags); 

int lttio_start (struct lttio_handle *h, int num_threads); 

int lttio_wait (struct lttio_handle *h); 

int lttio_hang_up (struct lttio_handle *h); 

int lttio_close (struct lttio_handle *h);  

Figure 6. The new library API for the acquisition of execution traces. 

Following is a brief description of these functions. 

• lttio_open() : this function opens an execution trace that is located in the directory, 
which is specified by the channel_name  argument. It returns a handle that identifies the 
liblttio  session and allows the management of acquisitions. The lttio_ops  data 
structure is described later in this section. 

• lttio_start() : this function starts the worker threads that are used for the capture of 
execution traces and returns immediately. The number of started threads is determined by 
the parameter num_threads . 

                                                   
15 The list of active probes that were used in LTTng throughout this work can be found in Annex C.4. 
16 The old appellation of “relay” was “RelayFS”. 
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• lttio_wait() : the capture of a trace ends when it has reached its end or when the capture 
is forced to stop (with the function lttio_hang_up() ). This function suspends the 
execution of the calling thread until all the worker threads have ended their execution. 

• lttio_hang_up() : this function sends a hang up request to the worker threads. It does not 
wait for the threads to stop, it returns immediately. 

• lttio_close() : this function closes all tracefiles and frees all resources that were 
allocated by the acquisition session. 

As shown in the API, the data structure lttio_ops  must be transmitted as a parameter in the 
function lttio_open() (Figure 7). This structure contains pointers to a number of callback 
functions that are called by the worker threads throughout the trace acquisition process.  

struct lttio_ops  { 

    int  (*open) (struct lttio_tracefile *tf); 

    int  (*write) (struct lttio_tracefile *tf, void  *data, unsigned int size); 

    int  (*subbuf_begin) (struct lttio_tracefile *t f); 

    int  (*subbuf_end) (struct lttio_tracefile *tf,  enum lttio_subbuf_status status); 

    void (*close) (struct lttio_tracefile *tf); 

};  

Figure 7. Data structure used in the library for the capture of execution traces. 

The function open()  is called when a new tracefile is opened. Then, for each acquired sub-buffer 
that contains trace events (elements), the function subbuf_begin()  is called, followed by many 
calls to the function write() . Finally, the function subbuf_end()  is called17.  

The acquired data in the sub-buffers are transferred to the user by calling the function write() . 
It is important to note that the data may be transferred in the form of many data segments.   

The function subbuf_end()  marks the end of a sub-buffer. This function returns an int  
representing the status of the sub-buffer. The value LIBLTTIO_SUBBUF_OK indicates that the 
sub-buffer was not corrupted during the trace acquisition, and the value 
LIBLTTIO_SUBBUF_CORRUPTED indicates that is was corrupted.  

The lttio_tracefile  data structure that is passed as a parameter in these callback functions is 
listed in Figure 8. The variable path  contains the relative path of the channel (e.g. 
“control/facilities_0 ”), subbuf_size  represents the size of the current sub-buffer, 
subbuf_bytes  indicates the size of the data contained in the current sub-buffer in bytes, and 

                                                   
17 Note that new tracefiles may appear in the middle of a tracing session when a CPU is hot-plugged on an 
SMP system. 



 

DRDC Valcartier TR 2008-300 15 
 

 
 
 

user_data  is a pointer that can be used by the user to attach its own data to the tracefile 
structure. 

struct lttio_tracefil e { 

    char *path; 

    unsigned int subbuf_size; 

    unsigned int subbuf_bytes; 

    void *user_data; 

};  

Figure 8. Data structure used in the library for the acquisition of execution traces. 

2.4.4 Task 2 – Transfer of execution traces over th e network 

As mentioned, the client-server model was chosen. Clients are expected to send execution traces 
to one server that manages and possibly analyzes them. This model offers the advantage of 
allowing the remote management and analysis of many simultaneous traces originating from 
distributed SMP or multi-core systems. The server reassembles received traces and achieves 
appropriate analysis (or delegates this analysis to other supporting computational nodes).  

Three different communication solutions were initially considered for the transfer of execution 
traces over the network. They are listed below. 

1. communication through serial connections; 

2. communication through common Ethernet and network devices using UDP/IP; and 

3. communication through common Ethernet and network devices using TCP/IP.  

The third solution was chosen for many reasons. Some of the advantages it offers are: 1) it offers 
mechanisms for flow control and the management of transmission errors; 2) it offers a certain 
level of reliability; 3) it may potentially allow the transmission of execution traces over networks 
having large geographical extents; and 4) depending on the hardware and network devices used, it 
offers sufficient bandwidth for the transfer of high resolution (huge) execution traces.  

Following is a description of the solution that was put forward for communication between 
computational nodes. 

Communication between computational nodes: 

A TCP connection is established for each tracefile. Events pertaining to tracefile channels can 
then be concurrently transmitted.  
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For each tracefile, the client transfers one header at the beginning of the connexion (Table 1)18. 
Then, sub-buffers of the tracefile are transmitted one after the other until the end of the execution 
trace is reached. The closing of the TCP connection indicates the end of the execution trace. 

The size of each transmitted sub-buffer can be prescribed by the parameter subbuf_bytes . This 
parameter represents an advantage when sub-buffers are not completely filled with the data. 
Indeed, the value of the parameter subbuf_bytes  can be used to transmit only sub-buffers’ used 
bytes; unused bytes are not transmitted. It will be shown later in this chapter (Section 2.4.5) that 
this parameter is used by mechanisms for reducing latency transfer. 

It was mentioned in Section 2.4.1 that transmitted data can be corrupted if new data is written by 
the tracer in the sub-buffer while it is transferred. Sub-buffers that were corrupted can be detected 
by the examination of a status parameter that is transmitted at the end of each transfer.  

Another solution for detecting such corrupted sub-buffers would be to make a copy of the whole 
sub-buffer just before the transmission begins, and then transfer this copy instead of the original 
data. The first solution was chosen as a first simplification in this work. Further studies will 
identify additional mechanisms. 

Table 1. Transferred tracefile header information. 

Identifier Type Description 

header_size uint32_t Size of the header in bytes. The size does not 
include the field header_size . 

magic_number uint16_t Protocol identification number (this is a constant, 
the value must be equal to: 0x177d ). 

proto_version uint16_t Protocol version (currently the value is: 0x0001 ). 

subbuf_size uint32_t Size for the sub-buffers of this tracefile (in 
bytes). 

tracefile_path char[] Null-reminated string containing the relative 
tracefile path. 

 

 

 

                                                   
18 Integers are transferred using the big-endian convention. 
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Table 2. Transferred sub-buffer information. 

Identifier Type Description 

subbuf_bytes uint32_t The number of bytes transmitted in 
subbuf_data . This value must be lower or 
equal to subbuf_size .  

subbuf_data char[] Raw data contained in the sub-buffer. 

status uint8_t The status of the transmitted sub-buffer. Possible 
values are: 

-SUBBUF_OK (0x00 ): 

-SUBBUF_CORRUPTED (0x01 ):  

Implementation: 

This protocol was implemented directly in the lttd component as well as in a new lttnetd daemon 
(Figure 9 shows the modified version of LTTng). Referring to the client-server model used, the 
lttnetd daemon represents the server and lttd represents the client (Figure 2). 

Ltt-armall

LTTng

lttrctl
lttnetd

lttv

FS

proc
relay

exec

procliblttio

ssh

sshd

ssh

lttd

liblttio

lttctl

netlink

TCP

exec

 

Figure 9. Main components of LTTng – the Modified version 
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The reception of execution traces by the server involves the use of the new API that is described 
in Section 2.4.3. The lttctl component was modified in order to expose the network transfer 
functionality (that is offered by lttd).  

Our implementation manages multiple network connections concurrently (multiple concurrent 
distributed clients) with the help of one thread that loops with calls to the pool(2)  function. 

Observations: 

It was shown in this task that the transfer of execution traces from one or many computational 
nodes to another one according to the client-server model is feasible with low technological risks. 
The use of TCP/IP protocol presents many advantages. It is a flexible, reliable and scalable 
mechanism that checks for transfer errors and manages flow control. TCP/IP flow may also be 
tunneled in an SSH tunnel (Figure 9). It can be used on many types of network links (wired, 
wireless, etc.) and many network topologies (LAN, MAN, WAN, etc.).  

A number of improvements could be made to the system. First, currently LTTng has five channels 
(Section 2.4.1). If one multiplies this number by the number of apparent CPUs in the system and 
then multiplies the result by the number of distributed SMP or multi-core systems, it becomes 
apparent that connections that are concurrently sending execution traces toward the same server 
may cause network transmission performance problems. One solution envisioned would be to 
replace the traditional pool(2)  function by a more efficient event notification mechanism. An 
example of such an improvement could be to use epoll(7)  under Linux 2.6 or kqueue(2)  
under FreeBSD. Another solution would be to modify the communication protocol in order to 
multiplex into a single connexion all the tracefiles originating from a computational node. 

Second, our implementation of LTTng is not multi-threaded; it does not make use of the 
parallelism capability that is offered on SMP or multi-core systems. Based upon CPU workload 
attribution, improvements in this direction may yield different strategies for monitoring, tracing 
and analyzing systems.  

Finally, it should be mentioned that embedded systems may not have the necessary network 
infrastructure to support the proposed trace transfer protocol mechanism. In this case, our solution 
would need to be revised for this kind of systems. 

2.4.5 Task 3 – Problem of latency transfer  

As mentioned earlier, LTTng maintains buffers for each tracefile of every execution trace. These 
buffers are not flushed until they get full. This may present a problem in the context of online 
trace analysis; if the rate of event generation is not high enough, the data will stay in buffers for 
long periods of time, causing lags in trace analysis. These buffers must thus be regularly flushed.  

The Flushing of data buffers: 

The LTTng kernel component was modified in order to allow the flushing of data buffers on a 
regular basis. A timer was installed on each tracefile in order to trigger periodic flushing of the 
buffer.  This timer is launched when the trace is started, and it is reset to zero when the buffer is 
flushed (either if the timer expires or the buffer gets full). The value of the timer can be specified 
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when the execution trace is created (by a netlink  command). Specifying a negative value 
deactivates the timer. 

The Reduction of execution trace volume: 

Sub-buffers are stored entirely into the tracefile and they often include unused bytes at the end of 
the buffer. The premature flushing of the sub-buffer (triggered by ending timers) will cause the 
storage of partially filled sub-buffers and will cause significant memory waste. Ideally, sub-
buffers should be of variable size so that only the bytes used would be stored. However, we are 
limited by the current version of LTTV, which only supports fixed size sub-buffers.  

Modifications were made in order to optimize resource usage. First, an ioctl command was 
added to query (from user space) the number of used bytes in reserved sub-buffers. Second, the 
implementation of the trace transfer protocol was modified in order to transmit only the used 
bytes of the sub-buffers. Finally, the storage routine was changed to leave unallocated blocks 
inside the files, where there are irrelevant data regions. Unallocated blocks enable us to reduce 
storage consumption while keeping sub-buffers to a fixed size as required by LTTV. 

Observations: 

One timer was implemented per buffer. If we consider the possibility of having multiple 
concurrent CPUs, the number of timers may grow rapidly, and have negative performance 
impacts. A solution to this potential problem would be to use only one timer per CPU, and flush 
all channels at the same time. 

Despite the fact that these optimizations contribute significantly to a reduction in wasted network 
traffic and storage space caused by premature buffer flushing, the mechanisms used are not 
perfect and should be improved. For instance, the unallocated blocks are not considered in the 
total file size and may confuse the user. Also, the optimization can be lost if tracefiles are moved 
to another system. An ideal solution would be to add variable sub-buffer size support into LTTV. 

2.4.6 Task 4 – Remote control 

This task aimed to investigate the possibility of achieving remote secure control of LTTng. SSH 
and its authentication mechanism were chosen for security and reliability reasons (Figure 9).  

The prototyped solution implements the network transfer of commands for controlling LTTng. An 
API is used to encapsulate the interfacing with SSH and their sending over the network.  

Observations: 

Results of this prototyping effort show that the use of SSH significantly eases the implementation 
of the needed capability. There is no need to create a new control protocol, since this mechanism 
already offers authentication, encrypting and tunneling capabilities.  

The effort and technological risks associated with this task are relatively low. One limitation of 
this solution is related to the use of SSH in embedded systems, where resources are restricted and 
networking support may be absent. 
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2.4.7 Task 5 – Decoding of received execution trace s 

Raw execution traces must be decoded and merged before they can be remotely analyzed on the 
server. The current implementation of LTTV cannot be used to achieve online remote analysis 
because this software only deals with complete local execution traces, which are already recorded 
on hard disks.  

The feasibility of achieving remote online analysis of execution traces was shown. The modified 
version of LTTV (Figure 9) reads and decodes many traces online, and it works with many 
concurrent tracefiles. The development of the used prototype was not developed to its final stage 
because refactorization of LTTV is planned by the official programming team (LTTng, 2008). 

Observations: 

A mechanism for the synchronization of many concurrent tracefiles was implemented. One 
limitation of this mechanism is that it concurrently works exclusively in batch mode (for the 
moment). Technological risks associated with the management of received execution traces are 
relatively low.  

Possible improvements to LTTV could be: 1) direct reading of execution traces from the network, 
without having to save the trace on the hard disk, and 2) continuous refreshing of the GUI 
showing received traces. These improvements should be done after the LTTV refactorization will 
be achieved by the official programming team. 

The used prototype raises the problem of trace synchronization on the server side. Each trace 
element has a time stamp that was given by the clock of the computational node from which it 
originates. As the clocks of computational nodes are not synchronized, and they drift differently, 
the reassembling of trace elements that originate from many computational nodes will present a 
synchronization problem. This problem should be addressed as well. 
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3 R&D Thread 2 – Toward trace abstraction and 
analysis 

The remote analysis of received execution traces on computational node 2 (Figure 3) was 
deliberately omitted in R&D Thread 1. R&D Thread 2 builds on the results obtained in R&D 
Thread 1 and evaluates the feasibility of remote trace abstraction and analysis. It aims to provide 
officers on duty with updated and accurate knowledge of their systems’ health. Both R&D threads 
(when considered together as a whole) aim to evaluate the possibility of building feedback-
directed diagnostic systems.  

The main focus of this chapter is the study of theoretical and technical concepts and mechanisms 
allowing trace abstraction and analysis. The tracing software used in this chapter is the same as 
the one used in R&D Thread 1 (LTTng).  

3.1 Initial premises and workload for this R&D thre ad 

An execution trace is defined in this document as a chronological suite of records resulting from 
observations that were made on a running system at different instants “tn”, during a specific 
period “delta-t”. Trace events are captured when “LTTng probes” located in the software are 
encountered or executed. Depending on the number of active probes in the system, it is clear that 
execution traces may quickly become very huge, making element-by-element analysis nearly 
impossible to achieve.  

The feasibility of trace abstraction and analysis is studied in R&D Thread 2. The strategy 
considered consists in: 1) the analysis of the inherent semantic of LTTng trace elements, 2) the 
identification of interrelationships between them, and 3) the building/use of execution models to 
deduce higher-level behaviour abstractions. The main premises that were considered in this work 
are: 

1) The analysis of LTTng trace elements will aid in abstracting them into more 
significant (or higher level) behaviour abstractions.  

2) Trace abstraction will in turn aid in improving many aspects of trace analysis and 
comparison.  

3) Trace abstraction and analysis can be done on a continuous basis (during 
operations), thereby providing a continuous update of officers’ knowledge regarding 
the health of their systems.  

The workload of this R&D thread was structured in four different but complementary and 
sequential tasks. The goals of each task are briefly described below. 

Task 1 – Overview of current related works: 
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Trace abstraction and analysis are relatively new domains in computer science. The main goal of 
this task consists in conducting a review of the scientific literature and identifying potential 
proven solutions that could aid in solving described problems. 

Task 2 –Analysis of execution traces: 

The second task in R&D Thread 2 consists in analyzing execution traces that were generated by 
LTTng. The goal consists in understanding their content, inherent logic and structure and then 
deducing hints for the feasibility of trace abstraction and analysis. 

Task 3 –Theoretical considerations for trace abstraction: 

Having understood LTTng execution traces, the next task consists in studying the feasibility of 
abstracting them into higher level behaviours for subsequent analysis.  

Task 4 – Program analysis toolkit (PAT) for automating trace analysis:  

This task is dedicated to the study of technical and practical aspects of the problem. It aims to 
verify the feasibility of automatic trace analysis during operations. This task will involve the 
development of prototypes that implement studied theoretical concepts and mechanisms.  

3.2 Experiment 

This section describes the experiment that was carried out to produce the studied execution trace. 
Figure 10 illustrates the system used, and the following lines provide a brief description of the 
experimentation. 

Linux was used as the operating system. In this context, the CPU executes processes in one of the 
two execution modes: user mode in the user space or supervisor mode in the kernel space19. 
Interactions of user space applications with the hardware are usually achieved through calls to the 
glibc library, which make calls to appropriate system calls. System calls then trigger the 
execution of appropriate kernel modules in the kernel space. Returning notifications from the 
hardware to the user space application is usually achieved through “interruptions ” (not 
illustrated in Figure 10 for clarity purposes).  

In this experiment, the running application (user space; client side) is micro_httpd20 (Micro_httpd, 
2008). This application is a tiny Unix-based HTTP server (7 Kb). It runs from messages arriving 
from the daemon xinetd and it implements all the basic features of an HTTP server including 
security, filename snooping, the common MIME types, trailing-slash redirection, index.html, and 
directory listings.  

Briefly, xinetd manages Internet services on Linux systems by listening on specified ports (80 in 
our case), and redirects requests to the appropriate server (micro_httpd). The server micro_httpd 
receives requests from xinetd and then offers the service for this request (sending back a web 
page for instance).  
                                                   
19 More technical details on Linux and its kernel can be found in Corbet et al. (2005) and Fusco (2007). 
20 The source code of this application is listed in Annex D. 
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In this experiment, LTTng produces execution traces by capturing events that are triggered at the 
user/kernel interface (system calls).  

User space

Kernel space

Hardware

System calls

micro_httpd

glibc

Kernel 
module

Kernel 
module

Kernel 
module

LTTng

Traces

xinetd

LTTng

 

Figure 10. Cascade effects of the execution of the micro_httpd application. 

All figures in this chapter show execution traces that are actually portions of one big execution 
trace, which is listed in Annex E. This execution trace corresponds to a full execution of the 
micro_httpd application. The reader may compare directly this execution trace with the source 
code of micro_httpd (Annex D.1). This will provide a complete picture of events that are 
happening at the kernel’s interface, notably at the moment micro_httpd is started and stopped.  

3.3 Exploration and analysis – Results and observat ions 

3.3.1 Task 1 – Overview of current related works 

The field of trace analysis is still in its infancy. To our knowledge, no trace analysis technique or 
technology can be used generically in different contexts. Currently, each technique addresses one 
or a few specific problems and is hard to adapt for solving different problems. However, there are 
a number of similar fields from which it is possible to draw inspiration for the design of trace 
analysis solutions. Of these fields, intrusion detection (ID) offers particular promise. 

This section provides a quick overview of the current work that could make significant 
contributions to trace abstraction and analysis.  

3.3.1.1 Trace analysis techniques  

Four categories of trace analysis can be identified. They are described below. 



 
 

24 DRDC Valcartier TR 2008-300 
 
 
 
 

Trace visualization: 

Trace visualization aims to make it easier to understand trace elements. It makes use of different 
graphic representations and related facilities (such as zooming) to show precisely selected parts of 
the execution trace. Two important references are Hamou-Lhadj (2005) and Lianjiang (2005).  

Two examples of a visualization tool that can be used to identify similarities (or differences) 
between execution traces are: Cornelissen and Moonen (2007) and Fischer et al. (2005). The first 
paper aims to identify recurrent patterns in execution traces, while the second aims to follow the 
evolution (execution) of a program by the visual comparison of traces.  

Pattern detection in execution traces: 

Pattern detection in execution traces is somewhat similar to intrusion detection (ID), but it 
addresses a broader spectrum21 than ID. Pattern detection can be used to verify program integrity 
(detecting bugs in a program) and to identify tasks that place heavy demands on the CPU.  

Some selected papers on pattern detection in execution traces are: Ezust and Bochmann (1995): 
verifying that traces conform to specifications; Lau et al. (2003): learning program behaviours 
without access to the source code; Langevine (2002): constraint programs trace analysis; Chen et 
al. (2003): verifying system design through analysis of traces using constraint language (logic of 
constraint); and Paxton (1997): analyzing TCP protocol implementation through the analysis of 
exchanged packets. 

Statistics on trace elements: 

A number of measurements are made on the elements of a trace in order to produce statistical 
information regarding the execution of the program. Some examples of these statistics are: “the 
most often observed behaviour”, “the proportion in which a method or system call is called”, etc.  

Chapter 3 of Hamou-Lhadj (2005) presents numerous metrics that can be used to study execution 
traces. 

Trace compression: 

Compression aims to reduce the size of execution traces by grouping together selected elements 
or parts. For instance, a method is proposed by Hamou-Lhadj (2005) to group many similar trace 
elements that originate from the repetitive execution of the same function within the program. 

3.3.1.2 Intrusion detection  

The intrusion detection field has yielded a number of concepts and mechanisms for analysis that 
must be considered in trace analysis22. In this context, the term intrusion means “an attempt to get 
confidential information to maliciously exploit system resources”.  

                                                   
21 As shown later in this section, ID mainly addresses issues of security and related behaviours. 
22 Couture, Mathieu (2005) provides a good description of Intrusion Detection (ID) systems, languages and 
analysis. A number of important references in this field are provided as well. 
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ID aims to detect: 1) if information confidentiality has been compromised and 2) malicious uses 
of system resources. In order to address the ID problem, three approaches were identified in the 
literature: behaviour, scenario and mix approaches. They are introduced below. 

Behaviour approach: 

The behaviour approach has two distinct phases. In the first phase, a model of the user’s 
behaviour is built. In the second phase, an evaluation of the difference between this model and 
observation of other users’ behaviours is made in order to detect anomalies that could originate 
from malicious activities on the system.  

The building of the model is achieved through a learning process. No matter what techniques are 
used, the same problem must be addressed: when can we say that learning can be stopped? One 
solution that was considered in the literature involves learning on a continuous basis.  

The main advantages of this approach are that it does not prescribe a predefined list of malicious 
behaviours, and this allows it to identify previously unknown malicious activities. This approach 
is often used to verify if users’ behaviours are acceptable. A significant disadvantage of this 
approach is that it may trigger false positives. 

Scenario approach: 

Here, observations are compared with a pre-defined list of unwanted behaviours. The goal is to 
detect well known specific unwanted behaviours23.  

The main advantage of this approach is that it will not trigger false positives. A significant 
disadvantage is that not all unwanted behaviours are known in advance, and some important 
unwanted behaviours may be inadvertently missed.  

Mix approach: 

This approach involves the concurrent use of both behaviour and scenario approaches. The goal is 
to exploit advantages and minimize disadvantages. For instance, CISCO IDS (Cisco_IDS, 2008) 
makes use of this approach.  

Table 3 lists the advantages and disadvantages of the behaviour and scenario approaches. 

Table 3. Advantages and disadvantages of described ID approaches. 

 Behaviour approach Scenario approach 

Advantages Possible detection of unkown 
unwanted behaviours 

No false positives 

Disadvantages False positives False negatives 

                                                   
23 Unlike the behaviour approach. 
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False negatives 

Relatively long learning 
process 

Limited to well known 
scenarios 

3.3.1.3 Kleene algebra  

The Kleene algebra24 (Lajeunesse-Robert, 2008; Dexter, 1990; Dexter, 1994; Dexter, 2004) is a 
mathematical tool used to represent software programs in abstract form. Actually, it represents a 
formalism containing a set of rules that capture the semantic of program operations, and then 
permits abstraction manipulation and significantly facilitates logical reasoning. Some types of 
software operations (instructions) that can be represented by this formalism are sequences of 
actions, choice between actions, and iteration of actions. The application of a set of rules to a 
software program will allow it to be progressively transformed into the form of a Kleene 
algebraic expression, which will serve as the basis for analysis, comparison, verification, etc. This 
algebraic expression formally represents an abstraction of the software program.  

A number of studies have shown that by using these rules it is possible 1) to formally prove that 
two programs are equivalent (Dexter, 1997a and 1997b); 2) to certify that code optimization made 
by a compiler is correct (Dexter and Patron, 2000); 3) to verify that a program has expected 
behaviours (Bolduc, 2006; Dexter, 2003); 4) to prove the consistency of a communication 
protocol (Paxton, 1997); 5) to verify compiled java code (Kot and Kozen, 2005); and 6) to 
achieve model verification (Ktari et al., 2008). However, it must be said here that reasoning with 
this formalism may become very difficult to achieve in certain circumstances. In other words, 
despite the fact that it may be easy to transform a software program into an algebraic expression, 
it may be very hard (even impossible) to find how to prove the equivalence of two programs 
(Cohen et al., 1996; Hardin and Kozen, 2002; Hardin and Kozen, 2003; Hardin, 2005; Dexter and 
Patron, 2000). 

Another significant advantage of the Kleene formalism is that it can take into account different 
realities or contexts. Examples of R&D efforts to adapt the Kleene algebra to software programs 
involving complex operations other than the ones listed earlier (such as C “pointers” and others) 
can be found in Kamal and Kozen (2007), Allegra and Kozen (2001), Adam and Kozen (2002), 
Desharnais et al. (2004), Desharnais et al. (2006), Ehm (2004), Jipsen (2004), Dexter (1990), 
Dexter (1997a and 1997b), Dexter (1998), Dexter (2004a and 2004b), Leiß (2006) and Mathieu 
(2006).  

It must be borne in mind that, despite the lack of any evidence tending to limit the types of reality 
that can be expressed by this formalism, adapting it may require considerable effort.  

                                                   
24 Studies such as Neumann (2000) and Neumann (2004) (and many others such as Schneider (1999) and 
Jackson et al. (2007)) recommend the consideration of formal methods for demonstrating consistency of 
specification with requirements, and consistency of code with specification; formal verification and model 
checking; analysis tools for detecting characteristic security flaws, buffer overflows, etc. 
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3.3.2 Task 2 – Analysis of execution traces 

The semantic of trace elements, their inherent logic and interrelationships between them are 
studied in greater depth in this section.  

Content of LTTng execution traces: 

Figure 11 shows a portion of the execution trace that was generated by LTTng while executing 
micro_httpd (lines 35-39 of Annex E). Each line corresponds to the execution of a LTTng probe 
(herein called “event”), which are all located at the interface user/kernel space (system calls). The 
meaning of selected fields (bolded in line 35) is the following:  

• kernel_arch_syscall_entry : LTTng marker ID (the probe identification). 

• 5277.041364003 : the time when the event was recorded. 

• 4566 : PID, or process identification. 

• 1 (just before “0x0, SYSCALL ”): PPID, or parent process identification. 

• SYSCALL: it provides information regarding the mode of the execution (could also be 
USER_MODE like in line 39) as well as kernel’s activities.  

• {syscall_id = 120 [sys_clone+0x0/0x40], ip = 0xb804 6424} : attributes 
associated with the event. For instance, in this case syscall_id = 120 corresponds to “clone” 
or create a child process. 

Actually, this portion of the execution trace shows that the daemon xinetd receives a “GET 
/index.html” request. First, it carries out a fork  (line 36) to create a new child process (which is 
the micro_httpd server). Second, it wakes up and schedules the new process (lines 37, 38) and 
then passes the control to the newly created process (line 39 is the end of the process creation) for 
the request to be serviced (not shown in this figure). 

In this example, the xinetd’s process number is 4566, xinetd’s parent process is the well known 
UNIX/Linux init process (PID = 1), the newly created process has a PID equal to 4979 and 
process 4979’s parent process is xinetd (PID = 4566).  

This newly created process is not a thread; it does not share the resources of its parents. It is 
rather a regular process having its own resources. Lines 133-137, and more particularly line 136 
of Figure 12, correspond to the launching of this process (fs_exec ). 

 

# xinetd carries on a fork() , the CPU is available for the process that was jus t created 

35- kernel_arch_syscall_entry : 5277.041364003  (/tmp/trace-httpd/cpu_0), 4566 , 4566, 
xinetd, , 1, 0x0, SYSCALL { syscall_id = 120 [sys_clone+0x0/0x40], ip = 0xb8046 424  } 

36- kernel_process_fork: 5277.041457157 (/tmp/trace -httpd/control/processes_0), 4566, 
4566, xinetd, , 1, 0x0, SYSCALL { parent_pid = 4566 , child_pid = 4979, child_tgid = 4979 } 

37- kernel_sched_wakeup_new_task: 5277.041459577 (/ tmp/trace-httpd/cpu_0), 4566, 4566, 
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xinetd, , 1, 0x0, SYSCALL { pid = 4979, state = 0 }  

38- kernel_sched_schedule: 5277.041466725 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 
4566, 0x0, SYSCALL { prev_pid = 4566, next_pid = 49 79, prev_state = 0 } 

39- kernel_arch_syscall_exit: 5277.041486672 (/tmp/ trace-httpd/cpu_0), 4979, 4979, xinetd, 
, 4566, 0x0, USER_MODE { ret = 0 } 

Figure 11. Execution trace – Portion A. 

 

# Launch “micro_httpd” 

131- kernel_arch_syscall_entry: 5277.045111538 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
xinetd, , 4566, 0x0, SYSCALL { syscall_id = 66 [sys _setsid+0x0/0xd0], ip = 0xb8046424 } 

132- kernel_arch_syscall_exit: 5277.045115067 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
xinetd, , 4566, 0x0, USER_MODE { ret = 4979 } 

133- kernel_arch_syscall_entry: 5277.045125131 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
xinetd, , 4566, 0x0, SYSCALL { syscall_id = 11 [sys _execve+0x0/0x80], ip = 0xb8046424 } 

134- fs_close: 5277.045319969 (/tmp/trace-httpd/cpu _0), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 5 } 

135- fs_close: 5277.045394854 (/tmp/trace-httpd/cpu _0), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 3 } 

136- fs_exec: 5277.045421309 (/tmp/trace-httpd/control/p rocesses_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  filename = 
"/usr/local/sbin/micro_httpd" }  

137- kernel_arch_syscall_exit: 5277.045424721 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 0 }  

Figure 12. Execution trace – Portion B. 

Possible de-multiplexing of execution traces: 

As shown in this example, the LTTng framework provides information regarding current and 
newly created processes that are running in the system25. Knowing PIDs and PPIDs, it is 
relatively easy to segregate (or de-multiplex) the events of a raw trace based upon these 
identification numbers. The result of de-multiplexing is a number of sub-traces, each reflecting 
activities related to one specific process running in the system.  

Interrelationships between processes and open files can be identified by searching execution 
traces for information such as: 

                                                   
25 Similar information on running processes can be obtained with the use of other Linux commands and 
tools such as strace, ps, top, /proc/ GProf, etc.  
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• LTTng marker ID “list_file_descriptor ”. Taking for instance line number 12 (Figure 
13), one can see that process 4974 is performing an operation on a file (file descriptor fd = 
3). Line number 12 also shows that the file is a pipe26.  

• Operations on these files. Lines 23, 55, 62, 90, 97 and 101 (Figure 13) are good examples 
(fs_select, fs_close, fs_open, fs_read ). Process PID’s are included in each of 
these lines. 

9- list_file_descriptor: 5270.945015874 (/tmp/trace -httpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "/dev/null", p id = 4566, fd = 0 } 

10- list_file_descriptor: 5270.945017342 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "/dev/null", p id = 4566, fd = 1 } 

11- list_file_descriptor: 5270.945018858 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "/dev/null", p id = 4566, fd = 2 } 

12- list_file_descriptor: 5270.945021038 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "pipe:[9851]",  pid = 4566, fd = 3 }  

13- list_file_descriptor: 5270.945022718 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "pipe:[9851]",  pid = 4566, fd = 4 } 

14- list_file_descriptor: 5270.945024729 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "socket:[9860] ", pid = 4566, fd = 5 } 

15- list_file_descriptor: 5270.945026921 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, , 
4973, 0x0, MODE_UNKNOWN { filename = "socket:[9854] ", pid = 4566, fd = 7 } 

23- fs_select: 5277.041308682 (/tmp/trace-httpd/cpu _0), 4566, 4566, xinetd, , 1, 0x0, 
SYSCALL { fd = 3 , timeout = -1 } 

55- fs_close: 5277.041884668 (/tmp/trace-httpd/cpu_ 0), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 3  } 

62- fs_close: 5277.041891919 (/tmp/trace-httpd/cpu_ 0), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 0  } 

90- fs_open: 5277.044684136 (/tmp/trace-httpd/cpu_0 ), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 0 , filename = "/etc/hosts.allow" } 

97- fs_read: 5277.044759137 (/tmp/trace-httpd/cpu_0 ), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 0 , count = 4096 } 

101- fs_close: 5277.044946441 (/tmp/trace-httpd/cpu _0), 4979, 4979, xinetd, , 4566, 0x0, 
SYSCALL { fd = 0  } 

Figure 13. Execution trace – Portion C. 

The utilization of system resources by executing programs will trigger typical sequences of events 
at the user/kernel interface (system calls). These events will be captured by the LTTng framework 
and saved in an execution trace. Specific sequences of trace elements could be recognized as 
behaviours related to resource utilization. The suite of lines 90, 97 and 101 in Figure 13 is an 

                                                   
26 Recall that for Linux (and UNIX-like) operating systems everything (including pipes) is considered as a 
file. 
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obvious example showing such a sequence of events for the utilization of the file hosts.allow  
by one process.  

The identification of such sequences in execution traces may be problematic if accesses to the file 
are achieved by other concurrent processes. For instance, this situation happens when a file that 
was created by a process is accessed by one of its child processes27. The inclusion of sub-tasks 
within tasks may also make it harder to identify sequences in execution traces. Following are 
some conditions that make it easier to identify interrelationships between executions of 
concurrent processes. 

1. Keeping an up-to-date table showing correspondences between files and processes. Knowing 
the parent-child relationships between active processes, it is possible to deduce to which 
parent the process that accessed the file belongs to. 

2. For each system call that is called by the user’s application, two LTTng markers are recorded 
in the trace: “kernel_arch_syscall_entry ” and “kernel_arch_syscall_exit ”. One 
should verify that trace elements lying in between these markers are exclusively related to the 
called system call.  

3. Levels of these two LTTng markers should be taken into account as well. Figure 14 shows an 
example of inclusion having two hierarchical levels; level one (lines 271 to 281) contains 
level 2 (lines 274 to 279).  

The following important observations can be made. 

• It is possible to de-multiplex raw execution traces in sub-traces based upon process 
identification numbers. 

• Considering the information available in execution traces, it is relatively easy to establish 
interrelationships between processes, and keep up-to-date the whole hierarchical structure of 
processes. 

• It is possible to establish dependencies between processes and files, and identify operations 
that were made on these files. 

• It is possible to identify the files that are shared among processes. 

• These analyses may possibly be done automatically.  

271- kernel_arch_syscall_entry: 5277.047178396 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 4 [sys_write+0x0/0xa0], 
ip = 0xb8046424 } 

272- fs_write: 5277.047179914 (/tmp/trace-httpd/cpu _0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  fd = 1, count = 311 } 

273- net_dev_xmit: 5277.047200820 (/tmp/trace-httpd /cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  skb = 0xd96c9cb4, protocol = 8 } 

274- kernel_softirq_entry: 5277.047206305 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, 

                                                   
27 For Linux, a parent process may create child processes. Under certain conditions (when the child takes 
the form of a thread), both processes (parent and child) may share the parent’s resource.  
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/usr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ {  softirq_id = 3 
[net_rx_action+0x0/0x240] } 

275- net_dev_receive: 5277.047209489 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ {  skb = 0xd96c9cb4, protocol = 8 } 

276- net_dev_xmit: 5277.047224538 (/tmp/trace-httpd /cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ {  skb = 0xd96ade00, protocol = 8 } 

277- kernel_sched_try_wakeup: 5277.047228132 (/tmp/ trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ {  pid = 3689, state = 1 } 

278- net_dev_receive: 5277.047235954 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ {  skb = 0xd96ade00, protocol = 8 } 

279- kernel_softirq_exit: 5277.047238183 (/tmp/trac e-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  softirq_id = 3 
[net_rx_action+0x0/0x240] } 

280- kernel_timer_set: 5277.047241141 (/tmp/trace-h ttpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  expires = 1486724, function = 
0xc03336b0, data = 3745083136 } 

281- kernel_arch_syscall_exit: 5277.047252314 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 311 }  

Figure 14. Execution trace – Portion D. 

Running processes – Trace analysis: 

Once the execution trace has been de-multiplexed into sub-traces (each of them corresponding to 
the execution of a specific process), it is easier to analyze process activities or behaviours. A first 
criterion that can be used to discriminate trace elements of sub-traces is the mode under which the 
processes are executed. It is possible to identify the mode by searching execution traces for 
markers starting with the labels “_entry ” and “_exit ”. The mode corresponds to the type of the 
marker “_entry ”.  

As shown in the last example (Figure 14), the levels of “_entry ” and “_exit ” markers are 
easily identifiable. The first level of abstraction (“send an ACK”) corresponds to lines 271-281 
and the second level (“deal with interruptions”) corresponds to lines 274-279. It should be noted 
that problematic situations could happen if “_entry ” markers are not closed by their 
corresponding “_exit ” markers.  

Many levels of abstraction can be identified if we consider: 1) the levels of these two markers; 
and 2) if deeper events within the kernel are considered. The activity of the kernel can also be 
deduced by examining the marker specifying the mode of the kernel. For instance, line 274 in 
Figure 14 tells that the kernel is dealing with interruptions (kernel_softirq_ ). Possible values 
of this field should be identified and described as well in future studies. 

Trace abstraction – Preliminary technical considerations: 

It was shown in this section that it is possible to de-multiplex execution traces into sub-traces, 
each corresponding to a running process. It is also possible to group trace elements of sub-traces 
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according to their inherent semantic. We will now study how execution traces can be abstracted 
into higher-level behaviours.  

The process that is considered for trace abstraction is based on the building and use of an 
execution model that represents the user’s software application. This model reflects all the effects 
that this program may trigger in the system (in our case, at the level of system calls). The model 
maps all program functions (high-level behaviours) with events that are expected to happen at the 
user space/kernel space interface when they are executed. There can be one or many levels of 
abstraction in the model.  

The availability (or not) of the source code of both the user’s program and the operating system 
(OS) is a determining factor in the execution model building process. Both situations lead to quite 
different building methods. In the case where the source code is not available, a learning phase 
involving the running and tracing of the user’s application (and OS) in numerous different 
situations is necessary to generate (or deduce) the model. It is generated by compiling the analysis 
of these numerous execution traces. Not having the source code presents a number of limitations 
for trace abstraction and analysis. This case is not considered in this study. 

In the case where the source code is available28, the learning phase is replaced by a static (and 
dynamic) analysis of the source code and compiled programs. The execution model has a greater 
chance of being more complete and precise in this case. Nevertheless, trace abstraction and 
analysis will always be limited by the content of execution traces. It is impossible to trace all 
aspects of the kernel with full resolution; the size of the trace would be unmanageable. Traces 
will thus always contain a limited number of elements.  

The utilization of the execution model (when the corresponding software program is executed) is 
explained here. Figure 15 is a theoretical representation of relations that may exist between: 1) 
traced events of an executing program, and 2) paths of an execution model. As the program 
evolves over time, different functions (potentially processes) of the program are executed. These 
functions trigger system calls, and they generate new events that are captured in execution traces 
by the LTTng framework. These events are then compared with events in each execution path of 
the model in order to identify the functions that were executed. This verification process is similar 
to that of “string matching”.  

Missing events29 in execution traces can make this identification process more complex. An 
incomplete trace may not allow the identification of a precise path in the model. Moreover, low-
resolution execution traces may cause problems if similar processes are executed simultaneously. 
This strongly suggests that an effort should be made to ensure that the level of detail within 
execution traces (or the number of active LTTng probes) is sufficient for the analysis needed, and 
there is no loss of elements during transmissions between computational nodes.  

Another potential problem is the possibility that execution models will not have a sufficient level 
of detail. This problem would necessarily lead to situations in which specific behaviours would be 

                                                   
28 The choice of using FOSS was made in this project (Section 2.2.1). 
29 Recall that execution traces cannot be comprehensive; traces would be unmanageable. Consequently, 
there will always be missing events in execution traces. 
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inadvertently missed. It may happen, for instance, if an execution trace contained information 
regarding interruptions in the kernel that are not taken into account in the model.  

(…)

(…) (…)

(…)

(…)

Execution model

Execution trace

Instruction executions 
observable in the 
execution trace

(…)

(…)

Events

 

Figure 15. Correspondence between an execution trace and execution model. 

The chosen approach for studying the abstraction process is divided into two parts: 1) the study of 
behaviours that are not exclusive to specific users’ programs, and 2) the study of behaviours that 
are exclusive to specific users’ programs. 

Case 1 – Behaviours not exclusive to specific users’ programs: 

Suites of related events in traces (common behaviours such as the opening, reading and closing of 
files) that may be triggered by many different processes in the user space should first be 
identified. Most of the time, their events will be scattered in the execution trace, and not 
necessarily ordered. Efforts should be made to capture these suites of events and the logic of their 
chronology (if any) in an execution model.  

Deeper activities in the kernel may trigger activities independently of the users’ processes as well. 
These events are basic operations achieved by kernel modules to keep the whole system 
operational and optimized with respect to time and activities. They may be visible in traces if 
deep LTTng probes are activated in the kernel. Efforts should be made to capture these suites of 
events and the logic of their chronology (if any) in an execution model. 

Case 2 – Behaviours that are specific to users’ programs: 

Behaviours that are specific to users’ programs must be captured in the form of execution paths in 
the execution model. As mentioned earlier, the identification of the running process will involve 
the comparison of traced elements with those of the execution model. Once a minimum number 
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of trace elements are recognized in one of the execution paths of the model, the function or 
process will be identified (with a certain level of certitude).  

The following example refers to Figure 16. It shows the mapping between two portions of the 
source code of the micro_httpd server with the two corresponding portions of the execution trace. 
The first mapping involves the function chdir()  and the second involves the reading of the time 
system. Call to functions chdir()  and time() triggers system calls that can be observed in the 
execution trace.  

In this case, the limited resolution30 of the trace would make its content harder to interpret. There 
is thus a need to be able to control the tracing software in such a way that it would be possible to 
produce high resolution traces with appropriate focus when needed. The choice of specific 
resolution and focus would depend on the type of abstraction and analysis that would be 
achieved.  

Mapping #1: 

Lines of code: 

59- if ( chdir ( argv[1] ) < 0 ) 

60- send_error( 500, "Internal Error", (char*) 0, " Config error - couldn't chdir()." ); 

Execution trace elements: 

182- # “micro_httpd” carries on a chdir()  in order to move into the directory containing 
server’s files 

183- kernel_arch_syscall_entry: 5277.046274494 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 12  [ sys_chdir +0x0/0x70], 
ip = 0xb8046424 } 

184- kernel_arch_syscall_exit: 5277.046283568 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 0 } 

Mapping #2: 

Lines of code (in the function send_header() : 

147- now = time ( (time_t*) 0 ); 

Execution trace elements: 

224- #Read the system time (to be inserted in the H TTP header; see send_header()) 

225- # (glibc opens "/etc/localtime" to know the sy stem’s time zone) 

226- kernel_arch_syscall_entry: 5277.046854659 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 13  [ sys_time +0x0/0x30], 

                                                   
30 Focus refers to the specific software objects being traced and resolution refers to the number of active 
probes used.  
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ip = 0xb8046424 } 

227- kernel_arch_syscall_exit: 5277.046856255 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 1211549623 } 

228- kernel_arch_syscall_entry: 5277.046888105 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 5  [sys_open+0x0/0x40], ip 
= 0xb8046424 } 

229- fs_open : 5277.046899066 (/tmp/trace-httpd/cpu_0), 4979, 49 79, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  fd = 4, filename = "/etc/localtime"  } 

230- kernel_arch_syscall_exit: 5277.046900144 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 4 } 

237- kernel_arch_syscall_entry: 5277.046925133 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 3  [ sys_read +0x0/0xa0], ip 
= 0xb8046424 } 

238- fs_read : 5277.046926752 (/tmp/trace-httpd/cpu_0), 4979, 49 79, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  fd = 4 , count = 4096 } 

239- kernel_arch_syscall_exit: 5277.046964889 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 3477 } 

240- kernel_arch_syscall_entry: 5277.046988062 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 140  
[ sys_llseek +0x0/0xd0], ip = 0xb8046424 } 

241- fs_llseek : 5277.046990756 (/tmp/trace-httpd/cpu_0), 4979, 49 79, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  fd = 4 , offset = 3453, origin = 1 } 

242- kernel_arch_syscall_exit: 5277.046991972 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 0 } 

243- kernel_arch_syscall_entry: 5277.047000434 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 3  [ sys_read +0x0/0xa0], ip 
= 0xb8046424 } 

244- fs_read : 5277.047001351 (/tmp/trace-httpd/cpu_0), 4979, 49 79, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  fd = 4 , count = 4096 } 

245- kernel_arch_syscall_exit: 5277.047004344 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 24 } 

246- kernel_arch_syscall_entry: 5277.047008992 (/tm p/trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  syscall_id = 6  [sys_close+0x0/0x110], 
ip = 0xb8046424 } 

247- fs_close : 5277.047010329 (/tmp/trace-httpd/cpu_0), 4979, 49 79, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL {  fd = 4  } 

248- kernel_arch_syscall_exit: 5277.047015507 (/tmp /trace-httpd/cpu_0), 4979, 4979, 
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE  { ret = 0 } 

Figure 16. Execution trace – Portion E. 

The capability of online modifying both the focus and the resolution of LTTng execution traces 
according to the analysis that is needed appears to be essential for trace abstraction and analysis. 
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The resolution of the model should be fixed and it should allow the capture of all behaviours that 
may be present in execution traces. 

Observations: 

So far, it was shown that it is possible to de-multiplex elements of execution traces produced by 
the LTTng framework according to the running processes in the Linux kernel. This de-
multiplexing facilitates the analysis process. However, the trace abstraction appears to be possible 
only under specific circumstances or conditions.  

• First, the source code of the traced application must be available if we are to be able to 
produce detailed and precise execution models that will be used in trace abstraction and 
analysis.  

• Second, the resolution of the execution trace should be high enough to allow abstraction and 
the resolving of behaviours that are found in the execution model.  

• Third, the execution model of the executed program must be sufficiently complete and 
precise. 

A lack of resolution in execution traces may cause events to be associated with many different but 
similar execution paths in the model. In this case, execution paths may not be resolvable. For 
instance, it might be impossible to tell which of two similar functions was executed based on the 
comparison of the trace and model.  

On the other hand, very high resolution traces may lead to the creation of enormous traces, so 
large that they would be impossible to manage. The appropriate selection of active probes in the 
system must thus be guided or driven by well studied and understood strategies. Strategies that 
can be used in operations remain to be identified and studied in future. 

An interesting solution for the problem of inadequate resolution in execution traces could be 
solved by giving unresolved execution paths “probabilities” of being “the one”. For instance, a 
low resolution trace may not allow the resolution of two similar execution paths in the model; 
there are not enough significant elements in the trace. The probability of each execution path of 
being the one could be calculated based on the number of successful comparisons between trace 
elements and the model. The value of these probabilities will evolve over time and active probes. 
With the arrival of new events in the trace, evolution of the trend would be observed. It could 
eventually become possible to state with certitude which execution path was involved in the 
production of trace elements, even if the resolution of the trace was relatively low.  

Trace resolution and the level of detail of the execution model are decisive for the identification 
of problematic behaviours in the system (malicious or not). The problem of detecting unwanted 
behaviours in systems can be tackled using two different and complementary strategies (Section 
3.3.1).  

• Problematic behaviours are known. This is similar to the virus detection process on PCs; 
a number of virus signatures are known and the detection process examines executable 
codes (and the execution model) in order to detect the presence of unwanted signatures. In 
our case, known problematic behaviours should be represented in the form of suites of 



 

DRDC Valcartier TR 2008-300 37 
 

 
 
 

events or signatures (trace abstractions). Pattern recognition techniques such as “string 
matching” will then help to identify these behaviours in execution traces. 

• Problematic behaviours are unknown. This case is more complex, as signatures of 
problematic behaviours are not available at runtime, and we know that their probability of 
occurrence in the system is not negligible. A strategy based upon system coherence 
verification could be adopted in this case. In our case, the system’s coherence would involve 
many of its inherent metrics, their normal ranges and the interrelationships between them. 
They would complement the model of execution with parameters defining the “normal 
conditions” of the system.  

Some critical events may regularly occur at specific times or situations in the system. The 
identification of these times and situations should be captured in an execution model. When the 
user’s program is executed, we know (from its execution model) what critical events should be 
triggered and when. The presence of one or a combination of these critical events at the wrong 
time would raise a flag. The resolution and focus of LTTng active probes could be changed in 
order to produce more relevant execution traces. Based on analysis, appropriate actions would be 
taken on specific components of the system.  

Some selected unsolved problems in this R&D thread are: the building of complex execution 
models; processes that share the same resource (chunks of memory, etc.); parallel processes on 
multi-core CPUs; finding the appropriate level of detail for an execution model; how many active 
LTTng probes are needed; the effect in execution traces of deliberately introduced errors in the 
system; the use of LTTng with Linux standardized tools.  

3.3.3 Task 3 – Theoretical considerations for trace  abstraction  

This section presents results that were obtained while verifying the feasibility of trace abstraction 
and analysis. It presents theoretical and practical perspectives on trace abstraction and analysis. 

Initial simplifications and context: 

A number of simplifications were initially brought to this work in order to keep its finality 
achievable. They are: 

• The first simplification was already mentioned at the beginning of this chapter: only system 
calls to the kernel are considered. Moreover, the value of their parameters was not 
considered. Parameters that are associated with each event are probably important31. They 
could for instance allow the identification of unwanted behaviours such as those that violate 
information integrity. 

• Processes are studied individually. Nowadays, operating systems such as Linux concurrently 
execute many processes “at the same time”. These processes are often interlinked (and not 
necessarily in a parent-child relationship). The analysis of many concurrent processes is left 
to future studies. 

• Recursive functions are not considered in this work, and the execution of any function of the 
program is always considered as “finite”. 

                                                   
31 R&D work is needed in this direction to identify how they should be taken into account. 
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• It is assumed that we have access to the source code of all software, as well as the operating 
system. 

• It is also assumed that static and dynamic analyses of programs have yielded a complete and 
detailed execution model, which defines an execution tree containing all possible execution 
paths.  

Using these simplifications, the mapping of any portion of the source code with the corresponding 
portions of execution traces should be relatively easy to identify. For instance, comparing trace 
elements with the content of the program’s execution model would allow the identification of one 
or many potential execution paths. Trace elements corresponding to the execution of a specific 
function could then eventually be abstracted by the name of this function. 

Generation of the program’s execution model: 

The execution model of micro_httpd is constructed by capturing its behaviours, which in our case 
involves calls to system calls exclusively. More precisely, for each micro_httpd function that 
leads to a system call, an execution path is added to the execution model; it has the form of a 
directed graph. Annex D.2 shows the resulting model using the C programming language.  

Under listed simplifications, the execution model can be represented by an algebraic expression 
by using the Kleene formalism32. This formal representation of the program allows logical 
reasoning regarding its behaviour and facilitates the identification of operations that will lead to 
trace abstractions.  

Table 4 shows the algabraic expression of the micro_httpd execution model. Following is a 
description of how this model was obtained.  

It was shown earlier that the Kleene algebra uses rules to capture the semantic of the basic 
program’s operations. These basic operations are designated by what is called “operators”. 
Examples are:  

• A sequence of two consecutive programs is expressed by the operator “; ”. The sequence of 
“ fn_1 ” followed by “fn_2 ” would thus be expressed as: “fn_1; fn_2 ”.  

• The choice between two programs is represented by the operator “+”. The C instruction 
“ if ” determining the choice between two execution paths “c_1 ” and “c_2 ” would be 
expressed as: “c_1 + c_2 ”.  

• The finite number of iterations of a suite of instructions such as the while loop “while … 

{P} ” is represented by the operator “* ”. This loop would be expressed as: “P* ”, meaning 
that the program “P” may be executed a finite number of times (including 0 times).  

• Additionally, Kleene algebra represents programs that do nothing by “1” and programs that 
abort by “0”. 

                                                   
32 In the case where the nature of captured events was considered (the parameters of each System call), a 
modified version of the Kleene formalism (or another) should be used. 
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Using this Kleene representation scheme, it becomes easy to understand how the micro_httpd 
model can be translated into an algebraic expression. The reader will note that instructions “if ” 
in the program do not have the associated “else ” instruction, but the algebraic expression still 
considers the “else ” by using the “1” operator. 

Table 4. Transcription of the micro_httpd model into a Kleene algebraic expression. 

Function name of 
micro_httpd 

Kleene expression (program’s model) 

main() 
(send error + 1); chdir; (send error + 1); fgets; (send error + 1); (send 
error + 1); Fgets*; (send error + 1); (send error + 1); (send error + 1); 
stat; (send error + 1); ((send error + 1); stat; (fopen; (1+send error); 
send headers; (getc; putchar)*; fflush; exit + send headers; 
scandir)+fopen; (1 + send error); send_headers; (getc; putchar)*; fflush; 
exit) 

send_error() 
send headers;  
fflush;  
exit 

send_header() time 

Trace abstraction: 

A number of system calls are done when micro_httpd is executed. They are captured in the 
execution trace. Using the execution model of micro_httpd that was just generated, it becomes 
relatively easy to identify the portions of the source code (execution paths in the model) that 
correspond to each element included in the execution trace.  

Two cases will be discussed in this section. They are defined by the coverage of the execution 
trace.  

• Case 1: the execution trace covers the whole execution of the program. 

• Case 2: only a portion of the execution trace is available.  

For each case, we will formally present what is possible to achieve in terms of trace abstraction 
and we will present how it can be achieved using the Kleene algebra.  

The reader should note at this point that, for clarity purposes, we will use a theoretical program 
that is simpler than micro_httpd. It should be borne in mind that achieving the same type of 
analysis with the same simplifications (listed at the beginning of this section) for the micro_httpd 
program would have led to similar results regarding the feasibility of trace abstraction.  

The model of the program that will be studied in this section is illustrated in Figure 17. The lines 
represent execution paths. This program is made up of three parts:  

• part 1 (Fn1); it is executed after the event “e1” was triggered; 
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• part 2 (Fn2); it is executed after the event “e2” was triggered; and  

• part 3 (Fn3); it is executed after the event “e3” was triggered.   

... ... ...

e1
e2

e3

e4

e4
e5

e6

e5

e6

e7
e8

e9

Proc

Fn1 Fn2 Fn3

 

Figure 17. Example of a program model (A). 

Case 1 – The execution covers the whole execution of the program: 

a) Informal description:  

One thing that can be done in Case 1 is to use the program’s execution model to check if captured 
events in the trace are generated by the program (and LTTng probes33). For instance, the 
program’s execution model illustrated in Figure 17 shows that the observation of events e1, e4, 
e5, e6 and e7 in the trace would correspond to one of the possible execution paths of the 
program’s execution model (the red execution path in Figure 18). An execution of Fn1 that would 
not yield these elements (e1, e4, e5, e6 and e7) would indicate that the executed program was 
modified in one way or another.  

In Case 1, this process is made easier because the beginning of the execution trace corresponds to 
the beginning of the program execution. It is thus easy to “follow” (in the execution model) the 
execution of the program element by element, and identify executed paths. In other words, when 
the application is launched, we use events in the trace to identify where (in the model) the 
executed program stands. As the execution progresses, new events are compared with the model, 
allowing the identification of the new execution paths that are used.  

                                                   
33 Recall that a process number is associated with each element (event) in the LTTng execution trace. 



 

DRDC Valcartier TR 2008-300 41 
 

 
 
 

... ... ...

e1
e2

e3

e4

e4
e5

e6

e5

e6

e7
e8

e9

Proc

Fn1 Fn2 Fn3

 

Figure 18. Example of a program model (B). 

If the resolution of the execution trace is not high enough34, trace elements may not be sufficient 
to identify the executed path. In this case, more than one execution path could then be associated 
with trace elements35. Nevertheless, further additional events in the trace would contribute to the 
identification of the execution path used, and eliminate the others. 

The analysis of trace elements results in the identification of the execution paths. Knowing which 
function is currently executing, it is possible to abstract sequences of trace elements by the name 
of the function that was executed.  

Referring to our example (Figure 18), we see that the execution trace could be abstracted by: “e1” 
followed by “Fn1” and “e7” (as illustrated in Figure 19 by red lines).  

                                                   
34 There are not enough active probes in both the software and the operating system. The content of 
execution traces is not dense enough to allow the identification of execution paths. 
35 The end of Section 3.3.2 introduces the possibility of giving each found execution path a probability 
level. 
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Figure 19. Example of a program model (C). 

In real life, there would be additional events in the trace that would not necessarily be related to 
the execution of function Fn1. These events are caused by the execution of other programs or 
kernel modules36. 

b) Using the Kleene algebra formalism:  

The Kleene formalism can be used to represent: 1) operations in execution traces and 2) the 
model of the executed program. It provides a means for formal reasoning. So far, we have shown 
a simple example of trace abstraction (Case 1). We will now present how the Kleene formalism 
can be used in this context. We will translate the execution model (Figure 17) into an algebraic 
expression.  

Table 5 shows the transcription of our theoretical program (Figure 17) into an algebraic 
expression. The methodology and symbolism described in the previous section were used. The 
main()  function is represented by a choice between the execution of three functions (Fn1, Fn2 
and Fn3) and the symbol “…” designates portions of the execution model that are not given 
explicitly. 

The execution model of a program lists all possible execution paths that can be executed while 
the program is running. To determine if an execution trace matches the execution model 
(expected behaviours), one must verify whether or not the execution trace is consistent with the 
model. Using the Kleene formalism, this can be expressed as: 

t ≤ M (Eq. 1) 

                                                   
36 But as shown earlier, we can discriminate them. 
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where “t” represents the observed execution trace and “M” the execution model. The 
methodology defined by Lajeunesse-Robert (2008) can be used to verify whether or not this 
inequality (Eq. 1) is valid. In our example (Figure 17), Eq. 1 is equivalent to the following 
algebraic expression: 

e1; e4; e5; e6; e7 ≤ main (Eq. 2) 

 

Table 5. Transcription of micro-httpd functions into Kleene algebraic expressions. 

Function name Kleene algebra expression 

main() e1; Fn1; e7 + e2; Fn2; e8 + e3; Fn3; e9 

Fn1 e4; (... + e5; e6) 

Fn2 e4; e5; e6 + ... 

Fn3 ... 

The online study of program execution involves the identification of all execution paths in the 
model that contain captured trace elements (and the exclusion of all other paths). In other words, 
every time a trace element is captured a new execution model is generated, which keeps only 
execution paths that contain trace elements. The generation of this new model is easily 
represented by Eq. 3: 

e \ M (Eq. 3) 

where “e” represents the observed event (trace elements) and “M” represents the current model. 
In our example (Figure 17), the capture of the trace element “e1” would yield a new execution 
model that would contain the set of possible execution paths. It can be represented by the 
following expression: 

e1 \  main (Eq. 4) 

Eq. 4 represents the execution model found in Table 6. The graphic representation of the 
execution model (Figure 17) shows that there is only one path that starts with trace element “e1”: 
the one that leads to the function “Fn1”. Keeping only the execution paths of the model that start 
with “e1” we obtain the algebraic expression listed in Table 6.  

As new trace elements are captured, new execution models are generated from the current 
models. In the case where a trace element would not be included in the model’s logic, the result 
would be represented by: 

e \ M  is 0 (Eq. 5) 

Having found the execution model that corresponds to the last execution of the program, we can 
then abstract the execution trace by the name of the functions that were executed. To do that, we 
must modify the execution model that was found in such a way that it will allow the inclusion of 
the information regarding the “range” of executed functions. Tags are added to the execution 
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model to designate the beginning and the end of each function. Table 7 illustrates this execution 
model in the form of an algebraic expression.  

Table 6. Reduced Kleene algebraic expression. 

Function name Kleene algebra expression 

main Fn1; e7 

Fn1 e4; (... + e5; e6) 

Table 7. Kleene algebraic expression with “tags” added. 

Function name Kleene  algebra expression 

main main_begin; (e1; Fn1; e7 + e2; Fn2; e8 + e3; Fn3; e9); main_end 

Fn1 Fn1_begin; e4; (... + e5; e6); Fn1_end 

Fn2 Fn2_begin; (e4; e5; e6 + ...); Fn2_end 

Fn3 Fn3_begin; ...; Fn3_end 

The execution model found contains more information than real executions (the tags). These tags 
make it impossible to compare the found model with the execution trace because the latter does 
not contain tags. To solve this problem, a dummy event is added between each element of the 
trace in order to specify that tags may be encountered. Instead of writing the trace: {e1; e4; e5; 
e6; e7}, we would for instance write it as: 

et:= (tag)*; e1; (tag)*; e4; (tag)*; e5; (tag)*; e6; (tag)*; e7; (tag)*       (Eq. 6) 

where the symbol “tag” designates the set of all possible tags that can be added to the execution 
model. In our case, “tags” corresponds to: 

tag:= main_begin + main_end + Fn1_begin + Fn1_end + Fn2_begin + Fn2_end + Fn3_begin + 
Fn3_end (Eq. 7) 

Once this operation is done, we can then abstract the trace by identifying execution paths that are 
common to the trace and the found model. This is represented by the following expression: 

t ∩ M  (Eq. 8) 

In our example this operation gives the following expression: 

main_begin; e1; Fn1_begin; e4; e5; e6; fn1_end; e7; main_end  (Eq. 9) 

Events contained between a “_begin” and a “_end” may be abstracted by the corresponding 
function. Lajeunesse-Robert (2008) shows how to calculate “∩” and “\”. 

Case 2 – Only a portion of the trace is available: 

a) Informal description: 
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So far, we have considered the case where it was possible to follow step by step the execution of 
the program from the beginning of the program’s execution. There will be situations where 
execution traces will be incomplete; trace elements corresponding to the beginning of the 
execution will not be available (as for Case 1). This case is more likely to happen than Case 1. 

The first thing that must be done in this case is to verify that the incomplete execution trace is 
included in one or more execution paths of the program’s model. Referring to our example 
(Figure 17), a trace like {e4; e5; e6} would correspond to two execution paths (red lines in Figure 
20). 

... ... ...
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e9

Proc

Fn1 Fn2 Fn3

 

Figure 20. Example of a program model (D). 

Additional events would then be captured in execution traces over time, making it possible to 
identify the exact executed path. Once identified, additional trace elements would then confirm 
this result. Figure 21 shows that e7 or e8 is expected to happen. If the executed function is Fn1, 
e7 would be observed at the end of Fn1.  

The process consists thus in finding (in the execution model) the execution paths to which trace 
elements correspond, but the process now involves the covering of the whole model (Figure 22). 
One starts by identifying all possible execution paths that could potentially generate these trace 
elements. The new execution model is generated from these entry points (not from the main 
function as in Case 1). The same process as the one presented in Case 1 is then used to carry on 
the generation of the execution model (based on the next trace element).  
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Figure 21. Example of a program model (E). 

Once the execution path is found, it becomes possible to deduce past trace elements (the ones that 
were triggered before we started to record elements in the execution trace) based on the full 
program’s execution model. This is illustrated in Figure 22 (red lines). It is then possible to 
abstract partial execution traces in terms of functions that were called. 

...
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Figure 22. Example of a program model (F). 

b) Using the Kleene algebra formalism: 
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The Kleene formalism can be used to express a number of theoretical operations that can be done 
on execution traces as well as on the program’s execution model. It provides a means for formal 
reasoning. The problem of finding if a partial execution trace can be associated with a specific 
execution path (Case 2) can be solved by searching the whole execution model for these trace 
elements (or events). In Kleene formalism, this is represented by Eq. 10. 

∞; t; ∞ ∩ M  (Eq. 10) 

where “t” represents the incomplete execution trace and “M” the execution model. Actually, the 
expression “∞ t ∞” designates the set of all execution traces that contain the incomplete trace “t”. 
The goal is to find if the set of all traces that can be generated by the model “M” has common 
traces (“∩”) with the set of all traces containing the incomplete trace (“∞; t; ∞”).  

The identification of execution paths in the model (based on trace elements) is done in the same 
way as described earlier. The model (it is a graph) is searched for trace elements and, once they 
are found, the corresponding paths (from that location in the graph) are captured. Another way is 
to identify every execution path that ends with the observed partial execution trace. This is 
represented by Eq. 11. 

∞; t _| M  (Eq. 11) 

where “t” corresponds to the observed incomplete execution trace and “M” the model. The 
expression “∞ t” designates the set of all traces that end with the incomplete trace “t”. To find 
corresponding execution paths from the model, we identify the set of all traces that begin with 
this incomplete trace. This is represented by Eq. 12. 

M |_ t; ∞  (Eq. 12) 

We can identify from the model the execution paths surrounding an incomplete execution trace. 
This is represented by Eq. 13. 

(t1 _| M) |_ t2 (Eq. 13) 

where “t1” designates the part of the model that we find before the observed incomplete trace, 
“t2” the part of the model that we find after the observed incomplete trace, and “M” is the model 
of the program.  

Observations: 

The Kleene algebra is a good theoretical framework for representing (up to a certain limit) 
programs that are executed on a system and corresponding execution traces. Using this 
formalism, algebraic expressions can be manipulated and logical reasoning about these 
expressions can be achieved.  

Despite the fact that the Kleene formalism offers means that could be used to solve numerous 
problems in this domain, it may not be as useful in real operational situations where concrete 
trace analysis must be effectively and efficiently achieved (in quasi real-time mode). The lack of 
specificity of this formalism represents a major disadvantage in terms of performance because 
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algorithms are generic; they were not expressly made for solving specific problems. It appears 
from this study that dedicated algorithms must be developed.  

Nevertheless, the Kleene formalism could be used for certifying that programs have expected 
behaviours; it is relatively easy to verify that operations on execution traces are valid.  

3.3.4 Task 4 – Program Analysis Toolkit (PAT) for a utomating trace 
analysis 

This section describes an academic tool (PAT) that was developed for studying the feasibility of 
achieving the “automatic abstraction of execution traces” (as described in this chapter).  

Technological choices regarding the development of PAT, the description of its functionalities 
and utilization as well as important observations and future works are presented in this section. 
More details regarding PAT and the syntax used will be given in a report to be published in 2009.  

3.3.4.1 Technical considerations  

The technical choices that were made in this task are the following. 

• C was the programming language considered. 

• The program under study does not contain recursions. 

• Only system calls were considered both in the program’s execution model and execution 
traces. 

PAT is made up of three main parts: 1) a graphic user interface (GUI), 2) the abstraction part, 
which achieves trace abstraction from algebraic representations of programs and execution traces, 
and 3) the model generation part, which generates the program’s execution model in the form of 
an algebraic expression. Following is a brief introduction of each part. 

Part 1: PAT's graphic user interface 

In order to be able to run PAT remotely, PAT’s GUI was developed with ASP.NET. Figure 23 
and subsequent figures show the PAT GUI. 

Part 2: Abstraction: 

This part of the tool was made with the F# programming language (F#, 2008) for three reasons:  

1. F# is a functional programming language. It facilitates the implementation of algorithms that 
are used to manipulate algebraic expressions.  

2. F# is an object-oriented programming language. It allows the structuring of programs in 
classes and objects, and the use of inheritance. 
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3. F# is integrated with the Microsoft .NET framework. This framework allows the concurrent 
use of other programming languages plus quick-to-use tools that are useful in the prototyping 
context.  

It should be mentioned that the current form of PAT does not offer the best performance; F# is an 
interpreted programming language. In real-world situations, where online analysis must be 
achieved in quasi real-time, PAT should take the form of an efficient, effective and secure 
standalone executable program. 

This part is divided into three separate but interdependent layers: 

• Layer 3: this layer makes use of 1) the lower layers and 2) the notions of program and 
execution traces to perform trace abstraction operations. In other words, layer 3 uses 
available algebraic expression operations (layer 2) to perform trace abstraction.  

• Layer 2: this layer is used to manipulate algebraic expressions. It contains the definition of 
all operations that can be performed on algebraic expressions. Operations allow the 
implementation of many types of program analysis that are based on the algebraic approach.  

• Layer 1: this layer offers the higher layers generic useful functionalities.  

Part 3: Model generation from the source code: 

A C programming language parser (ckit, written in SML) is used to generate the model from the 
source code; the parser transforms the program’s source code into an “abstraction syntax tree”, 
which is then used to generate the model. This parser verifies many aspects of the program 
(syntax, types) and it offers a number of compatibility advantages with the .NET framework. 

Another SML module transforms C source code (in the form of an abstraction syntax tree) into an 
algebraic expression according to the rules defined in Section 3.3.3.   

3.3.4.2 PAT’s functionalities 

PAT’s GUI (Figure 23) shows two edit boxes (EB) when it is initially started. These edit boxes 
allow the user to enter the model of the C program (left EB) or/and the observed execution trace 
(right EB). Both the model and the trace should take the form of an algebraic expression.  

Figure 23 shows a situation where both the program model and the execution trace were entered 
by the user. PAT starts the analysis of the execution trace according to the program model when 
the “Process Trace” button is pressed.  

Once the analysis is ended, a message is given to the user. This message tells if the execution 
trace belongs to one of the possible execution paths of the model provided. In this case (in Figure 
23, below the “Process Trace” button) the message indicates that the execution trace is part of one 
of the model execution paths. 
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Figure 23. PAT’s graphic user interface. 

In the case where the execution trace is “part of the program model”, additional information 
regarding the analysis process is available by clicking on the “Results” link of the GUI (Figure 
24). PAT will then expand the GUI and provide an additional section containing this information. 
Figure 24 shows the result of this operation with the example provided. 

The following information is provided by PAT: 

• Abstracted Trace: the trace considered (in abstracted form). 

• Sub-process generating traces containing the given trace: the portion of the program that is 
exactly restricted to the path that generates the trace.  

• Sub-process generating traces containing the given trace as sub-trace: the part of the 
program model that generates the trace. 

• Sub-process leading to the trace: the preliminary part of the program model that generates 
the trace. 

• Sub-process following the trace: the ending part of the program model that generates the 
trace. 

• Sub-process not generating the trace: the part of the program model that does not generate 
the trace. 

The information provided in the “Results” section can be useful for many types of trace analysis.
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Figure 24. Trace analysis results. 

PAT also offers the possibility of finding (in the execution path provided) the portion of path that 
corresponds to a specific function. This functionality is particularly useful when the execution 
trace is large. The section of the GUI allowing this functionality can be activated by clicking on 
the “Extract sub Trace” link (Figure 25).  

Figure 25 shows an example where the user wanted to identify the part of the execution trace that 
corresponds to the function “write_sock ”. Corresponding trace elements were generated by 
clicking on the “Get Sub Trace” button.  
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Figure 25. Identification of functions in execution traces. 

Finally, PAT’s conversion module also allows the generation of program models in the form of 
algebraic expressions. The section of the GUI allowing this transformation can be activated by 
clicking on the “Inputs” link (Figure 26).  

The program C source code is entered (or imported) in the left edit box. The algebraic expression 
corresponding to the program provided is generated when the “Translate” button is clicked. 
Figure 26 shows a simple example. 
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Figure 26. Translating a C program into an algebraic expression. 

Observations:  

It was mentioned that PAT consists of three different parts: GUI, Abstraction and Model 
generation. This prototype could be improved and made autonomous by modifying the current 
modules and by adding others. Following are some potential improvements.  

• Purge all unnecessary behaviours from the program analysis before its model is generated. 
Unnecessary behaviours are those that are not observed in the execution trace. In our case, 
only the parts of the program containing calls to system calls would be kept. This 
preliminary program analysis optimization should be done automatically prior to the model 
generation process. 

• An interface module should be added between the LTTng trace generation module and PAT, 
allowing the appropriate transformation of raw LTTng execution traces. 

• Preliminary static (and potentially dynamic) program analysis would certainly help improve 
PAT’s functionalities. 
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4 Conclusion and recommendations  

Detailed tracing and monitoring of distributed systems is starting to be used in a number of 
industrial applications. New applications that are executed on heavily used multi-core systems 
present significant challenges in terms of: 1) efficiently retrieving the monitoring data with 
minimal disturbance on the system and 2) converting the timestamp of each captured event 
(originating from different cores) to a common time base. The benefits are however significant; 
low-disturbance efficient tracing of distributed multi-core systems is the only way to monitor and 
understand the behaviour and performance (under real load) of these systems. The absence of 
such a complete and integrated toolset severely limits the speed and efficiency with which such 
systems can be designed and deployed. This has been identified as a software gap, and it 
represents a major challenge to those who want to take advantage of the performance and power 
efficiency gains associated with multi-core systems. 

Interestingly, this new technology offers tremendous potential for C2 systems. These systems, 
when deployed in military or industrial settings, are increasingly multi-core, distributed multi-
applications with numerous networked clients and soft real-time expectations. In this context, 
tracing and offline analysis tools are needed for debugging and tuning. In addition, the low 
disturbance and detailed level of the data generated by these tools can be used to monitor C2 
systems continuously and detect the early signs of several problems, including security attacks. 
Indeed, low disturbance ensures that monitoring can be permanently active, and minimizes the 
chances that an attacker will detect the monitoring. 

As discussed in the previous two chapters, there were two important technological risks 
associated with the use of this tracing technology for online monitoring, which was initially 
targeted for debugging and tuning.  

1. First, the architecture of data collection and analysis was optimized for low impact, a 
posteriori and offline trace retrieval and analysis. The possibility of the generalization of the 
LTTng framework for online tracing was assessed during R&D Thread 1 (Chapter 2).  

2. Second, if detailed levels of the captured data are essential for a posteriori analysis, it may 
represent an overwhelming workload in the context of online analysis. R&D Thread 2 
(Chapter 3) addresses this issue by looking at automated algorithms for the online abstraction 
and analysis of this data. 

These two complementary R&D threads were conducted at DRDC Valcartier during summer 
2008 and the results were presented at DRDC Valcartier (Lajeunesse-Robert, 2008; Prenoveau, 
2008). The aim of the threads was to study and prototype a number of concepts and mechanisms 
(and to assess their applicability in this new context of online tracing and analysis of C2 systems) 
before the launch of a major R&D project in this direction (Dagenais 2008b; Couture and 
Charpentier, 2008).  



 

DRDC Valcartier TR 2008-300 55 
 

 
 
 

4.1 Main observations 

4.1.1 R&D Thread 1 

In order to extend the tracing and monitoring framework to online data retrieval and display, three 
elements needed to be developed or adapted. 

1. Support for network transfer . In the original framework, the tracing data was saved on 
local files. This capability was extended in this work. The data can now be sent across 
networks to a remote server. Care had to be taken while flushing data buffers. While 
buffering is important for performance reasons, periodic flushing of buffers (which fill too 
slowly) is required to put an upper bound on the latency of tracing data transfer. This was 
implemented successfully. Some easily solvable issues were encountered: minimizing the 
number of timers for the periodic flushing and efficiently managing partially filled buffers. 

2. Remote control. The LTTng framework was extended to allow remote control. It is relatively 
easy to build on currently available secure communication and command execution 
frameworks like SSH. 

3. Continuous decoding of execution traces. The feasibility of online display and analysis of 
tracing data has been assessed as well. The LTTV trace viewer already separates the viewing 
of the online captured raw data from the background computation of the complete trace. A 
small adjustment is required to continuously display the online data while it is generated. The 
background computation source code will need to be re-architected in order to allow 
incremental computation of some specific global properties (e.g. current system state at any 
point in the trace, average values over some time window for different parameters, etc.). 

This R&D thread has successfully identified architectural changes, techniques and algorithms to 
generalize the LTTng framework for continuous and online data gathering and analysis. As a 
consequence, the risks associated with this critical technical aspect of the R&D project were 
identified and reduced.  

It is recommended that, early in the project, LTTng and the associated daemon lttd be extended 
for online tracing. Special care will be required to minimize the number of timers and connections 
required on multi-core systems. Moreover, the trace collection server will be a critical element in 
the scalability of this system, and it must be designed accordingly. Early in the R&D project, the 
LTTV viewer must be adapted to allow online viewing of the raw data. The adaptation for online 
display of the background calculation of higher level synthesized trace information may be done 
later.  

The reading of the tracing information and the computation of higher level information were re-
architected in order to: 1) facilitate the integration of tracing data from several sources, and 2) 
make this data available to a richer integrative framework (Eclipse was chosen for this purpose; 
Couture et al., 2008). The Eclipse framework will enable the effective exploitation of the captured 
data through several specialized high-level viewers as well as higher level information on the 
monitored system (e.g. source code, UML models).  
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4.1.2 R&D Thread 2 

In order to achieve effective and efficient analysis of execution traces, three elements needed to 
be considered.  

1. Simplification of execution traces. The semantic of trace elements, their inherent logic and 
the relationship between them have been studied in order to simplify execution traces. For 
instance, using the information provided by LTTng framework it is possible to de-multiplex 
the events of a raw trace and obtain different sub-traces where each one of them reflects 
activities related to one specific running process in the system. Moreover, it is possible to find 
the relationship between processes and the system resources they use (e.g. files), and to 
capture the different operations that were made on these resources. It is also possible to 
identify the resources that are shared between processes. However, care must be taken to 
handle situations where a resource is accessed by different concurrent processes. The analysis 
of traces coming from concurrent processes is left to future work.  

2. Abstraction of execution traces. The next step was to study how execution traces can be 
abstracted into high-level behaviours. In this study, it was assumed that the source codes of 
both the user’s program and the operating system were available. Care must be taken 
regarding the resolution of execution traces. The resolution must be high enough to allow 
abstraction. 

3. Implementation of trace abstraction and analysis. We used the Kleene algebra formalism 
to represent both the events in execution traces and the model of the executed program. This 
formalism provides a means for formal reasoning. Trace abstraction has been achieved 
through manipulations and logical reasoning on algebraic expressions. Two cases have been 
studied: 1) the case where only a portion of the trace is available, and 2) the case where the 
trace covers the whole execution of the program. This was implemented successfully as a 
toolkit (PAT), which can achieve automatic trace analysis, model generation and trace 
abstraction.    

This R&D thread has successfully identified techniques and algorithms to analyze and abstract 
execution traces. An additional interesting observation is that trace analysis can be improved by 
using techniques that were developed in other research areas. Intrusion detection systems (IDS) is 
one example, in which techniques designed to analyze network packets (searching for attack 
patterns) can be adapted to the context of trace analysis. 

As mentioned earlier, trace abstraction requires execution traces that have an appropriate level of 
resolution. If the level of details is not high enough, some suspicious behaviours can be missed 
during analysis. If the level is too high, the huge execution trace may become unmanageable (for 
online analysis). Hence, the resolution of execution traces must be appropriately chosen.  

Despite the fact that the Kleene algebra formalism offers an appropriate way to represent 
abstractions of programs, it remains that in real operational situations, where trace analysis must 
be effective and efficient, the lack of specificity of this formalism represents a major drawback in 
terms of performance.   
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Finally, the successful results of this R&D thread were obtained based on a number of 
simplifications. Namely, 1) only calls to the kernel interface (system calls) were considered, 2) 
processes were only studied individually, 3) we assumed that the source codes of both the 
software and the operating system were available, and 4) we considered only non-recursive 
functions. These simplifications will have to be reconsidered in future work so that more realistic 
systems can be handled.  

4.2 Recommendations for the next R&D efforts 

Results and observations from R&D Threads 1 and 2 clearly show the great potential of the 
proposed R&D project. Each of the components studied (for online monitoring, tracing and 
analysis of distributed multi-core systems) is clearly feasible and very promising. Four important 
challenges must be addressed. Actually, they can be considered as recommendations for the next 
R&D efforts. 

1. First, the overhead associated with the LTTng framework should be as low as possible to 
ensure that it is widely applicable and effective. Low overheads do not affect the throughput 
of the system being monitored, providing a more accurate picture of its behaviour and making 
it stealthier in the face of sophisticated security attacks, which attempt to detect such 
defensive detection measures. 

2. The second important challenge is to facilitate the integration of the different sources of data 
(e.g. static and dynamic, kernel and user level trace points) from different processor cores, 
virtual and physical machines and distributed systems. Moreover, the database structure must 
allow synthesized information to be added to the raw event traces (e.g. state information, 
synthesized abstract higher level events, etc.). Some of the problems to be solved are 
algorithmic (e.g. trace synchronization and conversion to a common time base), while others 
are architectural or simply involve adaptation between different formats. Nevertheless, 
integration is important to enable experimentation in the different contexts (e.g. different C2 
systems, military or telecom, different operating systems, etc.). The analysis framework must 
then allow various analysis modules to use and contribute to the shared information database. 
The analysis modules and underlying algorithms should benefit from a flexible architecture 
and the availability of detailed and accurate information through a flexible framework. 

3. The third important challenge is related to the analysis of execution traces in real operational 
situations. Traces obtained from concurrent and parallel processes that are executed on 
distributed multi-core CPUs and which access shared resources must be analyzed. The 
resolution issue must be addressed as well. As we pointed out in our study, an interesting 
solution for this problem could be given by using probabilities, which can have a positive 
impact on the evaluation and approximation of system health. 

4. Finally, another important challenge consists in finding the most appropriate formalism for 
trace analysis, trace abstraction and fault detection. The Kleene algebra formalism is adequate 
for the certification process but not for the efficient online handling of huge execution traces. 
A formalism to solve these specific problems must be identified or developed. 
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Annex B Tracing for distributed multi-core systems – 
Motivations and drivers 

A tutorial/workshop on monitoring and tracing of information systems37 was held in January 2008 
in Montréal (Couture et al., 2008)38. Several of the most advanced players39 in the areas of 
advanced communications, information management and computer security discussed the state of 
the art with regard to current tools, associated problems and unmet needs. The main goals of this 
tutorial/workshop were: 

• to ask these international experts in these domains to describe the leading edge of 
knowledge relative to tracing and monitoring of distributed computer systems (SMP or 
single/multi-core), and  

• to ask advanced users to present the most challenging problems they are facing, and 
potential solutions.  

The most promising avenues for solutions were identified with the guidance of key industrial, 
governmental and academic researchers in the field. Key findings of the tutorial/workshop are 
presented in this section. 

B.1 Initial drivers of the effort 

The long-term vision key points that were initially proposed to the participants of the workshop 
were the following:  

• low-overhead instrumentation is critical to most real-world applications;  

• equally important are in-lab debug and in-field (on-line) monitoring;  

• many applications are distributed (i.e. multi CPUs) and threaded in multi-core;  

The technologies to be promoted are: 

• Linux shall be considered as the most appropriate OS for this work40;  

• standard protocols, formats and integration frameworks shall also be considered; and  

Open-Source reference implementations shall be encouraged as well. 

                                                   
37 This event corresponds to step four of the used methodology (Section 1.2). 
38 The text in italic in this section was literally reproduced verbatim from Couture et al. (2008). 
39 Representatives from Defence R&D Canada at Valcartier, Enea, Ericsson, Freescale, IBM, MontaVista, 
Nokia, Rational, Red Hat, Oracle, Wind River and Zealcore were present.  
40 A wide variety of Operating Systems are encountered but Linux appears to be the most appropriate OS 
for R&D demonstration since it is shared by a large community of users and expected to increase in 
importance in the future. 
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B.2 Identified long term challenges 

The following long-term challenges were identified by the participants during the workshop: 

1. Full spectrum trace visualization: Full spectrum trace visualization appears to be desirable 
in most analyses (i.e. from silicon, hypervisor, OS, VM, and simulator up to user application). 
Abstraction towards a modelling level was also expressed as a valuable visualization enabler 
in some system designs and analyses. 

2. Multiple CPUs and multi-core within an integrated CPU: Understanding interactions 
between multiple CPUs and multi-core within an integrated CPU is also mandatory to 
complex system analysis and in particular to ensure scalability of performance. 

3. Reusability and comparability of functions and traces: Tracing and monitoring functions 
should be designed in ways that enable regressive testing and periodic (repetitive) 
maintenance. 

4. Measures of system health and interventions: Exploitation of low-level instrumentation to 
assess general system health of on-line components (at high level) and the activation of 
reactive measures when appropriate are also perceived as being critical to autonomous 
complex systems. Ultimately, a “continuous process of feedback-directed adaptation and 
optimization” could emerge from such capabilities. 

5. Forensics: Conditioning captured data for forensics exploitation could also be highly 
appreciated for criminal investigations when malfunctions are suspected to originate from an 
attack on a key component of a critical infrastructure. 

6. Ensure technology adoption in a broader community of users by prioritizing “ease-of-use”. 

B.3 Identified Areas of R&D  

Six key areas of R&D were identified during the tutorial/workshop. They are listed in the 
following lines (this text comes from Dagenais, 2008b). 

1) Adaptative fault probing: 

Static probe sites may be inserted at compilation time and remain dormant until activated at 
runtime, typically to generate tracing information upon need. Dynamic probes can be added at 
runtime, to adapt the system behavior, for example to trace various parts of the operating system 
for diagnosing a problem. DTrace [8] is probably the best known recent implementation of static 
probe sites and dynamic probes. SystemTap [9], currently under development, offers a similar 
functionality for dynamic probes under Linux. The most important characteristics of static probe 
sites and dynamic probes is their ability to be inserted anywhere (including in interrupt and even 
non-maskable interrupt context), their low overhead (minimal performance hit when dormant and 
when activated) and their low disturbance (do not change the real-time behavior).  
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The group under the supervision of Michel Dagenais has started working on static probe sites, 
providing an initial implementation for the mainline Linux kernel, named Kernel Markers, used 
by thousands of developpers and installed on millions of computers around the world. The 
challenge is to simultaneously minimize the number of execution cycles required for a probe, 
including the effect of the added instructions on the memory cache, while not interfering with the 
real-time response of the system, and enabling the activation of probes even when the program 
may be simultaneously accessed by several processors on a multi-core system. To achieve this, 
atomic operations local to a CPU, per CPU buffers and data structures, and special techniques 
for code patching online multi-threaded binary executable code may be used.  

Some interesting preliminary results have been obtained with the Kernel Markers and LTTng [2]. 
The interoperability with SystemTap dynamic probes has also been planned. Further research 
and development to refine and optimize the underlying algorithms will be needed to provide a 
robust, low disturbance and extremely efficient infrastructure for adaptative fault probing within 
the operating system kernel and for user level applications (D1.1 to D1.4). While this 
infrastructure will be prototyped for Linux, at operating system and user level, the same 
algorithms will be adapted for a number of other operating systems (e.g. BSD) in use at Ericsson, 
Defence R&D Canada and elsewhere to trace heterogeneous distributed systems (D1.5 and 
D1.6). 

2) Multi-level, multi-core distributed traces synchronization: 

The probes installed at the different software layers (hypervisor, operating system, virtual 
machine, system libraries, applications) may be used to provide monitoring and tracing data. 
Each processor, with its own local clock, then generates a steady flow of events. These events, 
from multiple cores on each system, and from several distributed systems, must then be collected 
and stored efficiently. The events coming from the different cores must be synchronized and allow 
navigation through the possibly huge traces. The currently available trace visualization tools 
have often targeted detailed traces for small real-time embedded systems, or much less detailed 
system logs for larger systems. As a result, none of the systems evaluated for the 2008 Tracing 
Summit [4] were capable of handling traces of more than a few tens of megabytes. The Linux 
Trace Toolkit Viewer, developed at Ecole Polytechnique, is capable of handling huge traces of 
several gigabytes or more. However, a new architecture is required to handle huge traces while 
allowing the collection of traces from multiple systems and embedded devices (R1.2, R1.4 and 
R1.5), for both online and a posteriori offine analysis and viewing.  

More importantly, further work is required to develop algorithms for the synchronization of 
events coming from multiple nodes, multiple cores and even multiple virtual machines (R1.1 and 
R1.3). Existing tracing tools for distributed systems often use coarse level events, for which local 
clocks differences may not be a problem. Tools for tracing newer distributed real-time systems 
[13] rely on the local clocks synchronization and incur a significant loss of accuracy. A 
posteriori synchronization of traces allows more accurate drift estimation because the network 
delay variations are amortized over a large number of message exchanges and a long period of 
time [14]. 

3) Trace abstraction, analysis and correlation: 
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The detailed event lists gathered independently from several processors need to be processed to 
extract higher level information suitable for analysis at higher levels of abstraction. This may be 
achieved by detecting self similar sections of the trace, or sections matching use case maps, 
which may correspond to higher level utility operations. Different metrics may be used (frequency 
of occurence, number of different contexts in which a sequence is used) in order to estimate the 
likelihood of a sequence to represent a higher level abstract utility operation. These new 
techniques have been used successfully for higher level nested method calls traces [15]. The 
context is significantly different in system level traces where asynchronous work queues and 
interrupts mix with simpler nested calls.  

As a first step, the possible events abstraction will be examined on a single system (H1.1 to H1.5). 
For instance, a sequential file reading operation may be the abstract representation of numerous, 
possibly out of order, disk block reads. New efficient algorithms will be developed based on 
pattern detection techniques to abstract out the content of low-level traces generated from 
multicores systems. Pattern detection algorithms rely on matching criteria to assess the extent to 
which various parts of a trace can be deemed similar. A key activity of this milestone is to study 
how existing matching criteria can be applied to low-level traces and if there is a need to create 
new ones. The resulting algorithms will vary in the way existing (or new) matching criteria are 
combined and weighed.  

This trace reduction and abstraction step is useful in itself to reduce the size of traces and 
simplify their understanding for the human viewer. It also allows the automated comparison of 
multiples traces, to quantify and classify the divergences, establishing equivalence in result even 
if implementation differs. This will be useful in different contexts. It may be used for regression 
analysis between traces sampled periodically, monitoring the system performance and detecting 
any degradation, or to insure that subsequent revisions of a software system have not introduced 
programming errors. It may also be used to compare the traces of redundant servers, performing 
the same work but through distinct software implementations, in order to detect any malfunction 
possibly caused by a security breach.  

As a second step, the abstraction algorithms will be enhanced and extended to analyze multilevel 
distributed systems (H2.1 to H2.5). For example, client-server requests may be identified by 
finding specific sequences of message send and receive events (e.g. DNS UDP packets). This is 
different from the distributed traces synchronization research thread where simple pairs of 
matching lower level packet send and receive events (typically TCP) are identified wherever 
possible to obtain common time reference points.  

A significant challenge is to cope with the variability and uncertainty associated with the 
approximate time synchronization of events from independently clocked cores and computers, 
and the unobvious matching of request and response pairs, particularly in the presence of non 
connection oriented protocols with lost packets and retransmissions. 

4) Automated fault identification: 

By carefully examining execution traces of an information system, experts can detect problematic 
behaviors that are related to software design defects, inefficiencies as well as malicious activities. 
Examples of such faulty behaviors may include: excessive swapping, lock contention, undue 
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latency, inefficient task scheduling, attempts to erase system logs, modification of system files, 
etc.  

Mechanisms allowing fault detection already exist in Intrusion Detection Systems (IDS). Among 
others, they analyze network packet traces and look for attack patterns. Many of these use 
specialized languages to represent faulty conditions, scenarios, patterns, etc. These languages 
have different flavors, some are: domain specific (Panoptis, Snort, NeVO), imperative languages 
(ASAX, BRO), finite states (STAT, IDIOT, BSML), expert systems (P-BEST, LAMBDA), temporal 
logic (LogWeaver, Monid, Chronicles).  

A similar approach is chosen in this project to provide an online flexible automated fault 
identification mechanism for execution traces. The main goal is to allow systems to trigger 
alarms during operations when specified problematic conditions, scenarios or patterns are 
detected in execution traces. Such detection system will significantly improve the decision making 
process as well as thoughtful analysis and response, while maximizing time for risk mitigation.  

Problematic conditions that are found in execution traces will first be studied in depth (K1.1, 
K2.1 and R2.1) in order to clearly identify what semantic must be represented by the language. A 
state of the art will then be done to identify a number of complementary languages and potential 
solutions that could be used (K1.2). New algorithms, patterns and techniques will then be 
developed to detect a wide range of non timing critical problems (K1.3 to K1.5), then for timing 
critical problems (K2.2 to K2.5), including denial of service cyber-attacks, and finally for multi-
level distributed systems specific problems (R2.2 to R2.5). 

5) System health monitoring and corrective measure activation: 

System irregularities and overall performance degradation [16] can be observed and measured 
to a new level of awareness by the enabling technologies described above (trace abstraction, 
analysis and correlation, automated fault identification, adaptive fault probing, etc). The 
objective of this research and development thread is to define and to validate quantitative 
measures that may be used to assess global system health and appropriate activation of 
corrective measures.  

System health can be evaluated using an array of different, often complementary, approaches. A 
more traditional approach is using the low level (trace) metrics [17] or statistics computed 
directly in the probes. Similar metrics may be built on higher level abstracted events. The 
comparison of correlated traces from redundant systems will use different techniques to extract 
the differences, and measure their size and significance; different techniques such as measuring 
the edit distance, used to study the temporal evolution of source code in a project, or to detect 
cloned source code blocks, may be used.  

A model of healthy behavior may be described or deduced from system characterization through 
the analysis of several traces. Thereafter, any indication that the trace of a monitored system 
diverges from the healthy model is then flagged as suspicious. Additionally, strict access rules for 
the different system resources by the different processes may be defined and checked during the 
trace monitoring; these access rules may be much more fine grained and thus precise than what 
is supported by the operating system. The pattern languages developed for automated fault 
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identification and traces abstraction may be used to characterize important aspects of the system 
health.  

The resulting system health or reliability measurement can be highly informative to the system 
administrator to increase the level of surveillance or to activate additional protective and 
reactive measures such as logging more information, modifying packet filtering rules, inserting 
and/or activating probes dynamically, modifying system behaviour or simply shutting down some 
computers in order to protect them from hacking or malicious exploitation (D3.1 to D3.8).  

6) Trace directed modeling: 

Many benefits can be achieved by processing trace events so as to reconstruct a higher-level 
model, such as state machine or an interaction model. Necessary operations to build such a 
model include filtering less-relevant items (e.g. utilities) from the trace; the process also builds 
on trace abstraction, analysis and correlation. Key challenges are to manage the scope and to 
determine the appropriate abstractions; this can be guided by the presence of an original UML 
model used to create the system (if available). An example of the above is taking a series of 
transmissions in a system and recognizing that it represents a single transaction (L1.1 and L1.5).  

The reconstructed model can then applied in several ways: 1) It can be used for anomaly 
detection and analysis by comparing it to either the original UML model, or to models generated 
from previous correct or anomalous runs. 2) Delays, timing and resource usage can be analysed 
at the level of the abstract entities in the model. 3) Various visualization techniques can be 
applied to the model to allow engineers to obtain insights. 4) It becomes possible to change the 
model (e.g. change the amount or distribution of resources, or change a condition) and estimate 
the effect on the system's performance or behaviour (L1.6 to L1.8).  

Building on the synchronization of distributed multi-level multi-core traces, the basic operating 
system model currently available in the LTTng viewer [6] will be extended to represent multi-
level (system and user level virtual machines) distributed systems by modeling explicitly the 
relationships and interactions between these real and virtual systems (D2.1 to D2.5). These 
interactions will then be analyzed to identify and report critical paths detailing the delay 
components, for instance explaining the time elapsed between a query and a response on a 
distributed system. 
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Annex C Used tracing softwate – Overview  

An overview of LTTng is presented in this annex. The reader should keep in mind that this 
description refers to the 2006 version of the software. Since then, the software has been the object 
of intensive evolution phases designed to make it part of the mainline of the Linux kernel. The 
reader will find a more complete description in Desnoyers and Dagenais (2008). 

C.1 Overview of the LTTng architecture 

The first version of LTTng was actually called LTT (Yagmour, 2001). The main goal of this work 
was to build a set of tools that could provide their users an exact continually updated picture of 
the dynamical aspects of their system. The knowledge of performance issues and associated 
causes were at the centre of this R&D effort. At its beginning in 2001, execution of the first 
version LTT was already showing low relative CPU costs of 2.5%.  

The arrival of the new version of LTT, “LTT new generation” (LTTng), confirmed the necessity of 
keeping these CPU costs as low as possible when dealing with increasingly complex systems. A 
low impact, high performance tracing system appears to be the only tool capable of collecting the 
information produced by instrumenting the whole system, while not changing significantly the 
studied system behaviour and performance (Desnoyers and Dagenais, 2006b).  

One of the challenges that were encountered at the beginning of the LTTng development was to 
obtain a flexible and extensible tracer with precise timestamps, across multiple architectures, 
running from several MHx to several GHz, some being multi-processors. Its flexibility would 
facilitate the addition of new instrumentation points as well as plugins for the analysis and display 
of the traced data. 

The architecture of LTTng can be described using five interlinked architectural views; 1) Control; 
2) Data flow; 3) Instrumentation; 4) Event type registration; and 5) Tracing. These views are 
introduced in the following lines. This text (and Figure 27) essentially was borrowed from 
Desnoyers and Dagenais (2006b); the reader is invited to consult this paper (and subsequent) for 
more details.  

1) Control: 

There are three main parts in the LTTng architecture (Figure 27):  

• lttctl: a user space command-line application that is used to control tracing. It starts lttd 
and controls kernel tracing behavior through a librarymodule bridge which uses a netlink 
socket. 

• lttd: a user space daemon that waits for trace data and writes it to disk. 

• a kernel part that controls kernel tracing.  

The core module of LTTng is ltt-core. This module is responsible for a number of LTT control 
events. It controls the following helper modules:  
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• ltt-heartbeat: this modeule generates periodic events in order to detect and account for 
cycle counters overflows, thus allowing a single monotonically increasing time base even if 
shorter 32-bit (instead of 64-bit) cycle counts are stored in each event. 

• ltt-facilities: this modeule lists the facilities (collection of event types) currently loaded at 
trace start time. 

• ltt-statedump: this modeule generates events to describe the kernel state at trace start time 
(processes, files…). 

A builtin kernel object, ltt-base, contains the symbols and data structures required by builtin 
instrumentation. This includes principally the tracing control structures. 

lttd

FS

User space

Kernel space

lttctl liblttctl

RelayFS

ltt-control

ltt-core

ltt-base ltt-statedump

ltt-heartbeat ltt-facilities

Netlink
socket

Ctrl

Ctrl Ctrl

libtll-usertrace-fast

ltt-syscall

libtll-usertrace 
(system call)

 

Figure 27. Architecture of the tracing software LTTng. 

2) Data flow: 

The data flows from the kernel to the user space in the following manner. All data is written 
through ltt-base into RelayFS circular buffers (Zanussi et al., 2003; RelayFS, 2008). When 
subbuffers are full (please refer to Section 2.4.1 of this document for definition of buffers, 
subbuffers and channels), they are delivered to the lttd disk writer daemon. lttd is a standalone 
multithreaded daemon which waits on RelayFS channels (files) for data by using the poll file 
operation. When it is awakened, it locks the channels for reading by using a relay buffer get ioctl. 
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At that point, it has exclusive access to the subbuffer it has reserved and can safely write it to 
disk. It should then issue a relay buffer put ioctl to release it so it can be reused.  

A side-path, libltt-usertrace-fast, running completely in user space, has been developed for high 
throughput user space applications which need high performance tracing. (…) Both lttd and the 
libltt-usertrace-fast companion process currently support disk output, but should eventually be 
extended to other media like network communication. (Chapter Error! Reference source not 
found. addresses partially this problematic). 

3) Instrumentation: 

LTTng instrumentation (…) consists in an XML event description that is used both for 
automatically generating tracing headers and as data metainformation in the trace files. These 
tracing headers implement the functions that must be called at instrumentation sites41 to log 
information in traces. Most common types are supported in the XML description: fixed size 
integers, host size integers (int, long, pointer, size_t), floating point numbers, enumerations, and 
strings. All of these can be either host or network byte ordered. It also supports nested arrays, 
sequences, structures, and unions. The tracing functions, generated in the tracing headers, 
serialize the C types given as arguments into the LTT trace format. This format supports both 
packed and aligned data types. A record generated by a probe hit is called an event. Event types 
are grouped in facilities. A facility is a dynamically loadable object, either a kernel module for 
kernel instrumentation or a user space library for user space instrumentation. An object that calls 
instrumentation should be linked with its associated facility object. 

4) Event type registration: 

Event type registration is centralized in the lttfacilities kernel object (…). It controls the rights to 
register specific type of information in traces. For instance, it does not allow a user space 
process using the ltt-usertrace API to register facilities with names conflicting with kernel 
facilities. The ltt-heartbeat built-in object and the lttstatedump also have their own 
instrumentation to log events. Therefore, they also register to ltt-facilities, just like standard 
kernel instrumentation. Registered facility names, checksums and type sizes are locally stored in 
ltt-facilities so they can be dumped in a special low traffic channel at trace start. Dynamic 
registration of new facilities, while tracing is active, is also supported. Facilities contain 
information concerning the type sizes in the compilation environment of the associated 
instrumentation. For instance, a facility for a 32-bit process would differ from the same facility 
compiled with a 64-bit process from its long and pointer sizes. 

5) Tracing: 

(…) traced information must have its metainformation registered into ltt-facilities. (…) The 
tracing path has the biggest impact on system behavior because it is called for every event. Each 
event recorded uses ltt-base, container of the active traces, to get the pointers to RelayFS buffers. 
Used lockless mechanisns make them reentrant, scalable, and precise.  

                                                   
41 In this paper, call site, is defined as the original code from the instrumented program where the tracing 
function is called and instrumentation site is defined as the tracing function itself. 
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C.2 Installation  of LTTng  

The procedure for installing the tracing software LTTng is listed in this section. It was made 
especially for the Ubuntu Desktop 8.10 LTS (June, 2008). 

1.  ################################################### ######################## 

2.  Tools that are needed for this installation process  

3.  ################################################### ########################## 

4.  Create a working directory and change directory: 

a.  mkdir ~/lttng_stuff/ 

b.  cd ~/lttng_stuff 

5.  Download, from the LTTng web site (LTTng, 2008), th e following three files: (if the 
last version of these files are choosen, the reader  should make sure the version 
numbers correspond to the one of the Linux kernel t hat will be used). 

a.  patch-2.6.25.4-lttng-0.10-pre55.tar.bz2 

b.  ltt-control-0.48-27022008.tar.gz 

c.  lttv-0.10.0-pre11-10032008.tar.gz 

6.  Download from Kernel (2008) the Linux kernel. The r eader should make sure that the 
version number of the kernel is the same as the one  of the three files that were 
downloaded at step 5. In our example, the following  file should be downloaded: 

a.  linux-2.6.25.4.tar.bz2 

7.  Install development tools that will be needed. The following line triggers this 
installation: 

a.  sudo apt-get install build-essential quilt libncurs es-dev fakeroot kernel-
package libgtk2.0-dev libpopt-dev 

8.  ################################################### ########################## 

9.  Compile and install the downloaded Linus kernel 

10.  ################################################### ########################## 

11.  Extract file from downloaded files using the follow ing commands: 

a.  tar xjf linux-2.6.25.4.tar.bz2 

b.  tar xjf patch-2.6.25.4-lttng-0.10-pre55.tar.bz2 

12.  Apply the patches with the following commands: 

a.  cd linux-2.6.25.4 

b.  ln -s ../patch-2.6.25.4-lttng-0.10-pre55 patches 

c.  quilt push -a 

13.  Configure the Linux kernel. Here, we copy the defau lt configuration. 

a.  cp /boot/config-`uname -r` .config 

b.  make menuconfig 
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14.  The last command (#13-b) will laungh a menu allowin g the selection of options. The 
reader should make sure that the following options are selected: 

a.  General Setup ---> 

i.  [X] Activate markers 

b.  Linux Trace Toolkit ---> 

i.  [X] LTTng fine-grained timestamping 

ii.  [X] Linux Trace Toolkit Instrumentation Support 

ii.  <*> Linux Trace Toolkit Relay+DebugFS Support 

iii.  <*>   Linux Trace Toolkit Serializer 

iv.  <*>     Linux Trace Toolkit Marker Control 

v.  <*>       Linux Trace Toolkit Tracer 

vi.  [*] Align Linux Trace Toolkit Traces 

vii.  [*] Support trace extraction from crash dump 

viii.  [ ] Write hearbeat event to shrink trace (EXPERIMEN TAL) 

ix.  <M> Linux Trace Toolkit Netlink Controller 

x.  <M> Linux Trace Toolkit State Dump 

15.  Following options should be disabled in order to lo wer the size of the kernel and its 
modules. It is important thay the reader make sure that these elements be 
desactivated.   

c.  Kernel Hacking ---> 

i.  [ ] Enable unused/obsolete exported symbols 

ii.  [ ] Kernel debugging 

iii.  [ ] Compile kernel with debug info 

16.  Once this configuration process has ended, quit and  save. The kernel may now be 
compiled using the following commands: 

a.  make-kpkg clean 

b.  fakeroot make-kpkg --initrd --append-to-version=-lt tng-0.10-pre55 kernel_image 

17.  The kernel compilation process may take a long time . When it is finished, a package 
containing the kernel and its modules will be creat ed and saved in the directory 
containing the source of the kernel. Use the follow ing commands to install the new 
compiled kernel. 

a.  cd .. 

b.  sudo dpkg -i linux-image-2.6.25.4-lttng-0.10-pre55_ 2.6.25.4.deb 

18.  The computer must be restarted in order to load the  new kernel. While booting, the use 
will have to select among two or many compiled kern els. S/he should select the LTTng 
enabled kernel. 

19.  ################################################### ########################## 

20.  Configuration of the file system “debugfs” 
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21.  ################################################### ########################## 

22.  Create a directory in /mnt that will allow the moun ting of the debugfs file system. 

a.  sudo mkdir /mnt/debugfs 

23.  Edit the file “/etc/fstab” and add the following li ne at the end of the file, save and 
quit the editor: 

a.  debugfs /mnt/debugfs debugfs rw 0 0 

24.  Mount the file system debugfs using the following c ommand: 

a.  sudo mount /mnt/debugfs 

25.  ################################################### ########################## 

26.  Compilation and installation of ltt-control  

27.  (ltt-control is the application allowing the contro l of the tracing). 

28.  ################################################### ########################## 

29.  Compile and install ltt-control with the following commands: 

a.  tar xzf ltt-control-0.48-27022008.tar.gz 

b.  cd ltt-control-0.48-27022008 

c.  ./configure 

d.  make 

e.  sudo make install 

30.  ################################################### ########################## 

31.  Compilation and installation of lttv 

32.  (lttv is the visualisation tool). 

33.  ################################################### ########################## 

34.  Compile and install lttv with the use of the follow ing commands: 

a.  tar xzf lttv-0.10.0-pre11-10032008.tar.gz 

b.  cd lttv-0.10.0-pre11-10032008 

c.  ./configure 

d.  make 

e.  sudo make install 

35.  Finally, update the dynamical library index with th e following command: 

a.  sudo ldconfig 

C.3 How to use  

1.  ################################################### ########################## 
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2.  Mettre un mot de passe root 

3.  ################################################### ########################## 

4.  In order to control the tracing with lttv, the pass word of lttv should be configured 
with tha one of the root. Use the following command : 

a.  sudo passwd 

b.  Enter the password twice 

5.  ################################################### ########################## 

6.  Testing LTTng 

7.  ################################################### ########################## 

8.  Load modules and arm markers with the following com mands (these commands must be 
retyped after every start of the computer): 

a.  sudo modprobe ltt-control 

b.  sudo modprobe ltt-statedump 

c.  sudo ltt-armall 

9.  LTTng is now ready to be used. The graphical interf ace of LTTng (LTTV) may be lauched 
with the following command: 

a.  lttv-gui 

10.  To start a trace, click on the red/yellow/green ico n that is located in the tool box. 
En ter the root password and click on start.  

11.  To end tracing, click on stop. The application should then ask for loading the trace into its 
viewer. 

C.4 List of LTTng active markers (or probes)  

The following list corresponds to the one that can be found in the last version of LTTng (LTTng, 
2008). 

1.  marker: kernel_arch_kthread_create format: "pid %ld  fn %p"  

2.  marker: kernel_arch_trap_exit format: " "  

3.  marker: kernel_arch_trap_entry format: "trap_id %d ip #p%ld"  

4.  marker: statedump_idt_table format: "irq %d address  %p symbol %s"  

5.  marker: kernel_arch_ipc_call format: "call %u first  %d"  

6.  marker: kernel_arch_syscall_exit format: "ret %ld"  

7.  marker: kernel_arch_syscall_entry format: "syscall_ id %d ip #p%ld"  

8.  marker: kernel_irq_entry format: "irq_id %u kernel_ mode %u ip %lu"  

9.  marker: kernel_irq_exit format: "handled #1u%u"  

10.  marker: kernel_softirq_entry format: "softirq_id %l u"  
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11.  marker: kernel_softirq_exit format: "softirq_id %lu "  

12.  marker: kernel_softirq_raise format: "softirq_id %u "  

13.  marker: kernel_tasklet_low_entry format: "func %p d ata %lu"  

14.  marker: kernel_tasklet_low_exit format: "func %p da ta %lu"  

15.  marker: kernel_tasklet_high_entry format: "func %p data %lu"  

16.  marker: kernel_tasklet_high_exit format: "func %p d ata %lu"  

17.  marker: kernel_kthread_stop format: "pid %d"  

18.  marker: kernel_kthread_stop_ret format: "ret %d"  

19.  marker: kernel_sched_wait_task format: "pid %d stat e %ld"  

20.  marker: kernel_sched_try_wakeup format: "pid %d sta te %ld"  

21.  marker: kernel_sched_wakeup_new_task format: "pid % d state %ld"  

22.  marker: kernel_sched_schedule format: "prev_pid %d next_pid %d prev_state %ld"  

23.  marker: kernel_sched_migrate_task format: "pid %d s tate %ld dest_cpu %d"  

24.  marker: kernel_send_signal format: "pid %d signal % d"  

25.  marker: kernel_process_free format: "pid %d"  

26.  marker: kernel_process_exit format: "pid %d"  

27.  marker: kernel_process_wait format: "pid %d"  

28.  marker: kernel_process_fork format: "parent_pid %d child_pid %d child_tgid %d"  

29.  marker: kernel_timer_itimer_expired format: "pid %d "  

30.  marker: kernel_timer_itimer_set format: "which %d i nterval_sec %ld interval_usec %ld 
value_sec %ld value_usec %ld"  

31.  marker: kernel_timer_set format: "expires %lu funct ion %p data %lu"  

32.  marker: kernel_timer_update_time format: "jiffies # 8u%llu xtime_sec %ld xtime_nsec %ld 
walltomonotonic_sec %ld walltomonotonic_nsec %ld"  

33.  marker: kernel_timer_timeout format: "pid %d"  

34.  marker: kernel_printk format: "ip %lu"  

35.  marker: kernel_vprintk format: "loglevel %c string %s ip %lu"  

36.  marker: kernel_module_free format: "name %s"  

37.  marker: kernel_module_load format: "name %s"  

38.  marker: mm_wait_on_page_start format: "pfn %lu bit_ nr %d"  
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39.  marker: mm_wait_on_page_end format: "pfn %lu bit_nr  %d"  

40.  marker: mm_huge_page_free format: "pfn %lu"  

41.  marker: mm_huge_page_alloc format: "pfn %lu"  

42.  marker: mm_handle_fault_entry format: "address %lu ip #p%ld write_access %d"  

43.  marker: mm_handle_fault_exit format: "res %d"  

44.  marker: mm_page_free format: "order %u pfn %lu"  

45.  marker: mm_page_alloc format: "order %u pfn %lu"  

46.  marker: mm_swap_in format: "pfn %lu filp %p offset %lu"  

47.  marker: mm_swap_out format: "pfn %lu filp %p offset  %lu"  

48.  marker: mm_swap_file_close format: "filp %p"  

49.  marker: mm_swap_file_open format: "filp %p filename  %s"  

50.  marker: fs_buffer_wait_start format: "bh %p"  

51.  marker: fs_buffer_wait_end format: "bh %p"  

52.  marker: fs_exec format: "filename %s"  

53.  marker: fs_ioctl format: "fd %u cmd %u arg %lu"  

54.  marker: fs_open format: "fd %d filename %s"  

55.  marker: fs_close format: "fd %u"  

56.  marker: fs_lseek format: "fd %u offset %ld origin % u"  

57.  marker: fs_llseek format: "fd %u offset %lld origin  %u"  

58.  marker: fs_read format: "fd %u count %zu"  

59.  marker: fs_write format: "fd %u count %zu"  

60.  marker: fs_pread64 format: "fd %u count %zu pos %ll u"  

61.  marker: fs_pwrite64 format: "fd %u count %zu pos %l lu"  

62.  marker: fs_readv format: "fd %lu vlen %lu"  

63.  marker: fs_writev format: "fd %lu vlen %lu"  

64.  marker: fs_select format: "fd %d timeout #8d%lld"  

65.  marker: fs_pollfd format: "fd %d"  

66.  marker: ipc_msg_create format: "id %ld flags %d"  

67.  marker: ipc_sem_create format: "id %ld flags %d"  
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68.  marker: ipc_shm_create format: "id %ld flags %d"  

69.  marker: input_event format: "type %u code %u value %d"  

70.  marker: net_dev_xmit format: "skb %p protocol #2u%h u"  

71.  marker: net_dev_receive format: "skb %p protocol #2 u%hu"  

72.  marker: net_insert_ifa_ipv4 format: "label %s addre ss #4u%u"  

73.  marker: net_del_ifa_ipv4 format: "label %s address #4u%u"  

74.  marker: net_insert_ifa_ipv6 format: "label %s a15 # 1x%c a14 #1x%c a13 #1x%c a12 #1x%c 
a11 #1x%c a10 #1x%c a9 #1x%c a8 #1x%c a7 #1x%c a6 # 1x%c a5 #1x%c a4 #1x%c a3 #1x%c a2 
#1x%c a1 #1x%c a0 #1x%c"  

75.  marker: net_insert_ifa_ipv6 format: "label %s a15 # 1x%c a14 #1x%c a13 #1x%c a12 #1x%c 
a11 #1x%c a10 #1x%c a9 #1x%c a8 #1x%c a7 #1x%c a6 # 1x%c a5 #1x%c a4 #1x%c a3 #1x%c a2 
#1x%c a1 #1x%c a0 #1x%c"  

76.  marker: net_socket_sendmsg format: "sock %p family %d type %d protocol %d size %zu"  

77.  marker: net_socket_recvmsg format: "sock %p family %d type %d protocol %d size %zu"  

78.  marker: net_socket_create format: "sock %p family % d type %d protocol %d fd %d"  

79.  marker: net_socket_call format: "call %d a0 %lu" 
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Annex D The micro_httpd application 

Following pages contain a listing of the micro_httpd application. 
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D.1 Source code of the micro_httpd application 

The source code of the micro_httpd application is listed “as is” in this section.  

1.  /* micro_httpd - really small HTTP server 

2.  ** Copyright © 1999,2005 by Jef Poskanzer <jef@mail .acme.com>. 

3.  ** All rights reserved. 

4.  ** Redistribution and use in source and binary form s, with or without 

5.  ** modification, are permitted provided that the fo llowing conditions 

6.  ** are met: 

7.  ** 1. Redistributions of source code must retain th e above copyright 

8.  **    notice, this list of conditions and the follo wing disclaimer. 

9.  ** 2. Redistributions in binary form must reproduce  the above copyright 

10.  **    notice, this list of conditions and the follo wing disclaimer in the 

11.  **    documentation and/or other materials provided  with the distribution. 

12.  ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONT RIBUTORS ``AS IS'' AND 

13.  ** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BU T NOT LIMITED TO, THE 

14.  ** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNES S FOR A PARTICULAR PURPOSE 

15.  ** ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR  CONTRIBUTORS BE LIABLE 

16.  ** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, E XEMPLARY, OR CONSEQUENTIAL 

17.  ** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREM ENT OF SUBSTITUTE GOODS 

18.  ** OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR B USINESS INTERRUPTION) 



 

DRDC Valcartier TR 2008-300 83 
 

 
 
 

19.  ** HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, W HETHER IN CONTRACT, STRICT 

20.  ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHE RWISE) ARISING IN ANY WAY 

21.  ** OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED  OF THE POSSIBILITY OF 

22.  ** SUCH DAMAGE. 

23.  */ 

24.  #include <sys/types.h> 

25.  #include <unistd.h> 

26.  #include <stdlib.h> 

27.  #include <stdio.h> 

28.  #include <string.h> 

29.  #include <dirent.h> 

30.  #include <ctype.h> 

31.  #include <time.h> 

32.  #include <sys/stat.h> 

33.  #define SERVER_NAME "micro_httpd" 

34.  #define SERVER_URL "http://www.acme.com/software/mi cro_httpd/" 

35.  #define PROTOCOL "HTTP/1.0" 

36.  #define RFC1123FMT "%a, %d %b %Y %H:%M:%S GMT" 

37.  /* Forwards. */ 

38.  static void file_details( char* dir, char* name ); 

39.  static void send_error( int status, char* title, ch ar* extra_header, char* text ); 

40.  static void send_headers( int status, char* title, char* extra_header, char* mime_type, off_t length, time_t mod ); 

41.  static char* get_mime_type( char* name ); 
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42.  static void strdecode( char* to, char* from ); 

43.  static int hexit( char c ); 

44.  static void strencode( char* to, size_t tosize, con st char* from ); 

45.  //************************************************* ******** 

46.  int main( int argc, char** argv ) 

47.  { 

48.   

49.   char line[10000], method[10000], path[10000], prot ocol[10000], idx[20000], location[20000], command[2 0000]; 

50.   char* file; 

51.   size_t len; 

52.   int ich; 

53.   struct stat sb; 

54.   FILE* fp; 

55.   struct dirent **dl; 

56.   int i, n; 

57.   if ( argc != 2 ) 

58.    send_error( 500, "Internal Error", (char*) 0, "Co nfig error - no dir specified." ); 

59.   if ( chdir( argv[1] ) < 0 ) 

60.    send_error( 500, "Internal Error", (char*) 0, "Co nfig error - couldn't chdir()." ); 

61.   if ( fgets( line, sizeof(line), stdin ) == (char*)  0 ) 

62.    send_error( 400, "Bad Request", (char*) 0, "No re quest found." ); 

63.   if ( sscanf( line, "%[^ ] %[^ ] %[^ ]", method, pa th, protocol ) != 3 ) 

64.    send_error( 400, "Bad Request", (char*) 0, "Can't  parse request." ); 
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65.   while ( fgets( line, sizeof(line), stdin ) != (cha r*) 0 ){ 

66.    if ( strcmp( line, "\n" ) == 0 || strcmp( line, " \r\n" ) == 0 ) 

67.    break; 

68.   } 

69.   if ( strcasecmp( method, "get" ) != 0 ) 

70.    send_error( 501, "Not Implemented", (char*) 0, "T hat method is not implemented." ); 

71.   if ( path[0] != '/' ) 

72.    send_error( 400, "Bad Request", (char*) 0, "Bad f ilename." ); 

73.   file = &(path[1]); 

74.   strdecode( file, file ); 

75.   if ( file[0] == '\0' ) 

76.    file = "./"; 

77.   len = strlen( file ); 

78.   if ( file[0] == '/' || strcmp( file, ".." ) == 0 | | strncmp( file, "../", 3 ) == 0 || strstr( file, " /../" ) != (char*) 
0 || strcmp( &(file[len-3]), "/.." ) == 0 ) 

79.    send_error( 400, "Bad Request", (char*) 0, "Illeg al filename." ); 

80.   if ( stat( file, &sb ) < 0 ) 

81.    send_error( 404, "Not Found", (char*) 0, "File no t found." ); 

82.   if ( S_ISDIR( sb.st_mode ) { 

83.    if ( file[len-1] != '/' ){ 

84.     (void) snprintf(location, sizeof(location), "Loc ation: %s/", path ); 

85.     send_error( 302, "Found", location, "Directories  must end with a slash." ); 

86.    } 

87.    (void) snprintf( idx, sizeof(idx), "%sindex.html" , file ); 
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88.    if ( stat( idx, &sb ) >= 0 ){ 

89.     file = idx; 

90.     goto do_file; 

91.    } 

92.    send_headers( 200, "Ok", (char*) 0, "text/html", -1, sb.st_mtime ); 

93.    (void) printf( "<html><head><title>Index of %s</t itle></head>\n<body bgcolor=\"#99cc99\"><h4>Index o f 
%s</h4>\n<pre>\n", file, file ); 

94.    n = scandir( file, &dl, NULL, alphasort ); 

95.    if ( n < 0 ) 

96.     perror( "scandir" ); 

97.    else 

98.     for ( i = 0; i < n; ++i ) 

99.      file_details( file, dl[i]->d_name ); 

100.    (void) printf( "</pre>\n<hr>\n<address><a href=\" %s\">%s</a></address>\n</body></html>\n", SERVER_UR L, 
SERVER_NAME ); 

101.   } 

102.   else{ 

103.    do_file: 

104.    fp = fopen( file, "r" ); 

105.    if ( fp == (FILE*) 0 ) 

106.     send_error( 403, "Forbidden", (char*) 0, "File i s protected." ); 

107.    send_headers( 200, "Ok", (char*) 0, get_mime_type ( file ), sb.st_size, sb.st_mtime ); 

108.    while ( ( ich = getc( fp ) ) != EOF ) 

109.     putchar( ich ); 
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110.   } 

111.   (void) fflush( stdout ); 

112.   exit( 0 ); 

113.  } 

114.  //************************************************* ******** 

115.  static void file_details( char* dir, char* name ) 

116.  { 

117.   static char encoded_name[1000]; 

118.   static char path[2000]; 

119.   struct stat sb; 

120.   char timestr[16]; 

121.   strencode( encoded_name, sizeof(encoded_name), nam e ); 

122.   (void) snprintf( path, sizeof(path), "%s/%s", dir,  name ); 

123.   if ( lstat( path, &sb ) < 0 ) 

124.    (void) printf( "<a href=\"%s\">%-32.32s</a>    ?? ?\n", encoded_name, name ); 

125.   else { 

126.    (void) strftime( timestr, sizeof(timestr), "%d%b% Y %H:%M", localtime( &sb.st_mtime ) ); 

127.    (void) printf( "<a href=\"%s\">%-32.32s</a>    %1 5s %14lld\n", encoded_name, name, timestr, (int64_t ) 
sb.st_size ); 

128.   } 

129.  } 

130.  //************************************************* ******** 

131.  static void send_error( int status, char* title, ch ar* extra_header, char* text ) 

132.  { 
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133.   send_headers( status, title, extra_header, "text/h tml", -1, -1 ); 

134.   (void) printf( "<html><head><title>%d %s</title></ head>\n<body bgcolor=\"#cc9999\"><h4>%d %s</h4>\n",  status, 
title, status, title ); 

135.   (void) printf( "%s\n", text ); 

136.   (void) printf( "<hr>\n<address><a href=\"%s\">%s</ a></address>\n</body></html>\n", SERVER_URL, SERVER _NAME ); 

137.   (void) fflush( stdout ); 

138.   exit( 1 ); 

139.  } 

140.  //************************************************* ******** 

141.  static void send_headers( int status, char* title, char* extra_header, char* mime_type, off_t length, time_t mod ) 

142.  { 

143.   time_t now; 

144.   char timebuf[100]; 

145.   (void) printf( "%s %d %s\015\012", PROTOCOL, statu s, title ); 

146.   (void) printf( "Server: %s\015\012", SERVER_NAME ) ; 

147.   now = time( (time_t*) 0 ); 

148.   (void) strftime( timebuf, sizeof(timebuf), RFC1123 FMT, gmtime( &now ) ); 

149.   (void) printf( "Date: %s\015\012", timebuf ); 

150.   if ( extra_header != (char*) 0 ) 

151.    (void) printf( "%s\015\012", extra_header ); 

152.   if ( mime_type != (char*) 0 ) 

153.    (void) printf( "Content-Type: %s\015\012", mime_t ype ); 

154.   if ( length >= 0 ) 
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155.    (void) printf( "Content-Length: %lld\015\012", (i nt64_t) length ); 

156.   if ( mod != (time_t) -1 ){ 

157.    (void) strftime( timebuf, sizeof(timebuf), RFC112 3FMT, gmtime( &mod ) ); 

158.    (void) printf( "Last-Modified: %s\015\012", timeb uf ); 

159.   } 

160.   (void) printf( "Connection: close\015\012" ); 

161.   (void) printf( "\015\012" ); 

162.  } 

163.  //************************************************* ******** 

164.  static char* get_mime_type( char* name ) 

165.  { 

166.   char* dot; 

167.   dot = strrchr( name, '.' ); 

168.   if ( dot == (char*) 0 ) 

169.    return "text/plain; charset=iso-8859-1"; 

170.   if ( strcmp( dot, ".html" ) == 0 || strcmp( dot, " .htm" ) == 0 ) 

171.    return "text/html; charset=iso-8859-1"; 

172.   if ( strcmp( dot, ".jpg" ) == 0 || strcmp( dot, ". jpeg" ) == 0 ) 

173.    return "image/jpeg"; 

174.       

175.   if ( strcmp( dot, ".gif" ) == 0 ) 

176.    return "image/gif"; 

177.   if ( strcmp( dot, ".png" ) == 0 ) 
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178.    return "image/png"; 

179.   if ( strcmp( dot, ".css" ) == 0 ) 

180.    return "text/css"; 

181.   if ( strcmp( dot, ".au" ) == 0 ) 

182.    return "audio/basic"; 

183.   if ( strcmp( dot, ".wav" ) == 0 ) 

184.    return "audio/wav"; 

185.   if ( strcmp( dot, ".avi" ) == 0 ) 

186.    return "video/x-msvideo"; 

187.   if ( strcmp( dot, ".mov" ) == 0 || strcmp( dot, ". qt" ) == 0 ) 

188.    return "video/quicktime"; 

189.   if ( strcmp( dot, ".mpeg" ) == 0 || strcmp( dot, " .mpe" ) == 0 ) 

190.    return "video/mpeg"; 

191.   if ( strcmp( dot, ".vrml" ) == 0 || strcmp( dot, " .wrl" ) == 0 ) 

192.    return "model/vrml"; 

193.       

194.   if ( strcmp( dot, ".midi" ) == 0 || strcmp( dot, " .mid" ) == 0 ) 

195.    return "audio/midi"; 

196.   if ( strcmp( dot, ".mp3" ) == 0 ) 

197.    return "audio/mpeg"; 

198.   if ( strcmp( dot, ".ogg" ) == 0 ) 

199.    return "application/ogg"; 

200.   if ( strcmp( dot, ".pac" ) == 0 ) 
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201.    return "application/x-ns-proxy-autoconfig"; 

202.   return "text/plain; charset=iso-8859-1"; 

203.  } 

204.  //************************************************* ******** 

205.  static void strdecode( char* to, char* from ) 

206.  { 

207.   for ( ; *from != '\0'; ++to, ++from ) { 

208.    if ( from[0] == '%' && isxdigit( from[1] ) && isx digit( from[2] ) ) { 

209.     *to = hexit( from[1] ) * 16 + hexit( from[2] ); 

210.     from += 2; 

211.    } 

212.    else 

213.     *to = *from; 

214.   } 

215.   *to = '\0'; 

216.  } 

217.  //************************************************* ******** 

218.  static int hexit( char c ) 

219.  { 

220.   if ( c >= '0' && c <= '9' ) 

221.    return c - '0'; 

222.   if ( c >= 'a' && c <= 'f' ) 

223.    return c - 'a' + 10; 
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224.   if ( c >= 'A' && c <= 'F' ) 

225.    return c - 'A' + 10; 

226.   return 0;  /* shouldn't happen, we're guarded by i sxdigit() */ 

227.  } 

228.  //************************************************* ******** 

229.  static void strencode( char* to, size_t tosize, con st char* from ) 

230.  { 

231.   int tolen; 

232.   for ( tolen = 0; *from != '\0' && tolen + 4 < tosi ze; ++from ) { 

233.    if ( isalnum(*from) || strchr( "/_.-~", *from ) ! = (char*) 0 ) { 

234.     *to = *from; 

235.     ++to; 

236.     ++tolen; 

237.    } 

238.    else 

239.    { 

240.     (void) sprintf( to, "%%%02x", (int) *from & 0xff  ); 

241.     to += 3; 

242.     tolen += 3; 

243.    } 

244.   } 

245.   *to = '\0'; 

246.  } 
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D.2 First level abstraction of the application micro_httpd 

 

int main( ... ) 
{ 
 if ( ... ) 
  send_error( ... ); 
 chdir( ... ); 
 if ( ... ) 
  send_error( ... ); 
 fgets( ... ); 
 if ( ... ) 
  send_error( ... ); 
 if ( ... ) 
  send_error( ... ); 
 fgets( ... ); 
 while ( ... ) 
  fgets( ... ); 
 if ( ... ) 
  send_error( ... ); 
 if ( ... ) 
  send_error( ... ); 
 if ( ... ) 
  send_error( ... ); 
 stat( ... ); 
 if ( ... ) 
  send_error( ... ); 
 if ( ... ) 
 { 
  if ( ... ) 
   send_error( ... ); 
  stat( ... ) 
  if ( ... ) 
   goto do_file; 
  send_headers( ... ); 
  scandir( ... ); 
  if ( ... ) 
   perror( ... ); 
  else 
  for ( ... ) 
   file_details( ... ); 
 } 
 else 
 { 
  do_file: 
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  fopen( ... ); 
  if ( ... ) 
   send_error( ... ); 
  send_headers( ... ); 
  while ( ... ) 
   putchar( ... ); 
 } 
 fflush( ... ); 
 exit( ... ); 

}  
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Annex E Example of an execution trace  

An example of an execution trace involving the running of the micro_httpd application in the user space of the Linux kernel is shown 
below. Comments (“#”) were added directly to the listing to help the reader follow the suite of events. The reader may refer to Annex D 
for the listing of the micro_httpd application.  

It should be noted that this example is intended only to give an idea of the content of a trace. Other execution traces involving different 
focuses and resolutions can be produced by activating/de-activating LTTng probes in the system. All examples used throughout this 
document originate from this listing. 

1.  ################################################### ################## 

2.  # http request from “micro_httpd” server (mounted o n xinets): "GET /index.html". 

3.  ################################################### ################### 

4.  list_process_state: 5270.943605493 (/tmp/trace-http d/control/processes_0), 4974, 0, , , 0, 0x0, MODE_U NKNOWN { pid = 4566, 
parent_pid = 1, name = "xinetd", type = 0, mode = 5 , submode = 0, status = 5, tgid = 4566 } 

5.  # 

6.  # File descriptors for xinetd 

7.  # Note that stdin, stdout and stderr point toward ' /dev/null' (xinetd is a deamon) 

8.  # socket:[9854] (fd=7) is possibly the listening so cket (port 80) 

9.  list_file_descriptor: 5270.945015874 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"/dev/null", pid = 4566, fd = 0 } 

10.  list_file_descriptor: 5270.945017342 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"/dev/null", pid = 4566, fd = 1 } 

11.  list_file_descriptor: 5270.945018858 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"/dev/null", pid = 4566, fd = 2 } 

12.  list_file_descriptor: 5270.945021038 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"pipe:[9851]", pid = 4566, fd = 3 } 

13.  list_file_descriptor: 5270.945022718 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"pipe:[9851]", pid = 4566, fd = 4 } 
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14.  list_file_descriptor: 5270.945024729 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"socket:[9860]", pid = 4566, fd = 5 } 

15.  list_file_descriptor: 5270.945026921 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename = 
"socket:[9854]", pid = 4566, fd = 7 } 

16.  ################################################### ########################### 

17.  # Beginning of the execution trace.  

18.  # xinet was waiting, it just received a connexion o n port 80 (HTTP) 

19.  ################################################### ########################### 

20.  # 

21.  # xinetd returns from sys_select. It is back on the  runqueue and the scheduler makes it back running. 

22.  kernel_sched_schedule: 5277.041301367 (/tmp/trace-h ttpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { prev_pid = 3689, 
next_pid = 4566, prev_state = 1 } 

23.  fs_select: 5277.041308682 (/tmp/trace-httpd/cpu_0),  4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, ti meout = -1 } 

24.  fs_select: 5277.041310786 (/tmp/trace-httpd/cpu_0),  4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 5, ti meout = -1 } 

25.  kernel_arch_syscall_exit: 5277.041314293 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 1 } 

26.  # 

27.  # xinetd accepts the connexion (sys_accept) 

28.  kernel_arch_syscall_entry: 5277.041321095 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id = 
102 [sys_socketcall+0x0/0x2d0], ip = 0xb8046424 } 

29.  net_socket_call: 5277.041322235 (/tmp/trace-httpd/c pu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { call  = 5, a0 = 5 } 

30.  kernel_arch_syscall_exit: 5277.041333764 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 6 } 

31.  kernel_arch_syscall_entry: 5277.041342886 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id = 13 
[sys_time+0x0/0x30], ip = 0xb8046424 } 

32.  kernel_arch_syscall_exit: 5277.041344268 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 
1211549623 } 

33.  # 

34.  # xinetd carries on a fork(), the CPU is available for the process that was just created 
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35.  kernel_arch_syscall_entry: 5277.041364003 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id = 
120 [sys_clone+0x0/0x40], ip = 0xb8046424 } 

36.  kernel_process_fork: 5277.041457157 (/tmp/trace-htt pd/control/processes_0), 4566, 4566, xinetd, , 1, 0 x0, SYSCALL { 
parent_pid = 4566, child_pid = 4979, child_tgid = 4 979 } 

37.  kernel_sched_wakeup_new_task: 5277.041459577 (/tmp/ trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, S YSCALL { pid = 4979, 
state = 0 } 

38.  kernel_sched_schedule: 5277.041466725 (/tmp/trace-h ttpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCA LL { prev_pid = 4566, 
next_pid = 4979, prev_state = 0 } 

39.  kernel_arch_syscall_exit: 5277.041486672 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

40.  # 

41.  # xinetd carries on the signal treatment setup for the new process 

42.  kernel_arch_syscall_entry: 5277.041836096 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
174 [sys_rt_sigaction+0x0/0xa0], ip = 0xb8046424 } 

43.  kernel_arch_syscall_exit: 5277.041840053 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

44.  kernel_arch_syscall_entry: 5277.041842114 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
174 [sys_rt_sigaction+0x0/0xa0], ip = 0xb8046424 } 

45.  kernel_arch_syscall_exit: 5277.041843332 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

46.  kernel_arch_syscall_entry: 5277.041845174 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
174 [sys_rt_sigaction+0x0/0xa0], ip = 0xb8046424 } 

47.  kernel_arch_syscall_exit: 5277.041846569 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

48.  kernel_arch_syscall_entry: 5277.041848351 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
174 [sys_rt_sigaction+0x0/0xa0], ip = 0xb8046424 } 

49.  kernel_arch_syscall_exit: 5277.041849365 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

50.  kernel_arch_syscall_entry: 5277.041865837 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
175 [sys_rt_sigprocmask+0x0/0x110], ip = 0xb8046424  } 

51.  kernel_arch_syscall_exit: 5277.041868008 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

52.  # 

53.  # xinetd closes useless file descriptors (for “micr o_httpd”) 
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54.  kernel_arch_syscall_entry: 5277.041882743 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

55.  fs_close: 5277.041884668 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 3 }  

56.  kernel_arch_syscall_exit: 5277.041886529 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

57.  kernel_arch_syscall_entry: 5277.041888033 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

58.  fs_close: 5277.041888832 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 4 }  

59.  kernel_arch_syscall_exit: 5277.041889729 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

60.  kernel_arch_syscall_entry: 5277.041891157 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

61.  fs_close: 5277.041891919 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 0 }  

62.  kernel_arch_syscall_exit: 5277.041893175 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

63.  kernel_arch_syscall_entry: 5277.041894615 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

64.  fs_close: 5277.041895357 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 1 }  

65.  kernel_arch_syscall_exit: 5277.041896043 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

66.  kernel_arch_syscall_entry: 5277.041897466 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

67.  fs_close: 5277.041898192 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 2 }  

68.  # 

69.  # The process is currently “root”. Process’s UID an d PID are replaced by “nobody”. 

70.  kernel_arch_syscall_exit: 5277.041898870 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

71.  kernel_arch_syscall_entry: 5277.041928143 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
214 [sys_setgid+0x0/0x100], ip = 0xb8046424 } 

72.  kernel_arch_syscall_exit: 5277.041931343 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

73.  kernel_arch_syscall_entry: 5277.041956887 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
206 [sys_setgroups+0x0/0x100], ip = 0xb8046424 } 



 

DRDC Valcartier TR 2008-300 99 
 

 
 
 

74.  kernel_arch_syscall_exit: 5277.041960633 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

75.  kernel_arch_syscall_entry: 5277.041964819 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
213 [sys_setuid+0x0/0x150], ip = 0xb8046424 } 

76.  kernel_arch_syscall_exit: 5277.044378401 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

77.  # 

78.  # getpeername() 

79.  kernel_arch_syscall_entry: 5277.044582578 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
102 [sys_socketcall+0x0/0x2d0], ip = 0xb8046424 } 

80.  net_socket_call: 5277.044584667 (/tmp/trace-httpd/c pu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { c all = 7, a0 = 6 } 

81.  kernel_arch_syscall_exit: 5277.044588931 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

82.  # 

83.  # getsockname() 

84.  kernel_arch_syscall_entry: 5277.044593305 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
102 [sys_socketcall+0x0/0x2d0], ip = 0xb8046424 } 

85.  net_socket_call: 5277.044594417 (/tmp/trace-httpd/c pu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { c all = 6, a0 = 6 } 

86.  kernel_arch_syscall_exit: 5277.044595992 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

87.  # 

88.  # Read the file “hosts.allow”; is the connexion sho uld be accepted?  

89.  kernel_arch_syscall_entry: 5277.044662474 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
5 [sys_open+0x0/0x40], ip = 0xb8046424 } 

90.  fs_open: 5277.044684136 (/tmp/trace-httpd/cpu_0), 4 979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 0, f ilename = 
"/etc/hosts.allow" } 

91.  kernel_arch_syscall_exit: 5277.044685328 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 

92.  kernel_arch_syscall_entry: 5277.044736861 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
197 [sys_fstat64+0x0/0x30], ip = 0xb8046424 } 

93.  kernel_arch_syscall_exit: 5277.044740104 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 } 
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94.  kernel_arch_syscall_entry: 5277.044747184 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
192 [sys_mmap2+0x0/0xe0], ip = 0xb8046424 } 

95.  kernel_arch_syscall_exit: 5277.044755413 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = -
1207676928 } 

96.  kernel_arch_syscall_entry: 5277.044757526 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { syscall_id = 
3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

97.  fs_read: 5277.044759137 (/tmp/trace-httpd/cpu_0), 4 979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 0, c ount = 4096 } 

98.  kernel_timer_set: 5277.044781687 (/tmp/trace-httpd/ cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { expires = 1488300, 
function = 0xe1037100, data = 3753167648 } 

99.  kernel_arch_syscall_exit: 5277.044800527 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 98 } 

100.  kernel_arch_syscall_entry: 5277.044944978 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 6 [sys_close+0x0/0x110], ip = 0xb80464 24 } 

101.  fs_close: 5277.044946441 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 0 }  

102.  kernel_arch_syscall_exit: 5277.044952676 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

103.  kernel_arch_syscall_entry: 5277.044954851 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 91 [sys_munmap+0x0/0x60], ip = 0xb8046 424 } 

104.  kernel_arch_syscall_exit: 5277.044967635 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

105.  kernel_arch_syscall_entry: 5277.045056131 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 221 [sys_fcntl64+0x0/0xc0], ip = 0xb80 46424 } 

106.  # 

107.  # Close the listening socket (port 80). 

108.  kernel_arch_syscall_exit: 5277.045059620 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

109.  kernel_arch_syscall_entry: 5277.045080411 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 6 [sys_close+0x0/0x110], ip = 0xb80464 24 } 

110.  fs_close: 5277.045081321 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 7 }  

111.  # 

112.  # Process’s input/output redirection. (stdin, stdou t et stderr toward the socket). 
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113.  kernel_arch_syscall_exit: 5277.045082970 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

114.  kernel_arch_syscall_entry: 5277.045084916 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 63 [sys_dup2+0x0/0x120], ip = 0xb80464 24 } 

115.  kernel_arch_syscall_exit: 5277.045086316 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

116.  kernel_arch_syscall_entry: 5277.045087717 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 63 [sys_dup2+0x0/0x120], ip = 0xb80464 24 } 

117.  kernel_arch_syscall_exit: 5277.045088524 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 1 
} 

118.  kernel_arch_syscall_entry: 5277.045089876 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 63 [sys_dup2+0x0/0x120], ip = 0xb80464 24 } 

119.  kernel_arch_syscall_exit: 5277.045090680 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 2 
} 

120.  # 

121.  # Impose a resource limit.  

122.  kernel_arch_syscall_entry: 5277.045098086 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 75 [sys_setrlimit+0x0/0x210], ip = 0xb 8046424 } 

123.  kernel_arch_syscall_exit: 5277.045100301 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

124.  # 

125.  # Close the original socket file descriptor (socket ’s redirection toward stdin/stdout was already done )  

126.  kernel_arch_syscall_entry: 5277.045102124 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 6 [sys_close+0x0/0x110], ip = 0xb80464 24 } 

127.  fs_close: 5277.045102888 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 6 }  

128.  kernel_arch_syscall_exit: 5277.045103944 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 0 
} 

129.  # 

130.  # Launch “micro_httpd” 
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131.  kernel_arch_syscall_entry: 5277.045111538 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 66 [sys_setsid+0x0/0xd0], ip = 0xb8046 424 } 

132.  kernel_arch_syscall_exit: 5277.045115067 (/tmp/trac e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US ER_MODE { ret = 
4979 } 

133.  kernel_arch_syscall_entry: 5277.045125131 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S YSCALL { 
syscall_id = 11 [sys_execve+0x0/0x80], ip = 0xb8046 424 } 

134.  fs_close: 5277.045319969 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 5 }  

135.  fs_close: 5277.045394854 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd = 3 }  

136.  fs_exec: 5277.045421309 (/tmp/trace-httpd/control/p rocesses_0), 4979, 4979, /usr/local/sbin/micro_http d, , 4566, 0x0, 
SYSCALL { filename = "/usr/local/sbin/micro_httpd" } 

137.  kernel_arch_syscall_exit: 5277.045424721 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

138.  # 

139.  # Initialize “micro_httpd”. Load libraries (.so). 

140.  kernel_arch_syscall_entry: 5277.045473574 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 45 [sys_brk+0x0/0x100],  ip = 0xb805becb } 

141.  kernel_arch_syscall_exit: 5277.045474938 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 134524928 } 

142.  kernel_arch_syscall_entry: 5277.045553130 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 33 [sys_access+0x0/0x30 ], ip = 0xb805c761 } 

143.  kernel_arch_syscall_exit: 5277.045561376 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -2 } 

144.  kernel_arch_syscall_entry: 5277.045597090 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 5 [sys_open+0x0/0x40], ip = 0xb805c624 } 

145.  fs_open: 5277.045610405 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
3, filename = "/etc/ld.so.cache" } 

146.  kernel_arch_syscall_exit: 5277.045611506 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 3 } 

147.  kernel_arch_syscall_entry: 5277.045613448 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb805c5ee } 

148.  kernel_arch_syscall_exit: 5277.045616316 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 
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149.  kernel_arch_syscall_entry: 5277.045618160 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb805c8b3 } 

150.  kernel_arch_syscall_exit: 5277.045637317 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207734272 } 

151.  kernel_arch_syscall_entry: 5277.045639201 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 6 [sys_close+0x0/0x110] , ip = 0xb805c65d } 

152.  fs_close: 5277.045640113 (/tmp/trace-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x 0, SYSCALL { fd = 
3 } 

153.  kernel_arch_syscall_exit: 5277.045641698 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

154.  kernel_arch_syscall_entry: 5277.045699289 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 5 [sys_open+0x0/0x40], ip = 0xb805c624 } 

155.  fs_open: 5277.045711045 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
3, filename = "/lib/libc.so.6" } 

156.  kernel_arch_syscall_exit: 5277.045712189 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 3 } 

157.  kernel_arch_syscall_entry: 5277.045714048 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 3 [sys_read+0x0/0xa0], ip = 0xb805c6a4 } 

158.  fs_read: 5277.045715671 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
3, count = 512 } 

159.  kernel_arch_syscall_exit: 5277.045723748 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 512 } 

160.  kernel_arch_syscall_entry: 5277.045733316 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb805c5ee } 

161.  kernel_arch_syscall_exit: 5277.045734639 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

162.  kernel_arch_syscall_entry: 5277.045737333 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb805c8b3 } 

163.  kernel_arch_syscall_exit: 5277.045740834 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207738368 } 

164.  kernel_arch_syscall_entry: 5277.045763122 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb805c8b3 } 

165.  kernel_arch_syscall_exit: 5277.045766827 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1209049088 } 
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166.  kernel_arch_syscall_entry: 5277.045768633 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb805c8b3 } 

167.  kernel_arch_syscall_exit: 5277.045781522 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207762944 } 

168.  kernel_arch_syscall_entry: 5277.045799596 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb805c8b3 } 

169.  kernel_arch_syscall_exit: 5277.045804336 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207750656 } 

170.  kernel_arch_syscall_entry: 5277.045826075 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 6 [sys_close+0x0/0x110] , ip = 0xb805c65d } 

171.  fs_close: 5277.045826953 (/tmp/trace-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x 0, SYSCALL { fd = 
3 } 

172.  kernel_arch_syscall_exit: 5277.045827976 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

173.  kernel_arch_syscall_entry: 5277.045878785 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb805c8b3 } 

174.  kernel_arch_syscall_exit: 5277.045882269 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1209053184 } 

175.  kernel_arch_syscall_entry: 5277.045897587 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 243 [sys_set_thread_are a+0x0/0x30], ip = 0xb8049180 } 

176.  kernel_arch_syscall_exit: 5277.045900276 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

177.  kernel_arch_syscall_entry: 5277.046140617 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 125 [sys_mprotect+0x0/0 x240], ip = 0xb805c934 } 

178.  kernel_arch_syscall_exit: 5277.046150040 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

179.  kernel_arch_syscall_entry: 5277.046162358 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 91 [sys_munmap+0x0/0x60 ], ip = 0xb805c8f1 } 

180.  kernel_arch_syscall_exit: 5277.046178697 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

181.  # 

182.  # micro_httpd carries on a chdir() in order to move  into the directory containing server’s files 
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183.  kernel_arch_syscall_entry: 5277.046274494 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 12 [sys_chdir+0x0/0x70] , ip = 0xb8046424 } 

184.  kernel_arch_syscall_exit: 5277.046283568 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

185.  # 

186.  # Read stdin (HTTP request through the socket) 

187.  kernel_arch_syscall_entry: 5277.046327583 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb8046424 } 

188.  kernel_arch_syscall_exit: 5277.046331186 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

189.  kernel_arch_syscall_entry: 5277.046339051 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb8046424 } 

190.  kernel_arch_syscall_exit: 5277.046343087 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207676928 } 

191.  kernel_arch_syscall_entry: 5277.046345355 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

192.  fs_read: 5277.046346592 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
0, count = 1024 } 

193.  kernel_arch_syscall_exit: 5277.046372029 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 405 } 

194.  # 

195.  # fstat() is triggered (probably on the "index.html " file) 

196.  kernel_arch_syscall_entry: 5277.046513347 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 195 [sys_stat64+0x0/0x3 0], ip = 0xb8046424 } 

197.  kernel_arch_syscall_exit: 5277.046519411 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

198.  # 

199.  # The Advance Programmable Interrupt Controller (AP IC) sends a signal to the CPU 

200.  kernel_irq_entry: 5277.046591673 (/tmp/trace-httpd/ cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0, IRQ { 
irq_id = 239, kernel_mode = 0 } 
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201.  kernel_timer_update_time: 5277.046601946 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, IRQ { jiffies = 4296453959, xtime_sec = 121154 9623, xtime_nsec = 519962424, walltomonotonic_sec =  -1211544369, 
walltomonotonic_nsec = 753353119 } 

202.  kernel_softirq_raise: 5277.046605090 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd , , 4566, 0x0, 
IRQ { softirq_id = 1 [run_timer_softirq+0x0/0x1f0] } 

203.  kernel_softirq_raise: 5277.046608207 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd , , 4566, 0x0, 
IRQ { softirq_id = 8 [rcu_process_callbacks+0x0/0x3 0] } 

204.  kernel_irq_exit: 5277.046615125 (/tmp/trace-httpd/c pu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4 566, 0x0, 
USER_MODE 

205.  kernel_softirq_entry: 5277.046616638 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd , , 4566, 0x0, 
SOFTIRQ { softirq_id = 1 [run_timer_softirq+0x0/0x1 f0] } 

206.  kernel_timer_set: 5277.046624617 (/tmp/trace-httpd/ cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0, 
SOFTIRQ { expires = 1486664, function = 0xc024f950,  data = 0 } 

207.  kernel_softirq_exit: 5277.046625807 (/tmp/trace-htt pd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd,  , 4566, 0x0, 
USER_MODE { softirq_id = 1 [run_timer_softirq+0x0/0 x1f0] } 

208.  kernel_softirq_entry: 5277.046626514 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd , , 4566, 0x0, 
SOFTIRQ { softirq_id = 8 [rcu_process_callbacks+0x0 /0x30] } 

209.  kernel_softirq_exit: 5277.046628392 (/tmp/trace-htt pd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd,  , 4566, 0x0, 
USER_MODE { softirq_id = 8 [rcu_process_callbacks+0 x0/0x30] } 

210.  kernel_arch_syscall_entry: 5277.046711024 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 45 [sys_brk+0x0/0x100],  ip = 0xb8046424 } 

211.  kernel_arch_syscall_exit: 5277.046712674 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 134524928 } 

212.  kernel_arch_syscall_entry: 5277.046714192 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 45 [sys_brk+0x0/0x100],  ip = 0xb8046424 } 

213.  kernel_arch_syscall_exit: 5277.046719018 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 134660096 } 

214.  # 

215.  # Open the file “index.html” 

216.  kernel_arch_syscall_entry: 5277.046748424 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 5 [sys_open+0x0/0x40], ip = 0xb8046424 } 

217.  fs_open: 5277.046759271 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
3, filename = "index.html" } 
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218.  kernel_arch_syscall_exit: 5277.046760425 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 3 } 

219.  kernel_arch_syscall_entry: 5277.046814182 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb8046424 } 

220.  kernel_arch_syscall_exit: 5277.046816916 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

221.  kernel_arch_syscall_entry: 5277.046818594 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb8046424 } 

222.  kernel_arch_syscall_exit: 5277.046823194 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207681024 } 

223.  # 

224.  # Read the system time (to be inserted in the HTTP header; see send_header()) 

225.  # (glibc opens "/etc/localtime" to know the system’ s time zone) 

226.  kernel_arch_syscall_entry: 5277.046854659 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 13 [sys_time+0x0/0x30],  ip = 0xb8046424 } 

227.  kernel_arch_syscall_exit: 5277.046856255 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 1211549623 } 

228.  kernel_arch_syscall_entry: 5277.046888105 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 5 [sys_open+0x0/0x40], ip = 0xb8046424 } 

229.  fs_open: 5277.046899066 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
4, filename = "/etc/localtime" } 

230.  kernel_arch_syscall_exit: 5277.046900144 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 4 } 

231.  kernel_arch_syscall_entry: 5277.046908152 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb8046424 } 

232.  kernel_arch_syscall_exit: 5277.046909877 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

233.  kernel_arch_syscall_entry: 5277.046918051 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb8046424 } 

234.  kernel_arch_syscall_exit: 5277.046919215 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 
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235.  kernel_arch_syscall_entry: 5277.046920681 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb8046424 } 

236.  kernel_arch_syscall_exit: 5277.046922723 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207685120 } 

237.  kernel_arch_syscall_entry: 5277.046925133 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

238.  fs_read: 5277.046926752 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
4, count = 4096 } 

239.  kernel_arch_syscall_exit: 5277.046964889 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 3477 } 

240.  kernel_arch_syscall_entry: 5277.046988062 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 140 [sys_llseek+0x0/0xd 0], ip = 0xb8046424 } 

241.  fs_llseek: 5277.046990756 (/tmp/trace-httpd/cpu_0),  4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0 x0, SYSCALL { fd 
= 4, offset = 3453, origin = 1 } 

242.  kernel_arch_syscall_exit: 5277.046991972 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

243.  kernel_arch_syscall_entry: 5277.047000434 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

244.  fs_read: 5277.047001351 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
4, count = 4096 } 

245.  kernel_arch_syscall_exit: 5277.047004344 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 24 } 

246.  kernel_arch_syscall_entry: 5277.047008992 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 6 [sys_close+0x0/0x110] , ip = 0xb8046424 } 

247.  fs_close: 5277.047010329 (/tmp/trace-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x 0, SYSCALL { fd = 
4 } 

248.  kernel_arch_syscall_exit: 5277.047015507 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

249.  kernel_arch_syscall_entry: 5277.047017573 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 91 [sys_munmap+0x0/0x60 ], ip = 0xb8046424 } 

250.  kernel_arch_syscall_exit: 5277.047034426 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

251.  kernel_arch_syscall_entry: 5277.047080847 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 195 [sys_stat64+0x0/0x3 0], ip = 0xb8046424 } 
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252.  kernel_arch_syscall_exit: 5277.047087277 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

253.  kernel_arch_syscall_entry: 5277.047115531 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 195 [sys_stat64+0x0/0x3 0], ip = 0xb8046424 } 

254.  kernel_arch_syscall_exit: 5277.047118841 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

255.  # 

256.  # Read the file "index.html" 

257.  kernel_arch_syscall_entry: 5277.047128063 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 197 [sys_fstat64+0x0/0x 30], ip = 0xb8046424 } 

258.  kernel_arch_syscall_exit: 5277.047130031 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

259.  kernel_arch_syscall_entry: 5277.047131975 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 192 [sys_mmap2+0x0/0xe0 ], ip = 0xb8046424 } 

260.  kernel_arch_syscall_exit: 5277.047135197 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = -1207685120 } 

261.  kernel_arch_syscall_entry: 5277.047137101 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

262.  fs_read: 5277.047138264 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
3, count = 4096 } 

263.  kernel_arch_syscall_exit: 5277.047158913 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 103 } 

264.  kernel_arch_syscall_entry: 5277.047170662 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

265.  fs_read: 5277.047171721 (/tmp/trace-httpd/cpu_0), 4 979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0 , SYSCALL { fd = 
3, count = 4096 } 

266.  kernel_arch_syscall_exit: 5277.047173613 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 0 } 

267.  # 

268.  # Flush stdout. The answer is sent on the network.  

269.  # As the test is done on the loopback (127.0.0.1), the HTTP client’s endpoint receives the packet.  
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270.  # The ACK is retransmitted immediately by the endpo int. 

271.  kernel_arch_syscall_entry: 5277.047178396 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 4 [sys_write+0x0/0xa0],  ip = 0xb8046424 } 

272.  fs_write: 5277.047179914 (/tmp/trace-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x 0, SYSCALL { fd = 
1, count = 311 } 

273.  net_dev_xmit: 5277.047200820 (/tmp/trace-httpd/cpu_ 0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566 , 0x0, SYSCALL { 
skb = 0xd96c9cb4, protocol = 8 } 

274.  kernel_softirq_entry: 5277.047206305 (/tmp/trace-ht tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd , , 4566, 0x0, 
SOFTIRQ { softirq_id = 3 [net_rx_action+0x0/0x240] } 

275.  net_dev_receive: 5277.047209489 (/tmp/trace-httpd/c pu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4 566, 0x0, SOFTIRQ 
{ skb = 0xd96c9cb4, protocol = 8 } 

276.  net_dev_xmit: 5277.047224538 (/tmp/trace-httpd/cpu_ 0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566 , 0x0, SOFTIRQ { 
skb = 0xd96ade00, protocol = 8 } 

277.  kernel_sched_try_wakeup: 5277.047228132 (/tmp/trace -httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ht tpd, , 4566, 0x0, 
SOFTIRQ { pid = 3689, state = 1 } 

278.  net_dev_receive: 5277.047235954 (/tmp/trace-httpd/c pu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4 566, 0x0, SOFTIRQ 
{ skb = 0xd96ade00, protocol = 8 } 

279.  kernel_softirq_exit: 5277.047238183 (/tmp/trace-htt pd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd,  , 4566, 0x0, 
SYSCALL { softirq_id = 3 [net_rx_action+0x0/0x240] } 

280.  kernel_timer_set: 5277.047241141 (/tmp/trace-httpd/ cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0, 
SYSCALL { expires = 1486724, function = 0xc03336b0,  data = 3745083136 } 

281.  kernel_arch_syscall_exit: 5277.047252314 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566, 
0x0, USER_MODE { ret = 311 } 

282.  # 

283.  # End the process (exit() is called) 

284.  kernel_arch_syscall_entry: 5277.047281311 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566, 
0x0, SYSCALL { syscall_id = 252 [sys_exit_group+0x0 /0x20], ip = 0xb8046424 } 

285.  kernel_process_exit: 5277.047374690 (/tmp/trace-htt pd/control/processes_0), 4979, 4979, /usr/local/sbi n/micro_httpd, , 
4566, 0x0, SYSCALL { pid = 4979 } 

286.  # 

287.  # SIGCHD is sent to xinetd (micro_httpd has finishe d). The CPU resource is given back to xinetd. 
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288.  kernel_send_signal: 5277.047388531 (/tmp/trace-http d/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0, 
SYSCALL { pid = 4566, signal = 17 } 

289.  kernel_sched_try_wakeup: 5277.047391850 (/tmp/trace -httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ht tpd, , 4566, 0x0, 
SYSCALL { pid = 4566, state = 0 } 

290.  kernel_sched_schedule: 5277.070484305 (/tmp/trace-h ttpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { prev_pid = 
3318, next_pid = 4566, prev_state = 1 } 

291.  kernel_arch_syscall_exit: 5277.070492080 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 4979 
} 

292.  # 

293.  # Reaction to the SIGCHD signal (within the signal handler)  

294.  # Write in a pipe (probably toward syslogd) 

295.  kernel_arch_syscall_entry: 5277.070517471 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 4 [sys_write+0x0/0xa0], ip = 0xb8046424 } 

296.  fs_write: 5277.070519201 (/tmp/trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 4, cou nt = 1 } 

297.  kernel_arch_syscall_exit: 5277.070527602 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 1 } 

298.  kernel_arch_syscall_entry: 5277.070535745 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 119 [sys_sigreturn+0x0/0x180], ip = 0xb8046408 } 

299.  kernel_arch_syscall_exit: 5277.070537570 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 4979 
} 

300.  # 

301.  # Back to the normal execution of xinetd (not anymo re in the signal handler) 

302.  kernel_arch_syscall_entry: 5277.070565577 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 13 [sys_time+0x0/0x30], ip = 0xb8046424 } 

303.  kernel_arch_syscall_exit: 5277.070566610 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 
1211549623 } 

304.  kernel_arch_syscall_entry: 5277.070637518 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 13 [sys_time+0x0/0x30], ip = 0xb8046424 } 

305.  kernel_arch_syscall_exit: 5277.070638493 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 
1211549623 } 
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306.  kernel_arch_syscall_entry: 5277.070662450 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 195 [sys_stat64+0x0/0x30], ip = 0xb8046424 } 

307.  kernel_arch_syscall_exit: 5277.070677035 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 0 } 

308.  # 

309.  # Write on the socket 

310.  kernel_arch_syscall_entry: 5277.070696689 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 102 [sys_socketcall+0x0/0x2d0], ip = 0xb8046424 }  

311.  net_socket_call: 5277.070698950 (/tmp/trace-httpd/c pu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { call  = 9, a0 = 7 } 

312.  net_socket_sendmsg: 5277.070702810 (/tmp/trace-http d/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { s ock = 0xda9afa00, 
family = 1, type = 1, protocol = 0, size = 70 } 

313.  # 

314.  # syslogd is awakened (syslog trace is omitted in t his source) 

315.  kernel_sched_try_wakeup: 5277.070711591 (/tmp/trace -httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCAL L { pid = 3163, 
state = 1 } 

316.  kernel_sched_schedule: 5277.071041070 (/tmp/trace-h ttpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { prev_pid = 
3163, next_pid = 4566, prev_state = 1 } 

317.  # 

318.  # Back to xinitd 

319.  kernel_arch_syscall_exit: 5277.071047862 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 70 } 

320.  # 

321.  # Close the socket 

322.  # Client’s endpoint receives the FIN and returns an  ACK 

323.  kernel_arch_syscall_entry: 5277.071054615 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

324.  fs_close: 5277.071056331 (/tmp/trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 6 } 

325.  net_dev_xmit: 5277.071078320 (/tmp/trace-httpd/cpu_ 0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { skb = 0 xd96c90b4, 
protocol = 8 } 
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326.  kernel_softirq_entry: 5277.071084062 (/tmp/trace-ht tpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ {  softirq_id = 3 
[net_rx_action+0x0/0x240] } 

327.  net_dev_receive: 5277.071086768 (/tmp/trace-httpd/c pu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { skb = 0xd96c90b4, 
protocol = 8 } 

328.  kernel_timer_set: 5277.071104161 (/tmp/trace-httpd/ cpu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { exp ires = 1504670, 
function = 0xc0333170, data = 3745084416 } 

329.  net_dev_xmit: 5277.071109261 (/tmp/trace-httpd/cpu_ 0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { skb = 0 xd96add00, 
protocol = 8 } 

330.  kernel_timer_set: 5277.071113756 (/tmp/trace-httpd/ cpu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { exp ires = 1488920, 
function = 0xc0321ae0, data = 3225789568 } 

331.  net_dev_receive: 5277.071122082 (/tmp/trace-httpd/c pu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { skb = 0xd96add00, 
protocol = 8 } 

332.  kernel_softirq_exit: 5277.071124317 (/tmp/trace-htt pd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { softirq_id = 3 
[net_rx_action+0x0/0x240] } 

333.  kernel_timer_set: 5277.071125747 (/tmp/trace-httpd/ cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { exp ires = 1486731, 
function = 0xc03336b0, data = 3745083136 } 

334.  kernel_arch_syscall_exit: 5277.071140152 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 0 } 

335.  # 

336.  # xinetd listen on file descriptors 

337.  kernel_arch_syscall_entry: 5277.071157392 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 142 [sys_select+0x0/0x1c0], ip = 0xb8046424 } 

338.  fs_select: 5277.071161262 (/tmp/trace-httpd/cpu_0),  4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, ti meout = -1 } 

339.  fs_select: 5277.071163841 (/tmp/trace-httpd/cpu_0),  4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 5, ti meout = -1 } 

340.  kernel_arch_syscall_exit: 5277.071166761 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 1 } 

341.  # 

342.  # Read on the pipe 

343.  kernel_arch_syscall_entry: 5277.071169693 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 54 [sys_ioctl+0x0/0xb0], ip = 0xb8046424 } 

344.  fs_ioctl: 5277.071171073 (/tmp/trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, cmd  = 21531, arg = 
3213234188 } 
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345.  kernel_arch_syscall_exit: 5277.071173801 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 0 } 

346.  kernel_arch_syscall_entry: 5277.071175481 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 3 [sys_read+0x0/0xa0], ip = 0xb8046424 } 

347.  fs_read: 5277.071176811 (/tmp/trace-httpd/cpu_0), 4 566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, coun t = 1 } 

348.  kernel_arch_syscall_exit: 5277.071184314 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 1 } 

349.  # 

350.  # Get the status of the child process 

351.  kernel_arch_syscall_entry: 5277.071187101 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 7 [sys_waitpid+0x0/0x30], ip = 0xb8046424 } 

352.  kernel_process_wait: 5277.071189157 (/tmp/trace-htt pd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { pid = 0 } 

353.  kernel_arch_syscall_exit: 5277.071204254 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = 4979 
} 

354.  # 

355.  # Close the file descriptor 

356.  # This call fails (error EBADF ; Bad file number). The file was probably already closed. 

357.  kernel_arch_syscall_entry: 5277.071207890 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 6 [sys_close+0x0/0x110], ip = 0xb8046424 } 

358.  kernel_arch_syscall_exit: 5277.071209118 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = -9 } 

359.  # 

360.  # A second waitpid(). 

361.  # It fails (error ECHILD ; No child process)  

362.  kernel_arch_syscall_entry: 5277.071212901 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 7 [sys_waitpid+0x0/0x30], ip = 0xb8046424 } 

363.  kernel_process_wait: 5277.071213687 (/tmp/trace-htt pd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { pid = 0 } 

364.  kernel_arch_syscall_exit: 5277.071214958 (/tmp/trac e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_ MODE { ret = -10 
} 

365.  # 
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366.  # Finally xinetd is back waiting 

367.  kernel_arch_syscall_entry: 5277.071217266 (/tmp/tra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id 
= 142 [sys_select+0x0/0x1c0], ip = 0xb8046424 } 

368.  fs_select: 5277.071219082 (/tmp/trace-httpd/cpu_0),  4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, ti meout = -1 } 

369.  fs_select: 5277.071220157 (/tmp/trace-httpd/cpu_0),  4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 5, ti meout = -1 } 

370.  #  

371.  # End of the trace. 
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Annex F Glossary .....  

This glossary contains definitions of some selected terms from this document. It does not claim 
to: 1) be complete or 2) reflect the work of all researchers in this domain.  

Availability (survivability) 

Avizienis et al. (2004) mention: it is the readiness for correct service. Neumann (2000) adds: 
availability implies that certain required resources are available when and as needed. It can be 
applied at many levels of abstraction, including systems, subsystems, data entities, and 
communication links. Prevention of denial of service is an availability requirements, although it 
also has a system-integrity component. 

• Data availability: Preventing disruptions in timely access to data, including sensor data in a 
control system. Multiple versions of critical data and alternative sensors can help increase 
data availability. 

• Network availability : Detecting, preventing, and recovering from denial-of-service attacks, 
such as outages of network nodes and access devices, electromagnetic interference on the 
communications media. 

• Real-time availability: (Including the system, data, and other resources). Ensuring that real-
time processing can be done in a timely way, protecting against maliciously or accidentally 
caused delays. 

• System availability: Preventing system and communication outages, and even temporary 
unavailability of resources. Such outages may include malicious or accidental denials of 
system service. 

Correctness or functional correctness (survivability) 

Assuring that a flaw in the application or in the computer operating system, or a human error in 
system maintenance, cannot compromise the application (Neumann, 2000). 

Dependability (survivability) 

Avizienis et al. (2004) propose two definitions for dependability. The first one stresses the need 
for justification of trust: the ability to deliver service that can justifiably be trusted. The second 
one provides the criterion for deciding if the service is dependable: the ability to avoid service 
failures that are more frequent and more severe than is acceptable. Neumann (2000) mentions: In 
the fault-tolerance community, dependability tends to be a measure of how well the specified 
fault-tolerance requirements are met, although recent usage is generalizing that to other 
requirements.  It may be considered as the extent to which a given survivability requirement is 
perceived to be satisfied, particularly by the implementation. 

Error (survivability) 
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When at least one (or more) external state of the system deviates from the correct service state 
Avizienis (2004). The definition of an error is the part of the total state of the system that may 
lead to its subsequent service failure. 

Failure (survivability) 

see Service failure. 

Fault (survivability) 

The adjudged or hypothesized cause of an error is called a fault (Avizienis, 2004). The following 
definitions were extracted form the same paper. 

• Commission faults: Performing wrong actions leads to commission faults. 

• Configuration faults: Wrong setting of parameters that can affect security, networking, 
storage, middleware, etc. 

• Deliberate faults: Faults that are due to bad decisions, that is, intended actions that are 
wrong and cause faults. 

• Development faults: Includes all faults classes occuring during development. 

• Human-made faults: Faults that result from human actions. 

• Interaction faults: Include all external faults. (...) a common feature of interaction faults is 
that, in order to be "successful," they usually necessitate the prior presence of a 
vulnerability, i.e. an internal fault that enables an external faults to harm the system 

• Intermittent faults: 

• Malicious faults: Introduced during either system development with the objective to cause 
harm to the system during its use, or directly during use. 

• Multiple faults: Multiple faults are two or more concurrent, overlapping, or sequential 
single faults whose consequences, i.e., errors, overlap in time, that is, the errors due to these 
faults are concurrently present in the system. Consideration of multiple faults leads one to 
distinguish 1) independent faults that are attributed to different causes and 2) related faults, 
that are attributed to a common cause. Related faults generally cause similar errors, i.e., 
errors that cannot be distinguished by whatever detection mechanisms are being employed, 
whereas independent faults usually cause distinct errors. 

• Natural faults: Natural fault are physical (hardware) faults that are caused by natural 
phenomena without human participation. 

• Non-deliberate faults: Faults that are due to mistakes, that is, unintended actions of which 
the developer, operator, maintainer, etc. is not aware. 

• Non-malicious faults: Introduced without malicious objectives. 

• Omission faults: Refers to faults that result when no action is performed while action 
should be performed. 

• Physical faults: Includes all fault classes that affect hardware. 
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• Single faults: Single fault is a fault caused by one adverse physical event or one harmful 
human action. 

Fault tolerance (survivability) 

Preventing undesirable effects resulting from failures of underlying hardware components, 
subsystems, or indeed the entire system (Neumann, 2000). To avoid service failures in the 
presence of faults. (...) Fault tolerance [3], which is aimed at failure avoidance, is carried out via 
error detection and system recovery. (...) Fault tolerance applies to all classes of faults. (...) 
several synonyms exist for fault tolerance: self-repair, self-healing, resilience. (...) (Avizienis, 
2004). (…) 

• Error Detection: Identifies the presence of an error. 

• Concurrent detection: Takes place during normal service delivery. 

• Preemptive detection: Takes place while normal service delivery is suspended; checks the 
system for latent errors and dormant faults. 

• Recovery: Transforms a system state that contains one or more errors and (possibly) faults 
into a state without detected errors and without faults that can be activated again.} 

• Error handling: Eliminates errors from the system state. 

• Rollback: Brings the system back to a saved state that existed prior to error occurence; 
saved state; checkpoint. 

• Rollforward: State without detected errors is a new state. 

• Compensation: The erroneous contains enough redundancy to enable error to be masked. 

• Fault handling: Prevents faults from being activated again. 

• Diagnosis: Identifies and records the cause(s) of error(s), in terms of both location and 
state. 

• Isolation: Performs physical or logical exclusion of the faulty components from further 
participation in service delivery, i.e. makes the fault dormant. 

• Reconfiguration: Either switches in space components or reassigns tasks among non-falled 
components. 

• Reinitialization: Checks, updates and records the new configuration and updates system 
tables and records. 

Ioctl (Linux) 

WikipediaWS (2008): In computing, an ioctl (pronounced /aǺ�Ǣktəl/ or "i-o-control") is part of 
the user-to-kernel interface of a conventional operating system. Short for "Input/output control", 
ioctls are typically employed to allow userspace code to communicate with hardware devices or 
kernel components. 

Kernel (Linux) 
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WikipediaWS (2008): In computer science, the kernel is the central component of most computer 
operating systems (OS). Its responsibilities include managing the system's resources (the 
communication between hardware and software components).[1] As a basic component of an 
operating system, a kernel provides the lowest-level abstraction layer for the resources 
(especially memory, processors and I/O devices) that application software must control to 
perform its function. It typically makes these facilities available to application processes through 
inter-process communication mechanisms and system calls. These tasks are done differently by 
different kernels, depending on their design and implementation. While monolithic kernels will try 
to achieve these goals by executing all the code in the same address space to increase the 
performance of the system, microkernels run most of their services in user space, aiming to 
improve maintainability and modularity of the codebase.[2] A range of possibilities exists 
between these two extremes. 

Kernel-context and user-space (Linux) 

WikipediaWS (2008): A conventional operating system usually segregates virtual memory into 
kernel space and user space. Kernel space is strictly reserved for running the kernel, kernel 
extensions, and some device drivers. In most operating systems, kernel memory is never swapped 
out to disk. In contrast, user space is the memory area where all user mode applications work 
and this memory can be swapped out when necessary. The term userland is often used for 
referring to operating system software that runs in user space. Each user space process normally 
runs in its own virtual memory space, and, unless explicitly requested, cannot access the memory 
of other processes. This is the basis for memory protection in today's mainstream operating 
systems, and a building block for privilege separation. Depending on the privileges, processes 
can request the kernel to map part of another process's memory space to its own, as is the case 
for debuggers. Programs can also request shared memory regions with other processes. Another 
approach taken in experimental operating systems, is to have a single address space for all 
software, and rely on the programming language's virtual machine to make sure that arbitrary 
memory cannot be accessed — applications simply cannot acquire any references to the objects 
that they are not allowed to access.[1] This approach has been implemented in JXOS, 
Unununium as well as Microsoft's Singularity research project. 

Multi-core CPU 

WikipediaWS (2008): A multi-core CPU (or chip-level multiprocessor, CMP) combines two or 
more independent cores into a single package composed of a single integrated circuit (IC), called 
a die, or more dies packaged together. A dual-core processor contains two cores and a quad-core 
processor contains four cores. A multi-core microprocessor implements multiprocessing in a 
single physical package. A processor with all cores on a single die is called a monolithic 
processor. Cores in a multicore device may share a single coherent cache at the highest on-
device cache level (e.g. L2 for the Intel Core 2) or may have separate caches (e.g. current AMD 
dual-core processors). The processors also share the same interconnect to the rest of the system. 
Each "core" independently implements optimizations such as superscalar execution, pipelining, 
and multithreading. A system with N cores is effective when it is presented with N or more 
threads concurrently. The most commercially significant (or at least the most 'obvious') multi-
core processors are those used in computers (primarily from Intel & AMD) and game consoles 
(e.g., the Cell processor in the PS3). In this context, "multi" typically means a relatively small 
number of cores. However, the technology is widely used in other technology areas, especially 
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those of embedded processors, such as network processors and digital signal processors, and in 
GPUs. 

Multi-processing, multi-processors 

WikipediaWS (2008): Multiprocessing is the use of two or more central processing units (CPUs) 
within a single computer system. The term also refers to the ability of a system to support more 
than one processor and/or the ability to allocate tasks between them.[1] There are many 
variations on this basic theme, and the definition of multiprocessing can vary with context, mostly 
as a function of how CPUs are defined (multiple cores on one die, multiple chips in one package, 
multiple packages in one system unit, etc.). Multiprocessing sometimes refers to the execution of 
multiple concurrent software processes in a system as opposed to a single process at any one 
instant. However, the term multiprogramming is more appropriate to describe this concept, 
which is implemented mostly in software, whereas multiprocessing is more appropriate to 
describe the use of multiple hardware CPUs. A system can be both multiprocessing and 
multiprogramming, only one of the two, or neither of the two. 

Multi-tasking 

WikipediaWS (2008): In computing, multitasking is a method by which multiple tasks, also 
known as processes, share common processing resources such as a CPU. In the case of a 
computer with a single CPU, only one task is said to be running at any point in time, meaning 
that the CPU is actively executing instructions for that task. Multitasking solves the problem by 
scheduling which task may be the one running at any given time, and when another waiting task 
gets a turn. The act of reassigning a CPU from one task to another one is called a context switch. 
When context switches occur frequently enough the illusion of parallelism is achieved. Even on 
computers with more than one CPU (called multiprocessor machines), multitasking allows many 
more tasks to be run than there are CPUs. 

Netlink (Linux) 

WikipediaWS (2008): Netlink is socket-like mechanism for IPC between kernel and user space 
processes, as well as between user-space processes alone (like e.g., unix sockets) or mixture of 
multiple user space and kernel space processes. However, unlike INET sockets, it can't traverse 
host boundaries, as it addresses processes by their (inherently local) PIDs. It was designed and is 
used to transfer miscellaneous networking information between the Linux kernel space and user 
space processes. Many networking utilities use netlink to communicate with linux kernel from 
user space, for example iproute2. Netlink consists of a standard socket-based interface for 
userspace process and an internal kernel API for kernel modules. It is designed to be a more 
flexible successor to ioctl. Originally netlink uses AF_NETLINK socket family. 

Non-uniform memory access (NUMA) 

WikipediaWS (2008): Non-Uniform Memory Access or Non-Uniform Memory Architecture 
(NUMA) is a computer memory design used in multiprocessors, where the memory access time 
depends on the memory location relative to a processor. Under NUMA, a processor can access 
its own local memory faster than non-local memory, that is, memory local to another processor 
or memory shared between processors. NUMA architectures logically follow in scaling from 
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symmetric multiprocessing (SMP) architectures. Their commercial development came in work by 
Burroughs, Convex Computer (later HP), SGI, Sequent and Data General during the 1990s. 
Techniques developed by these companies later featured in a variety of Unix-like operating 
systems, as well as to some degree in Windows NT. 

Open Source or Free Open Source Software (FOSS) 

WikipediaWS (2008): Open source is a set of principles and practices on how to write software, 
the most important of which is that the source code is openly available. The Open Source 
Definition, which was created by Bruce Perens[1] and Eric Raymond and is currently maintained 
by the Open Source Initiative, adds additional meaning to the term: one should not only get the 
source code but also have the right to use it. If the latter is denied the license is categorized as a 
shared source license. 

Foldoc (2008): A method and philosophy for software licensing and distribution designed to 
encourage use and improvement of software written by volunteers by ensuring that anyone can 
copy the source code and modify it freely. The term "open source" is now more widely used than 
the earlier term "free software" (promoted by the Free Software Foundation) but has broadly the 
same meaning - free of distribution restrictions, not necessarily free of charge. There are various 
open source licenses available. Programmers can choose an appropriate license to use when 
distributing their programs. The Open Source Initiative promotes the Open Source Definition. 

procfs (Linux) 

WikipediaWS (2008): On many Unix-like computer systems, procfs, short for process file system, 
consists of a pseudo file system (a file system dynamically generated at boot) used to access 
process information from the kernel. The file system is often mounted at the /proc directory. 
Because /proc is not a real file system, it consumes no storage space and only a limited amount of 
memory. The following operating environments support procfs: Solaris; BSD; Linux (which 
extends it to non-process-related data); IBM AIX (operating system) (which bases its 
implementation on Linux to improve compatibility); QNX; Plan 9 from Bell Labs (where it 
originated). 

Process 

WikipediaWS (2008): In computing, a process is an instance of a computer program that is being 
sequentially executed.[1] A computer program itself is just a passive collection of instructions, 
while a process is the actual execution of those instructions. Several processes may be associated 
with the same program, for example opening up two windows of the same program typically 
means two processes are being executed. A single computer processor executes only one 
instruction at a time. To allow users to run several programs at once, single-processor computer 
systems can perform time-sharing - processes switch between being executed and waiting to be 
executed. In most cases this is done at a very fast rate, giving an illusion that several processes 
are executing at once. Using multiple processors achieves actual simultaneous execution of 
multiple instructions from different processes, but time-sharing is still typically used to allow 
more processes to run at once. For security reasons most modern operating systems prevent 
direct inter-process communication, providing mediated and limited functionality. However, a 
process may split itself into multiple threads that execute in parallel, running different 
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instructions on much of the same resources and data. This is useful when, for example, it is 
necessary to make it seem that multiple things within the same process are happening at once 
(such as a spell check being performed in a word processor while the user is typing), or if part of 
the process needs to wait for something else to happen (such as a web browser waiting for a web 
page to be retrieved). 

Foldoc (2008): The sequence of states of an executing program. A process consists of the 
program code (which may be shared with other processes which are executing the same 
program), private data, and the state of the processor, particularly the values in its registers. It 
may have other associated resources such as a process identifier, open files, CPU time limits, 
shared memory, child processes, and signal handlers. One process may, on some platforms, 
consist of many threads. A multitasking operating system can run multiple processes concurrently 
or in parallel, and allows a process to spawn "child" processes. 

Real time 

WikipediaWS (2008): In computer science, real-time computing (RTC) is the study of hardware 
and software systems which are subject to a "real-time constraint"—i.e., operational deadlines 
from event to system response. By contrast, a non-real-time system is one for which there is no 
deadline, even if fast response or high performance is desired or even preferred. The needs of 
real-time software are often addressed in the context of real-time operating systems, and 
synchronous programming languages, which provide frameworks on which to build real-time 
application software. A real time system may be one where its application can be considered 
(within context) to be mission critical. (…) Real-time computations can be said to have failed if 
they are not completed before their deadline, where their deadline is relative to an event. A real-
time deadline must be met, regardless of system load. 

Reliability (survivability) 

The continuity of correct service (Avizienis, 2004). 

Scalability (survivability) 

Systems must be capable of adapting to a range of operations, from local operation to widely 
dispersed systems, from users to a considerable community of users, from a closed community to 
an open-system environment. Where single approaches are not applicable, the parameterized 
configuration should permit adaptation according to the specific requirements (Neumann, 2000). 

Security (survivability) 

According to Avizienis et al. (2004) security is a composite of the attributes of confidentiality, 
integrity, and availability, requiring the concurrent existence of 1) availability for authorized 
actions only, 2) confidentiality, and 3) integrity with "improper" meaning "unauthorized.".  

Neumann (2000) identifies two types of security: system security and data security. He also 
identifies some important forms of security: confidentiality, integrity, availability, authentication, 
thrusted paths, prevention of misuse, tamperproofing and anti-reverse-engineering techniques and 
auditability and detection of misuse. Security must encompass dependable protection against all 
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relevant concerns, including confidentiality, integrity, availability despite attempted 
compromises, preventing denials of services, preventing and detecting misuse, providing timely 
responses to perceived threats, and reducing the consequences of unforeseen threats. It includes 
both system security (e.g. protecting systems and networks against tampering and other misuses) 
and information security (e.g. protecting data and programs against tampering and other 
misuses) (Neuman, 2000).  

Service failure (survivability) 

A service failure, often abbreviated here to failure, is an event that occurs when the delivered 
service deviates from correct service. A service fails either because it does not comply with the 
functional specification, or because this specification did not adequately describe the system 
function (Avizienis, 2004). A service failure is a transition from correct service to incorrect 
service. The same authors propose additional definitions:  

• Content failures: The content of the information delivered at the service interface (i.e., the 
service content)deviates from implementing the system function. 

• Consistent failure: The incorrect service is perceived identically by all system users. 

• Development failure: Development failure causes the development process to be terminated 
before the system is accepted for use and placed into service. There are two aspects of 
development failures: 1. Budget failure. The allocated funds are exhausted before the system 
passes acceptance testing. 2. Schedule failure. The projected delivery schedule slips to a 
point in the future where the system would be technologically obsolete or functionally 
inadequate for the user’s needs. 

• Erratic failure: When a service is delivered (not halted), but is erratic (e.g., babbling). 

• Halt failure: Or simply halt, when the service is halted (the external state becomes constant, 
i.e., system activity, if there is any, is no longer perceptible to the users); a special case of 
halt is silent failure, or simply silence, when no service at all is delivered at the service 
interface (e.g., no messages are sent in a distributed system). 

• Inconsistent failure: Some or all system users perceive differently incorrect service (some 
users may actually perceive correct service); inconsistent failures are usually called, after 
[38], Byzantine failures. 

• Timing failure: The time of arrival or the duration of the information delivered at the 
service interface (i.e., the timing of service delivery) deviates from implementing the system 
function. 

Service failure mode (survivability) 

The deviation from correct service may assume different forms that can be called "modes" and 
ranked according to failure severity (Avizienis, 2004). 

Survivability (survivability) 

The concept of survivability is an emergent property. It is the ability of a system to satisfy and 
continue to satisfy a number of critical requirements in the face of adverse conditions (intentional 
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or not). (...) It denotes the ability of a computer-communication system-based application to 
continue satisfying certain critical requirements (e.g. requirements for security, reliability, real-
time responsiveness, and correctness) in face of adverse conditions. (...) It applies to national 
infrastructures, computer-communication infrastructures and to underlying computer systems 
and communication systems (Neumann, 2000). This author identifies 5 types of survivability, they 
are:  

• Information survivability: the extent to which suitably correct and up-to-date information 
can be available whenever it is needed 

• Computer-system survivability: the extent to which a computer system's ability can continue 
to satisfy certain stated requirements in the face of arbitrary adversities 

• Network survivability: the extent to which a computer network's ability can continue to 
satisfy certain stated requirements in the face of arbitrary adversities 

• Application service survivability: the extent to which the services provided by an entire 
system application attain system survivability 

• Enterprise survivability: the extent to which an overall enterprise can continue to satisfy 
certain stated requirements in the face of arbitrary adversities. 

sysfs (Linux) 

WikipediaWS (2008): Sysfs is a virtual file system provided by Linux 2.6. Sysfs exports 
information about devices and drivers from the kernel device model to userspace, and is also 
used for configuration. 

Threat (survivability) 

The use of threats, for generically referring to faults, errors, and failures has a broader meaning 
than its common use in security, where it essentially retains it usual notion of potentiality. In our 
terminology, it has both this potentiality aspect (e.g., faults being not yet active, service failures 
not having impaired dependability), and a realization aspect (e.g., active fault, error that is 
present, service failure that occurs) (Avizienis, 2004). 

Total state of a system 

The set of the following states: computation, communication, stored information, interconnection, 
and physical condition (Avizienis, 2004). 

Trust (survivability) 

Trust is something you attribute to a system entity, whether that entity is trustworthy or not 
(Neumann, 2000). It can be defined as accepted dependence (Avizienis, 2004). 

Trusted paths (survivability) 

In conventional systems, a user has no real assurance that he or she is actually communicating 
with the desired system (rather than masquerader or Trojan horse system), and one system has 
little assurance that it is actually communicating with a second system of its choice (rather than a 
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masquerader or accidental alternative). A communication path whose teminations can be assured 
without compromise is known as a trusted path. (...) Trusted paths must be persistent as well as 
initially authenticated. Other risks include covert channels and timing attacks related to trusted 
paths. (Neuman, 2000). 

Trustworthiness (survivability) 

Trustworthiness is a measure of how extensively a given module, system, network, or other entity 
deserves to be trusted to satisfy its stated requirements when confronted with arbitrary threats 
(Neuman, 2000). A trustworthy entity deserves to be trusted. For this author, the notion of 
trustworthiness encompasses all aspects of survivability and its subtended requirements. 

Vulnerability (survivability) 

An internal fault that enables an external fault to harm the system (Avizienis, 2004) 
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