Tracing, monitoring and analysis of
distributed multi-core systems
Selected feasibility studies

In alphabetical order:

DRDC Valcartier
M. Couture

Ecole Polytechnique de Montréal
M. Dagenais
F. Prenoveau

Université Laval
B. Ktari
F. Lajeunesse-Robert

Defence R&D Canada — Valcartier

Technical Report
DRDC Valcartier TR 2008-300
April 2009

Principal Author

Mario Couture
Defence scientist

Approved by

Guy Turcotte
SdS Section head

Approved for release by

Christian Carrier
Chief scientist

This work was done between December 2007 and Sbpte?®08 under work unit 15BZ10.

© Her Majesty the Queen in Right of Canada, asesgnted by the Minister of National Defence, 2009

© Sa Majesté la Reine (en droit du Canada), teleergprésentée par le ministre de la Défense radéipn
2009

Abstract

Monitoring, tracing and analysis of software exe@mutare indispensable activities for the
surveillance, protection and optimization of outioral computing infrastructures. However, in
recent years, our ability to monitor and analyzitiveare execution has been seriously disrupted
by the emergence of multi-core CPUs and the hidbeel of interconnectivity (between
networked systems). These complex systems aredglteging deployed in our command and
control operations. They operate at a much higlagistaiction rate and they fragment and execute
their computing and communication tasks in paralehding to huge and extremely complex
execution traces to analyze. Current analysis tdoby is thus overwhelmed by the new
computing capability of these systems.

Studies were conducted in 2008 in order to betefind the next R&D effort that will be
undertaken to address this problem. Among othagthithe studies examined the feasibility of
developing a feedback-directed diagnostic systesedbaon theLTTng framework. Important
risks associated with critical technical aspectshis R&D effort were identified and reduced.
This document describes the work that was donestisaw results and recommendations resulting
from these feasibility studies.

Résumé

Le suivi, le tracage et I'analyse de I'exécutiogitielle sont des activités indispensables pour la
surveillance, la protection et I'optimisation dales cadre de notre infrastructure nationale
informatique. Néanmoins, ces derniéres annéese maipacité a suivre et analyser I'exécution
logicielle a été profondément affectée par 'émeogedes unités de calcul (CPU) multi coeurs et
le haut niveau d’interconnexion (entre les systemissen réseau). Ces systémes complexes sont
déja déployés dans nos opérations de commandemmenttedle. Leur fonctionnement implique
des taux de transaction plus élevés; ceux-ci feagemt et exécutent leurs tdches de
communication et de calcul en parallele, ce quultésen d'énormes traces d’exécution
complexes a analyser. La technologie d'analyseelietlest donc dépassée par la nouvelle
capacité de calcul de ces systémes.

Des études ont été réalisées en 2008 afin de ndéfimir les prochains efforts de R et D qui
seront déployés dans le but d’aborder ce probl&aeni celles-ci, la possibilité de développer
un systéme de diagnostic basé sur la rétroactiatilisant I'environnementTTnga été étudiée.
Les risques importants associés aux aspects edida cet effort de R et D ont été identifiés et
réduits. Ce document énumere et décrit le travadlisé ainsi que les résultats et
recommandations résultant de ces études de fatiéabil

DRDC Valcartier TR 2008-300 i

This page intentionally left blank.

DRDC Valcartier TR 2008-300

Executive summary

Tracing, monitoring and analysis of distributed mul ti-core
systems: Selected feasibility studies

Couture, M.; F. Lajeunesse-Robert; F. Prenoveau; M. Dagenais; B. Ktari; DRDC
Valcartier TR 2008-300; Defence R&D Canada — Valcar tier; April 2009.

Modern military operations rely on sophisticatednpaiting infrastructures that involve: 1)
geographically distributed networked topologies psarfing collaboration among distributed
officers and 2) computational nodes having simptEc@ssors, symmetric or asymmetric multi-
processors (SMP/ASMP), non-uniform memory accedsMMN) and more recently multi-core

(SMP/ASMP on a single chip) systems. This everdasing complexity along with disruptions
from the complex and often hostile environmentshimitwhich they interact makes their
reliability extremely challenging to guarantee. Therent analysis technology for surveillance,
protection, optimization and debugging of thesetesys is overwhelmed by this complexity.
Significant improvements and new developments rbasput forward in order to improve both
in-operation and in-laboratory deep system analysis

This objective is directly aligned with the followg Defence S&T Strategy Technological
Challenges (DRDC, 2006);

« 1.5 - Software protection and countermeasures; and

* 4.6 - Improvements in multi-purpose capability efrand existing systems.

Studies were conducted in 2008 with the goal oindled the R&D effort that will be required in
this domain in order to improve surveillance, petitesh, optimization and debugging of such
complex systems (Dagenais, 2008a; Couture et @D8)2 Six main areas of R&D were
identified: 1) Adaptive fault probing, 2) Multi-level, multi4@distributed trace synchronization,
3) Trace abstraction, analysis and correlation AMJtomated fault identification, 5) System health
monitoring and corrective measure activation, andl6éace directed modellingA joint project
proposal involving Ericsson Canada, NSERC, DRDCc#¥idiler as well as a humber of experts
from different Canadian universities was then pemabto NSERC and DRDC for funding in
2008 (Dagenais, 2008b; Couture and Charpentier8)20bhe tracing technology that was
considered in this proposal was thETngframework (LTTng, 2008).

The 2008 studies included a detailed analysisit€altechnical aspects of the proposed project
in order to identify and reduce major risks priorthe beginning of the proposed R&D project.
They focused on the feasibility of developing adfesck-directed diagnostic system based on the
LTTng framework. This document describes the work thais wdone and the results and
recommendations of these feasibility studies.

The work described in this document is divided tmto main parts (R&D threads). They are:

« R&D Thread 1: Mechanisms for monitoring, tracing and control. The aim of this thread
was to verify the feasibility of extending thdTngframework for: 1) network transfer of

DRDC Valcartier TR 2008-300 iii

execution traces, 2) latency transfer minimizati@), LTTng remote control, and 4)
continuous decoding of execution traces.

R&D Thread 2: Toward trace abstraction and analysis The aim of this thread was to: 1)

review the current work and technology in this doma) analyze execution traces, 3) study
the feasibility of abstracting and analyzing exeamutraces, and 4) study the feasibility of
developing automatic mechanisms for trace analysis.

Results and observations from R&D Threads 1 andedrly show the great potential of the
proposed R&D project. Each of the studied companéatr the online monitoring, tracing and
analysis of distributed multi-core systems) is diefeasible and very promising. Four important
challenges must be addressed. Actually, they catobsidered as recommendations for the next
R&D efforts.

1.

First, the overhead associated with thETng framework should be as low as possible to
ensure it is widely applicable and effective.

The second important challenge is to facilitateitttegration of the different sources of data

(e.g. static and dynamic, kernel and user leveletgeoints) from different processor cores,

virtual and physical machines and distributed systeMoreover, the database structure must
allow the addition of synthesized information tce thvent traces (e.g. state information,

abstract higher level events, etc.).

The third important challenge is related to thelysiga of execution traces in real operational
situations. Traces obtained from concurrent andllghrprocesses which are executed on
distributed multi-core CPUs and make accessesaredtresources, must be analyzed. The
“resolution issue” must be addressed as well.

Finally, another important challenge consists imdifng the most appropriate formalism for
trace analysis, trace abstraction and fault deteclihe Kleene algebra formalism is adequate
for the certification process but not for the a#itt online handling of huge execution traces.
A formalism to solve these specific problems mustdentified or developed.

DRDC Valcartier TR 2008-300

Sommaire

Tracing, monitoring and analysis of distributed mul ti-core
systems: Selected feasibility studies

Couture, M.; F. Lajeunesse-Robert; F. Prenoveau; M. Dagenais; B. Ktari; DRDC
Valcartier TR 2008-300; R & D pour la défense Canad a — Valcartier; Avril 2009.

De nos jours, les opérations militaires dépendénfrastructures informatiques qui impliquent :
1) des topologies de réseau géographiquement igpayti facilitent la collaboration entre
officiers et 2) des nceuds de calcul comprenantpdesesseurs de calcul simples, symétriques,
asymeétriques (SMP/ASMP), des accés non uniforni@sr@moire (NUMA) et, plus récemment,
les systéemes a processeurs multicceurs (systemesASMP sur une puce). Cette complexité
toujours grandissante, de concert avec l'influenégative des environnements hostiles dans
lesquels ces systemes évoluent, rend leur fiabitéé difficile a garantir. La technologie
d’analyse réalisant la surveillance, la protectlmptimisation et le débogage de ces systémes est
maintenant rendue dépassée par cette complexiséaéliorations significatives et de nouveaux
développements doivent étre mis de I'avant dansuted’améliorer I'analyse systéeme qui est
réalisée tant sur le terrain qu’en laboratoire.

Cet objectif est directement aligné sur les défihhologiques de la défense (DRDC, 2006) :
« 1.5- Software protection and countermeasures; and

* 4.6- Improvements in multi-purpose capability ofvrand existing systems.

Des études ont été réalisées en 2008 dans le lléfidér I'effort de R et D qui sera fait dans ce
domaine afin d'améliorer la surveillance, la prditet, 'optimisation et le débogage de ces
systemes complexes (Dagenais, 2008a ; Couture, €204I8). Six directions de R et D ont été
identifiées; elles sontl) Adaptive fault probing, 2) Multi-level, multi+@ distributed traces
synchronization, 3) Trace abstraction, analysis andelation, 4) Automated fault identification,
5) System health monitoring and corrective measagtivation and 6) Trace directed modeling
Un projet conjoint impliquant Ericsson Canada, CRSMRDDC Valcartier et plusieurs experts
provenant de différentes universités canadiennéteaproposé au CRSNG et a RDDC pour
financement en 2008 (Dagenais, 2008b; Couture atpg@ntier, 2008). La technologie de tracage
qui a été avancée dans cette proposition estaelfenvironnementTTng(LTTng, 2008).

Parmi les études de 2008, I'analyse détaillée dpscas critiques du projet proposé a été réalisée
dans le but d'identifier et de réduire les risqmegeurs, et ce, avant le début du projet de R et D
proposé. Leur centre d'intérét a été orienté supdasibilité de développer un systéme de
diagnostic basé sur la rétroaction et l'utilisatide I'environnementLTTng Ce document
énumeére et décrit le travail réalisé ainsi querésiltats et recommandations résultant de ces
études de faisabilité.

Le travail décrit dans ce document est divisé anxgearties principales (Sujets R et D) qui sont :

* Sujet R et D 1: Mécanismes pour le suivi, le tragge et le contrble Ce sujet avait pour
but de vérifier la possibilité d'étendre I'enviramentLTTng pour : 1) le transfert réseau

DRDC Valcartier TR 2008-300 \

des traces d’'exécution, 2) la minimisation de tarlae de transfert, 3) le contrdle distant de
LTTnget 4) le décodage continu des traces d’exécution.

Sujet R et D 2 : Vers l'abstraction et I'analyse dg traces Ce sujet avait pour but de : 1)
faire une revue des travaux et de la technologigarite dans ce domaine, 2) analyser des
traces d’exécution, 3) étudier la possibilité diadise et d’analyser des traces d’exécution et
4) étudier la possibilité de développer un mécaeiantomatique d’analyse de traces.

Les résultats et observations découlant des SRjet$ D 1 et 2 montrent clairement tout le
potentiel du projet proposé. Chacune des compasariteliées (pour le suivi, le tracage et
I'analyse en ligne des systémes répartis multicg)ezst clairement réalisable et trés prometteuse.
Quatre défis importants doivent étre surmontéstaiinils peuvent étre considérés comme étant
des recommandations pour le prochain effort deR et

1.

vi

Premieérement, la charge de travail CPU associéengitonnement de.TTng devrait étre
réduite autant que possible afin de lui assurerappdicabilité et une capacité étendue.

Le second défi important consiste a faciliter Bigtation des différentes sources de données
(statiques, dynamiques, des points de tracage ldans kernel/user spaces ») provenant de
différents cceurs de processeurs, de machines lieget physiques, et de systeme répartis.
De plus, la structure de la base de données etitigdt permettre I'ajout d'information de
synthése aux éléments des traces d’exécution,(étesactions haut niveau, etc.).

Le troisieme défi important est lié a I'analyse demces d’exécution dans des situations

opérationnelles réelles. Les traces obtenues dmegsas concurrents et paralléles, qui sont
exeécutés sur des systémes multicceurs et qui fantadees aux ressources des systeémes,
doivent étre analysées. Le probleme de la « résnlutdoit étre également abordé.

Finalement, un autre défi important consiste avieole formalisme le plus approprié pour
'analyse des traces, I'abstraction des tracesaedétection de fautes. Le formalisme de
I'algébre de Kleene est adéquat dans les proceésscertification, mais il ne I'est pas pour la
manipulation en ligne efficace des traces d’exéoutjui sont énormes. Un formalisme doit
étre identifié ou développé pour aborder ces prob&particuliers.

DRDC Valcartier TR 2008-300

Table of contents

Y 1S3 1 - T U [
RESUIME ..t e e ettt e et ettt e e e et e et et et et e e e e e e et an e e ean e e eea e e eean s i
EXECULIVE SUMIMAIY ..ottt ee ettt e e e e e e e e e e e et et e te e e e e e e e e eeeeesnennn e eeens iii
Y0 101 04 F= T (=P TRP %
Table Of CONTENIS ... et e e s vii
IS W0 T [1= PSRN (¢
Y 0 = 1] [X
ACKNOWIEAGEMENTS ...t ettt ettt e e e e eeeee e r e e e e e e e e e eeeennaees Xi
1....Improving robustness of command and control infdiomasystemsccccceeeeeeiviiinenne. 1
1.1 Context Of thiS WOIK........ccoiiiiiiiiiiiii e e et e eeeee s 2
1.2 Overarching MethodoIOgYuuiiiiiiiiii e e rea s 2
1.3 Content of thiS dOCUMENTooiiiiiiii et s 4
1.3.1 R&D Thread 1: Mechanisms for monitoring, tracinglaontrol.................. 4
1.3.2 R&D Thread 2: Toward trace abstraction and analysis............cccc...ceeeee. 4
1.4 Frequently USEA tEIMSciciiii et e et e e e e e et e e e e e e e e e e e e e ttaeeeeanaa s 5
...R&D Thread 1 — Mechanisms for monitoring, tracimgl@ontrol.................cccccoeveviviinnnns 7.
2.1 INItIal PrEMUSES ..ovvii e e raaaaa 7
2.2 Technological CONSIAEratiONSuiiceeeeeme e e e e enneeeeees 7
2.2.1 The Use of Free Open Source Software —OHengframework and
LU et e e ettt e e aeeanae 7
2.2.2 Use of the client-server model ... 8
2.2.3 Prototype arChiteCtUreoovvuiiii e e e 9.
2.2.4 Programming [aNQUAGE.ccevuuruiees s eseeeeeetaaseesessnneeeseennaaeasannns 9
2.2.5 Computational NOUES.........cuuiiiiiiiii s cereernr e e e e e e e eeann s 0.1
2.3 Workload for this R&D threaduuiiiooi i 10
2.4 Exploration and analysis — Results and observations............ccccoooovviieiiiveiinn, 11
2.4.1 Technical description of an eXecution tracCe ..ccceeevovevvvieieeeiiiiineeeeeiinnnnn. 11
2.4.2 Initial architecture of th& TTngframework...........cccceeeeviiiiiiiiiiiiiiene, 12
2.4.3 Task 1 — Refactoring of selecte@Tngcomponentscccceeeeeeeevnnnnnnn. 13
2.4.4 Task 2 — Transfer of execution traces over the oiw.................eeenennn... 15
2.4.5 Task 3 — Problem of latency transfer.........oeeeiiinieeiiiiiieeceiciee e, 18
246 Task 4 —Remote CONIOl..........ciiiiiii i 19
2.4.7 Task 5 — Decoding of received eXeCution traCeS.mm .. oeeeererrrieeeerennnnnnnn. 20
...R&D Thread 2 — Toward trace abstraction and anglysi.............cccooevveeieeiriieiiiiiiincees 21
3.1 Initial premises and workload for this R&D thread.............c.cccooeeiiiiiiiiiiiinnnnnnn, 21
T o =1 112 =1 o | S 22

DRDC Valcartier TR 2008-300 Vii

3.3 Exploration and analysis — Results and observations...............cccccoeiveeeiiiiinnneennn, 23
3.3.1 Task 1 — Overview of current related WOrkS.cc.c.ooooieiiiiiiiiiiiiiiennnnnn. 23
3.3.1.1 Trace analysis teChniqUEScccovvvviiiiiieeii e, 23
3.3.1.2 INtrusion deteCtion.........ccoeeiiiiiiiiiiiiieemm e 24
3.3.1.3 Kleene algebra...........ccooeiiiiiiiiiiiii e, 26
3.3.2 Task 2 — Analysis of eXecution tracCes....... oo coeeeeereiiieiiiiiiniieeeiieeeen 27
3.3.3 Task 3 — Theoretical considerations for trace abstnc.c.cceennnnn. 37
3.3.4 Task 4 — Program Analysis Toolkit (PAT) for autoingttrace analysis.....48
3.3.4.1 Technical considerationsccoeevvuiiiemeeemeeeee e, 48
3.3.4.2 PAT's functionaliti€S..........ccceuviiiiiiiiiimmmm e, 49
4....Conclusion and recoOMmMENdatiONS...........uuucceeeer e e eee e e e e e e e e 54
4.1 Main ODSEIVALIONS......ciiiiiiiiiii ettt e e e e e e e e e bbb eeeeeebeeeeaaa 55
411 REDTHhread 1 ... 55
412 RE&DTRrEAd 2ccooiiiiiii e 56
4.2 Recommendations for the next R&D efforts......cccccuuviiiiiiniiiiiiiiiiiii, 7.5
REFEIENCES ...t ettt e e et e et e e e e e e 59
A.1 Papers, reports, theses and bOOKS.........ccccceeeeriiiiiiiii e 59
A2 PreSENtAtiONS......coiiiiiiiiiie e e e e et s 64
A3 WD SIEES . 64
Annex B..Tracing for distributed multi-core systems — Motigas and drivers........................ 65
B.1 Initial drivers of the effortcoooi oo 65
B.2 Identified long term challengesoooicceeeeie i e 66
B.3 Identified Areas Of R&Dccooiiiiiiiiiii e e ee e 66
Annex C..Used tracing softwate — OVEIVIEWccuiuuceeiieieiii e eeeeiie e e e e e eeees 71
C.1 Overview of theLTTngarChiteCtureccooevvviiiiiiii e 71
C.2 Installation O T T NG .. i e erre e e e e e e e e e e e eaaea 74
C.3 HOW IO USB ..ttt ettt ettt ettt ettt e ettt e e s et e e ena e a e e e e eenan s 76
C.4 List of LTTngactive markers (Or Probes).........cccouuuiimmmece i eeeeeic e, 77
Annex D..Themicro_httpdappliCation.............coovuiiiiiiiiiiis e 81
D.1 Source code of thaicro_httpdapplication............cccccoiiiiiiiiiiiiie e, 82
D.2 First level abstraction of the applicationicro_httpd............cccooeveiiiiii s 93
Annex E..Example of an @XECULION trACE..............t e eeeeeiee e e ee et eeee e e e e eeaeeeeeaes 95
F Y o a1 e € [11T T Y 117
D115y] o100 o L PP 127

viii

DRDC Valcartier TR 2008-300

List of figures

Figure 1. The Methodology Phases.ccceiueiiiiiiiii e e e 3
Figure 2. The client-Server MOUEL.ouuiuier e e e e e 8
Figure 3. The prototype architeCture USEd.cceeivvviiiiiiiiii i e 9
Figure 4. Composition of a LTTNg €XECULION traCE. cc...ciivvvuiiieiiiiiii et ee e e ee e 12
Figure 5. Main components of LTTNg — CUIreNnt VETSIO..........c.uviiieerieiiiieieeiiie e eeeeeiin e 12
Figure 6. The new library API for the acquisitiohexecution traces.............cccceeeeeeeevvnennens 13
Figure 7. Data structure used in the library fa tlapture of execution traces. 14
Figure 8. Data structure used in the library f@ #icquisition of execution traces............c...15
Figure 9. Main components of LTTnhg — the Modifiesionccccoooviiiiiiieiin e 17
Figure 10. Cascade effects of the execution ofrtleeo_httpd application. 23
Figure 11. EXecution trace — POrtioN A.ccooiiiiiiiiiiiie et ree e e e 28
Figure 12. Execution trace — POrtion B. ..o e 28
Figure 13. Execution trace — POrtioN C.ceeeniiireiiiiiee e ee e ree e s e e eeanns 29
Figure 14. Execution trace — Portion D. ..o 31
Figure 15. Correspondence between an executioa &émaat execution model........................ 3.
Figure 16. Execution trace — POrtion E. i eeeee e e 35
Figure 17. Example of a program model (A). ... 40
Figure 18. Example of a program model (B). ... eeoieeiiiiiiiiieeeiiiee e 41
Figure 19. Example of a program model (C). .. reeieeiiiiiiiiieeeiiiee e e 42
Figure 20. Example of a program model (D)... . e eeiiiiiiiiieeeiiee e 45
Figure 21. Example of a program mModel (E). .. cumme«eeieeeeeuriiiieeieiiiiseeeeeiiineeessieeeeesnnneees 46
Figure 22. Example of a program model (F). .. eoeeeiiiiiiie e 46
Figure 23. PAT's graphic USer iNtErfacCe. ... 50
Figure 24. Trace analySis rESUILS.ciccceeieiii e e 51
Figure 25. Identification of functions in eXeCutittaces.ccooevvveiiiiiiiiiiiin e vceeee e 52
Figure 26. Translating a C program into an alge&eapression.........cooovvvvvvevivevvivieeeeeeennenn, 53
Figure 27. Architecture of the tracing software IGGTccooiiiiiieiiin e, 72

DRDC Valcartier TR 2008-300 ix

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.

Transferred tracefile header information. ... 16
Transferred sub-buffer information. ..., 17
Advantages and disadvantages of desdiibagdproaches.c.ccccvvviieeeieennn. 25
Transcription of the micro_httpd modebiatKleene algebraic expression..................
Transcription of micro-httpd functionsdr€leene algebraic expressions.............. 43...
Reduced Kleene algebraiC eXpreSSiON.. ccccue o viiiiii e et e e ee e 44
Kleene algebraic expression with “taggdea.............c.oooviiiiii i e 44
DRDC Valcartier TR 2008-300

Acknowledgements

The authors would like to thank DRDC Valcartier/S8&ction and MITACS for the financial
support which allowed two graduate students toitesitfor a four-month internship.

DRDC Valcartier TR 2008-300 Xi

This page intentionally left blank.

Xii DRDC Valcartier TR 2008-300

1 Improving robustness of command and control
information systems

Information systems became much more complex inldke decade in terms of technology
evolution and the more demanding needs relatednmm@and and control (C2). Actually, their

architecture is mainly determined by organizatidoains of C2. Some important characteristics
of current military C2 are given by Benaskeur atakBett (2008):

e C2is adistributed environment;

* (C2 has functional architectures such as surveill@arthreat evaluation, etc.;
e C2is a complex process;

e C2 deals with large volumes of data under stringi#né constraints;

e C2 can be influenced by deterministic/stochastipisalic/sequential, static/dynamic
environments; and

» the decision-making process may be based uporesingitiple criteria.

C2 can also be considered e=active (self-maintaining: fixed finality)esponsive (goal seeking:

variable but determined finalitypr active (or pro-active)(purposeful: variable and chosen

finality) (Couture, 2007). The complexity of supporting imfation systems arises from (among
other factors):

« the interaction of the non-functional requiremestgch as maintainability, performance,
and security(Ellison and Woody, 2007b);

 the higher level of interconnectivity between plgdly distributed C2 information systems;

» the use of computational nodes involving simplecpesors, symmetric or asymmetric
multi-processors (SMP/ASMP), non-uniform memory essc (NUMA) and more recently
multi-core systems (SMP/ASMP on a single chip)

These characteristics are not unique to militamnaims. Actually, C2 often takes place (under
different forms) in civilian organizations as wedflor instance, the operational management of the
complex computational infrastructure used by apteb&y company is another similar complex
C2.

This complexity along with disruptions from complard often hostile environments in which
they are interacting makes their reliability extedynchallenging to guarantee. The current
analysis technology used to ensure effective afidieaft surveillance, protection, optimization
and debugging of these systems during operationdgswvhelmed by this complexity. Significant
improvements and new developments must be madie ioancepts, algorithms and techniques in
order to achieve and maintain the needed survitalopabilities in operation (Avizienis et al.
2004; Neumann 2000; Neumann 2004).

L A recent survey (Heikkila and Gulliksen, 2007) miems that communications and military/aerospaee ar
the most probable early adopters of multi-core @ssor boards.

DRDC Valcartier TR 2008-300 1

1.1 Context of this work

According to the methodology ugegreliminary studies and workshops were conduirte2D08

in order to define the R&D effort that will be rérpd in the domain of monitoring, tracing and
analysis of distributed multi-core systems (Couttral., 2008; Dagenais, 2008a). Six main areas
of R&D (herein calledAreas of R&D) were identified 1) Adaptive fault probing, 2) Multi-level,
multi-core distributed trace synchronization, 3)a€e abstraction, analysis and correlation, 4)
Automated fault identification, 5) System healtmitooing and corrective measure activation,
and 6) Trace directed modelling

A joint project involving Ericsson-Canada, NSERCRIDC Valcartier as well as a number of

experts from different Canadian universities waenttproposed to NSERC and DRDC for

funding in 2008 (Dagenais, 2008b; Couture and Glraigr, 2008). The main technology that

was considered in this proposal was tlErng framework (Desnoyers and Dagenais, 2006a;
Desnoyers and Dagenais, 2006b; LTTng, 2008).

Investigations of critical aspects of the propopegject were also conducted in 2008 in order to
identify and reduce major technical risks. Theirgmse was to study the feasibility of developing
a feedback-directed diagnostic system based ohTheg framework. This document describes
the results and recommendations of these studies.

1.2 Overarching methodology

The methodology for defining DRDC Valcartier R&Dojects consists of a suite of logically
ordered phases (Figure 1), each of which buildtherresults of the previous phases. This section
provides a brief overview of each phase and estadsi relationships with the current R&D effort.

The first two phases are dedicated to the formaratf operational and technical needs and
requirements. The process starts with the ideatifio and description of operational problems.
Needs and requirements are then iteratively refinedcientists with the active contribution of

representatives from the end-user community ankntgogy specialists (two opposing arrows

between phases 0 and 1 in Figure 1).

Based upon the results of the first two phasesnsisis identify a number of potential solutions
out of the scientific literature (phase 2). Thegitally require in-depth scientific investigatiotus
be critically reviewed and validated.

The third phase of the process consists in achjesirstate-of-the-drt{SOTA) regarding the
problems, needs and solutions identified. The S@mauld allow the capture and integration of
all relevant concepts, research, authors, organimttechnologies, processes, tools, etc., into a
comprehensive view.

* Described in Section 1.2.
% Areas of R&D are briefly described in Annex B.
4 A SOTA on the monitoring and tracing of multi-cangstems was made (Dagenais, 2008a).

2 DRDC Valcartier TR 2008-300

In phase 4, international experts, civilian anditany partners of DRDC, and academic and
industry stakeholders are invited to elaborateaacted aspects of the identified solutiorige
main goals of the tutorial are:

1. distribute the acquired knowledge among stakisrs|

2. develop a more precise understanding of identifiroblems and needs;

3. provide complete answers to attendees’ questioms

4. identify, define and start collaborations ametakeholders.

(1) Formulation of 44@
f requirements

(0) Formulation of
problems and
needs

(2) Identification of
potential solutions

(3) State-of-the-art; SOTA - .
(5) Feasibility studies on

selected solution options
($, time, risks; 2-6 months)

(7) Research project
(~3 years, annual delivery)

(8) Scientific communication
and demonstrations

Figure 1. The Methodology phases.

(4) Tutorial/workshop:
Refinement of
solution options
(2-3 days)

(6) Fund seeking
(Partnership & client)

Just after the tutorial, a half-day workshop inwodya limited number of partners is then held.

Based upon acquired knowledge, participants distuse specific problems and needs in greater
depth. The aim of this workshop is to prioritizenamber of solution options for subsequent

feasibility studies.

In phase 5, a number of feasibility studies areiedron in order to estimate the cost and
technological risks that are associated with easlbcted solution optién Based upon these
results, R&D projects are then formally proposed ffmding in phase 6 and then executed
(phase 7). Ultimately, they lead to demonstrationeealistic environments, and other forms of
publication (phase 8).

® Couture et al., (2008) provide a description @ftiitorial/workshop that was held at Ericsson’s el
offices in January 2008.

® This document represents the main output of thissp for this effort.

" Two project proposals were submitted: Couture@hdrpentier (2008) and Dagenais (2008b).

DRDC Valcartier TR 2008-300 3

The methodology (or process) shown in Figure 1 tmaycycled through many times if many
iterations are needed to build the complete soaiutlo this case, each iteration builds on the
results of previous ones.

1.3 Content of this document

The work described in this document is divided i@ separate but complementary threads
(herein calledR&D Threads). When considered together, both threads aim tmlysthe
feasibility of building an online feedback-directdihgnostic system for the tracing and analysis
of C2 information systems during operation. Theg #riefly introduced in the following
sections.

1.3.1 R&D Thread 1: Mechanisms for monitoring, trac ing and control

This R&D thread aims to identify and study conceptd mechanisms for the online generation,
transfer and remote management of execution trakeditional mechanisms for the remote
control of the tracing software (LTTng, 2008) walso be studiéd The aim of this thread is the
control-directed remote tracing of distributed wafte systems. The main tasks defining this
thread are summarized below.

1. Identify and validate mechanisms for the transfeexecution traces from one or many
distributed multi-core computational nodes to aagtone.

2. ldentify and validate mechanisms for the receptind management of execution traces on a
remote computational node. Mechanisms should adeepdrtial execution traces that
originate from distributed, SMP and multi-core cargtional nodes. They should also make
them available for analysis processes.

3. Identify and validate mechanisms for the transfdr amntrol commands between
computational nodes (for the remote contrdLdTng.

4. ldentify and validate mechanisms for the activatddthe control oLTTngprobes (based on
the execution of transferred control commands).

5. Evaluate the performance of all improved and depedomechanisms.

1.3.2 R&D Thread 2: Toward trace abstraction and an alysis

Tasks defining R&D Thread 2 are complementary twséhof the previous thread. Essentially,
this thread aims to identify and study mechanidmas will permit effective and efficient remote
online analysis of the received data (executiocetelements)

The main tasks defining this thread are summaitizdolv.

8 Outcomes of these tasks will make a direct contid to the following Areas of R&D: 1, 2 and 3
(Annex B).
° Outcomes of these tasks will make a direct coutidi to the following Areas of R&D: 3, 4, 5 and 6.

4 DRDC Valcartier TR 2008-300

1. Review the scientific literature and works on folisras for representing programs,
execution traces, fault representation, as wellleac® comparison, pattern and fault detection.

2. Identify and evaluate mechanisms that will be usegenerate theoretical representations of
software applications in the trace analysis contesiulting in execution models.

3. Simplify the trace abstraction and analysis problmimiting the tracing to the user/kernel
interfaces (e.g. system calls). Analyze limitatitimet are associated with this simplification.

4. Study the content, structure and inherent logiexafcution traces.

5. Investigate the possibility of abstracting exeautittaces into higher-level behaviours.
Compare execution traces with execution modelsrdieroto correlate observed events with
process behaviours.

6. Investigate the possibility of automating tracetedagion and analysis.

1.4 Frequently used terms

Frequently used technical terms in this documest defined below. The Glossary contains
definitions of other terms.

Computational node a piece of hardware that is running software iappbns in operation. It
may refer to computers, network devices, etc.

Software application (or program) versus software ystem these terms refer to two similar
things that stand at two different conceptual Isev8oftware application (or program) refers to a
piece of software (lower level), while software teys refers to an aggregation of one or more
software applications (higher level, the whole).orexamples will help clarify the difference
between these terms. WMjicrosoft context: the software application would be MS Word and the
software system would be MS Word plus the MS WinslotPP operating system. 2)jnux
distribution context: the software application would be a specific pagk and the software
system would be the distribution as a whole (inicigdhe Linux kernel).

Software component components are smaller pieces of software agplita software systems
and operating systems (e.g. a kernel module).

Information system: a software system that is used by officers oratpes during operations.
For instance, it may involve many distributed dodleative software applications that are
executed on many geographically distributed comjmrtal nodes. In the military context, they
may be a command and control information systemSJC2

System this general term includes any form of any sustey. A system usually consists of one
computational node, which runs software systems.

Diagnostic system a software application that monitors and/or tsaegecutions of software
systems. For instance, it may produce diagnostigarding system health.

DRDC Valcartier TR 2008-300 5

Online and continuous: the adjective “online” means in this document gein use during
operations, and the adjective “continuous” meamstmt and uninterrupted.

Execution trace execution trace is defined in this document atr@nological suite of records
resulting from observations that were made on aingnsystem at different instants tluring a
specific period delta-t. More precisely, an exemutirace contains information regarding specific

events in the system that is generated_BY¥ng when its active probes were encountered and
executed.

Trace events (or elements)the content of an execution trace.

The reader will find additional definitions in tiossary of this document.

6 DRDC Valcartier TR 2008-300

2 R&D Thread 1 — Mechanisms for monitoring,
tracing and control

This R&D thread aims to identify and study mecharsisor the online generation, transfer and
remote management of execution traces. Additiorethanisms allowing the remote control of
the tracing softwareL{TTng will also be studied. The aim of this threadhe ¢ontrol-directed
remote tracing of distributed software systemsThis chapter provides a description of the
work, observations and results achieved in this R&i@ad.

2.1 Initial premises
Main premises considered in this thread are:

1) Once appropriately adapted, thETngframework® will transfer execution traces on
a continuous basis to a remote computational nadefdrther management and
analysis. Minimal impacts will be observed on tsgstems’ performance.

2) It will be possible to decode and reassemblea @montinuous basis, chronological
elements of execution traces which originate frava or many distributed and possibly
multi-core systems.

3) Remote control of each running instance oflifi@ng framework (located on each
distributed system) will be made possible on aioous basis. The control consists in
allowing the choice of both the focus and resohitiof execution traces.

2.2 Technological considerations

2.2.1 The Use of Free Open Source Software — The LTTng framework
and Linux

The choice of using theTTngframework and the Linux operating system (and ngmeerally
FOSS) was made in the early stages of this R&Drieffdore information regarding this choice
and potential advantages of using FOSS can be fou@duture et al. (2008), Carbone (2006a),
Carbone (2006b), Carbone and Charpentier (2006hdBa (2008) and Charpentier and Carbone
(2004).

19 LTTng was chosen as the tracing system (Coutuak,&2008). A quick overview of this software dam
found in Annex C. Some important references reggrtir Tng are: Desnoyers and Dagenais (2006a);
Desnoyers and Dagenais (2006b); Desnoyers and Bsg@008); Yaghmour, K. and M. R. Dagenais
(2000); Yaghmour (2001); Bligh et al. (2007).

" Thefocusrefers to the specific traced software objectsamnponents ancesolution refers to the
number of active probes used. A higher number dif seéected active probes will produce well focused
execution traces, with the necessary levels ofildetahe analysis of its elements.

DRDC Valcartier TR 2008-300 7

One advantage (among others) of using.fieéngframework is that some of its components may
be used with other types of operating system @hanot UNIX-like).

2.2.2 Use of the client-server model

The client-server model (Figure 2) was used in fngject. This model was chosen for the
following reasons.

« Information systems (clients) may be geographicalldistributed: operations may involve
the use of spatially distributed networked collatime information systems. This model is
particularly useful for geographically distributefficers that collaborate through networked
information systems to achieve shared goals oriomiss

« Information systems (clients) and the software fotrace management and analysis (on
the server) is not necessarily executed on the sanmemputational node critical
operations may require that system monitoring,itca@nd analysis be achievable both
locally and remotely. In some circumstances, remaalysis may be preferred. For
instance, intense local trace analysis may segiousipact the performance of the
computational node CPU(s). This problem would Heezbif the workload associated with
trace analysis were achieved remotely, freeinghg GPU(s) for operational computing
tasks.

Client
Traced system
Sends traces

TCP/IP
Client Server
Traced system —TCP/IP —TCP/IP—» Receives traces
Sends traces Analyses traces
TCP/IP

Client
Traced system
Sends traces

Figure 2. The client-server model.

Using this model, concurrent execution traces fenclients’ side) are transferred to a centralized
server. This server reassembles received exectriors and performs appropriate analysis on
these traces (or delegates this analysis to otlgposting computational nodes). The analysis of
these traces characterizes the current healthcbfteaced system as well as the whole distributed

system.

8 DRDC Valcartier TR 2008-300

2.2.3 Prototype architecture

Figure 3 shows a view of the architecture thatuslied in this R&D thread (as well as in the next
chapter). It involves the use of the client-sermedel (Section 2.2.2). It allows the study of
remote management and analysis of execution trasesgll as remote control bf Tng probes

on the client’s side. The figure only shows onerdifor clarity purposes, but the reader should
keep in mind that many distributed concurrent meidtie clients are considered in this study.

The client (computational node 1) executes usadgnams and.-TTng In this work, additional
components are added on the client side in ordel)tmansfer execution traces to remote server,
and 2) receive and executd@ Tng control commands. The reception of execution same the
server side (computational node 2) is managed byréteiver component. Traces are then
analyzed by other components and the knowledgediegathe health of the client system is
produced. Based on this knowledge, a decision fiing humans) is made regarding what
should be tracéd next. Control commands are then generated acaydiand are sent and
executed on the client by the controller component.

Client Server

User Transfer of Controller «—{ Decision
applications commands A

contol rd |
el Analysor - Knowledge
Kernel |

A

Transfer\
Mon./Trac. —of events @
(LTTng)
Computational
node 2

Computational node 1 (Linux)

Figure 3. The prototype architecture used.

Yellow/green rectangles in Figure 3 are studieR&D Thread 1/2.

2.2.4 Programming language

C programming language was exclusively chosen is R&D thread for performance and
compatibility reasoris.

12 Only the control of the LTTng tracing probes isisilered in this study. Further studies will coesithe
possibility of controlling user’s programs and tiperating system as well. For instance, servicaildee
started or stopped depending on the results olataine

13 Both the Linux kernel and LTTng are mainly prograed in C.

DRDC Valcartier TR 2008-300 9

2.2.5 Computational nodes

Both single-core (Intel Pentium 4, 1.70GHz) and tiredre (Intel Xeon, E5405, 2.00 GHz)
computational nodes were used in this R&D thredteyTwere linked by a 10/100BASE-TX
Ethernet switch.

2.3 Workload for this R&D thread

Preliminary investigations of th&TTng architecture yielded the identification of four ima
groups of feasibility studies that could be madweyTare briefly introduced below.

1. Support for network. Currently, the transfer of execution traces faliree remote analysis is
not allowed. Analysis is limited to complete trat¢leat were already saved in local files on a
hard disk (on the client’s side). The feasibilifyti@nsferring trace elements from clients to a
remote server over the network for online remotayais is studied.

2. The flushing of data buffers Before trace elements can be sent to the seheyrare locally
sent from the kernel space to user space (clide) sia data buffers (using relay; Zanussi et
al., 2003; RelayFsS, 2008). The fact that theseebsifare flushed only when they are full
presents a problem. The feasibility of flushingsiaduffers on a more regular basis in order
to reduce the latency of transfer is studied.

3. Remote control The feasibility of remote activation and deadiiva of LTTng probes
(client side) for the remote control bT Tngis studied.

4. The continuous decoding of execution tracegurrently, execution traces are decoded by
LTTV. LTTVis limited to reading complete execution tracex there pre-recorded on a hard
disk. The feasibility of decoding execution tratiest are transferred from clients to a server
on a continuous basis is studied.

Five main tasks for this R&D thread are identifigtiey are described below.

Task 1 — The refactoring of selectei TTng components:

The main goal of this preliminary task consistddnilitating code reuse for subsequent R&D

work. LTTngs components are studied in more depth in ordddéatify the source code that

could be refactored, and achieve this refactoring.

Task 2 — The transfer of execution traces over theetwork:

A number of mechanisms must be put in place inrdaeallow the secure, efficient and effective

transmission of execution traces from clients tovesefor remote analysis and control. This task

involves, among other things, the study of tranpfetocols and the modification of soh&Tng
components.

Task 3 — The problem of latency transfer:

10 DRDC Valcartier TR 2008-300

Internally, LTTngtransfers execution trace events (or trace eleshéaim the kernel space to the

user space through data buffers (client side). liedfers are flushed only when they are full.
This mechanism may cause a latency problem if dte of production of trace elements is not
high enough; the data may be kept in buffers faglperiods of time. This task aims to identify

and test mechanisms that will flush these buffens| thus reduce the time the data will reside in
buffers.

Task 4 — Remote control:

Secure, efficient and effective remote controL®Tng probes represents an important advantage
for the surveillance and protection of informat®ystems in operation. The types of control that
will be considered in this R&D thread are limitedthe activation/deactivation of selectetiThg
probes. Mechanisms to ensure such a control adéestand tested. They incorporate security
and authentication functionality.

Task 5 — The decoding of received execution traces:

Raw execution traces must be decoded and transflobpeTTV before they can be analyzed.
This task aims to study and test mechanisms foreim®te management of execution traces.

2.4 Exploration and analysis — Results and observat ions

241 Technical description of an execution trace

It is important at this point to provide a desdoptof execution traces that are produced by
LTTng Terms and concepts that are defined in this@eatill be used throughout this chapter.
The reader may refer to Figure 4 for an illustnatdd definitions and concepts.

An execution traceis defined in this document aschronological suite of records resulting from
observations that were made on a running systediffarent instants,t during a specific period
delta-t. More precisely, an execution trace contains infitram regarding specific events in the
system that is generated by Tngwhen its active probes were encountered and es@cut

Execution traces are sub-divided intbannels®. A channel gathers together events that are
generated by a group of pre-selected probeasadefile is a sequence of events, which takes the
form of a tracefile in the execution trace. Thereme tracefile per running CPU for each channel.
Tracefiles are then sub-divided into a number xédi size blocks callesub-buffers. Each sub-
buffer contains many events (or elements).

The concept of channel allows the segregationamfeti events according to their importance or
priority. If a problem occurs while tracing the ewdon of a system, the capture of events
corresponding to prioritized channels would be aagat before other channels.

1 Currently, LTTng has five channels.

DRDC Valcartier TR 2008-300 11

Tracefiles are read Hitd process (Section 2.4.2) using a memory map ostiebuffers. This
process makes a reservation for a filled sub-buféads its content and then releases it so that it
can be refilled again.

CPUO CPU 1 CPUnN
Channelo |0] - | | - | - | -]
Channel1 |[0) [- [| |0 - | - | [0) - |
Trace
Channel2 | [- | |0] - | e)
Chameln |[d I -+ 0| |0 3| - |)
subbuffers buffer or tracefile

Figure 4. Composition of a LTTng execution trace.

Note thatLTTngis lockless, meaning tHeTTngtracer may write in sub-buffers even if they are
reserved by the procekli&l. A sub-buffer may thus become “corrupted” if thecer writes into it
while thelttd process is reading it. Thied process is notified of a corruption by a statudecthat

is returned when a sub-buffer is released. Thigistaode should be considered lbg, and
managed accordingly.

For each channel,TTngoffers the possibility of specifying both the semed the number of sub-
buffers that are allocated in the kernel.

2.4.2 Initial architecture of the LTTng framework

Figure 5 provides an overview of some selected corapts of the currertTTng architecture.
Modifications and new developments were added is #rchitecture in order to achieve
described feasibility studies. The reader will famanore detailed description bTTngin Annex
C. These components are introduced below.

exec\

'(“S'grri':g')' lttctl lttd Ittv
proc netlink relay
LTTng

Figure 5. Main components of LTTng — current varsio

12 DRDC Valcartier TR 2008-300

Componentdtt-armall andltt-disarmall (not shown) are sets of scripts that are usedtteade or
deactivate probes used hJfTng The mapping of communication channels with prbbes
achieved by these scripts as well.

The componenittctl is a command line application that creates, startsstops the generation of
execution traces through a netlink interface. Roaktarts thdttd daemon, which transfers
execution traces (on hard disk) that were receifreth the kernel space through “relady”
(RelayFS, 2008; Zanussi et al., 2003).

Execution traces that are saved on disk can besdevith theLTTV component.

2.4.3 Task 1 — Refactoring of selected LTTng components

Preliminary investigations of components shown iguFe 5 have shown that there would be
benefits associated with the refactorindttaf.

The work that was done in this task has allowed ekieaction of thdttd “execution trace
reading functionality” and to refactor it as a rabige library. The main goal was to make
execution traces directly available both localld aemotely for online trace analysis.

The function prototypes that are available in trasv library are listed in Figure 6.

struct lttio_handle *Ittio_ open (const char *channel_name, struct lIttio_ops *ops, i nt
flags);
int Ittio_start (struct Ittio_handle *h, int num_threads);

int Ittio_wait (struct Ittio_handle *h);
int Ittio_hang_up (struct Ittio_handle *h);

int lIttio_close (struct Ittio_handle *h);

Figure 6. The new library API for the acquisitiohexecution traces.

Following is a brief description of these functions

* lttio_open() . this function opens an execution trace that ated in the directory,
which is specified by thehannel_name argument. It returns a handle that identifies the
liblttio session and allows the management of acquisitidhs. Ittio_ops data
structure is described later in this section.

 lttio_start() . this function starts the worker threads that @sed for the capture of
execution traces and returns immediately. The nurobstarted threads is determined by
the parametafum_threads .

5 The list of active probes that were used in LTTmgughout this work can be found in Annex C.4.
® The old appellation of “relay” was “RelayFS”.

DRDC Valcartier TR 2008-300 13

e lttio_wait() : the capture of a trace ends when it has reatkahd or when the capture
is forced to stop (with the functiofttio_hang_up()). This function suspends the
execution of the calling thread until all the warklereads have ended their execution.

 lttio_hang_up() : this function sends a hang up request to the evdtkreads. It does not
wait for the threads to stop, it returns immediatel

 lttio_close() . this function closes all tracefiles and frees mdbkources that were
allocated by the acquisition session.

As shown in the API, the data structuite® ops must be transmitted as a parameter in the
function Ittio_open() (Figure 7). This structure contains pointers toumber of callback
functions that are called by the worker threadsughout the trace acquisition process.

struct Ittio_ops {

int (*open) (struct Ittio_tracefile *tf);

int (*write) (struct Ittio_tracefile *tf, void *data, unsigned int size);
int (*subbuf_begin) (struct Ittio_tracefile *t f);
int (*subbuf_end) (struct Ittio_tracefile *tf, enum lttio_subbuf_status status);

void (*close) (struct Ittio_tracefile *tf);

Figure 7. Data structure used in the library foetbapture of execution traces.

The functionopen() is called when a new tracefile is opened. Theneézh acquired sub-buffer
that contains trace events (elements), the funetiohuf_begin() is called, followed by many
calls to the functiomrite() . Finally, the functiorsubbuf_end() s called’.

The acquired data in the sub-buffers are transfardhe user by calling the functienite()
It is important to note that the data may be tramefl in the form of many data segments.

The functionsubbuf_end() marks the end of a sub-buffer. This function nesuanint
representing the status of the sub-buffer. TheevalBLTTIO_SUBBUF_OK indicates that the
sub-buffer was not corrupted during the trace aition, and the value
LIBLTTIO_SUBBUF_CORRUPTEINdicates that is was corrupted.

Thelttio_tracefile data structure that is passed as a parameteese ttallback functions is
listed in Figure 8. The variablgpath contains the relative path of the channel (e.g.
“control/facilities_0 "), subbuf_size represents the size of the current sub-buffer,

subbuf_bytes indicates the size of the data contained in theeati sub-buffer in bytes, and

" Note that new tracefiles may appear in the middile tracing session when a CPU is hot-pluggedron a
SMP system.

14 DRDC Valcartier TR 2008-300

user_data is a pointer that can be used by the user to hattscown data to the tracefile
structure.

struct Ittio_tracefil e{
char *path;
unsigned int subbuf_size;
unsigned int subbuf_bytes;

void *user_data;

Figure 8. Data structure used in the library foetacquisition of execution traces.

2.4.4 Task 2 — Transfer of execution traces over th e network

As mentioned, the client-server model was choséients are expected to send execution traces
to one server that manages and possibly analyzss. thihis model offers the advantage of
allowing the remote management and analysis of nsmultaneous traces originating from
distributed SMP or multi-core systems. The seneassembles received traces and achieves
appropriate analysis (or delegates this analysiiter supporting computational nodes).

Three different communication solutions were itigizonsidered for the transfer of execution
traces over the network. They are listed below.

1. communication through serial connections;

2. communication through common Ethernet and netweskogs using UDP/IP; and

3. communication through common Ethernet and netwerskogs using TCP/IP.

The third solution was chosen for many reasons.eSointhe advantages it offers are: 1) it offers
mechanisms for flow control and the managementafsmission errors; 2) it offers a certain
level of reliability; 3) it may potentially allonhe transmission of execution traces over networks
having large geographical extents; and 4) depenalintpe hardware and network devices used, it
offers sufficient bandwidth for the transfer of lhigesolution (huge) execution traces.

Following is a description of the solution that wast forward for communication between
computational nodes.

Communication between computational nodes:

A TCP connection is established for each tracelieents pertaining to tracefile channels can
then be concurrently transmitted.

DRDC Valcartier TR 2008-300 15

For each tracefile, the client transfers one heati¢he beginning of the connexion (Tablé®1)
Then, sub-buffers of the tracefile are transmitind after the other until the end of the execution
trace is reached. The closing of the TCP connedtidicates the end of the execution trace.

The size of each transmitted sub-buffer can becplesi by the parameteubbuf_bytes . This
parameter represents an advantage when sub-baffersot completely filled with the data.
Indeed, the value of the parametabbuf_bytes can be used to transmit only sub-buffers’ used
bytes; unused bytes are not transmitted. It wilshewn later in this chapter (Section 2.4.5) that
this parameter is used by mechanisms for redueiegty transfer.

It was mentioned in Section 2.4.1 that transmittath can be corrupted if new data is written by
the tracer in the sub-buffer while it is transfetr8ub-buffers that were corrupted can be detected
by the examination of a status parameter thaaisstitted at the end of each transfer.

Another solution for detecting such corrupted sulfdss would be to make a copy of the whole
sub-buffer just before the transmission begins, thed transfer this copy instead of the original
data. The first solution was chosen as a first Bfiv@tion in this work. Further studies will
identify additional mechanisms.

Table 1. Transferred tracefile header information.

Identifier Type Description

header_size uint32_t Size of the header in bytes. The size does|not
include the fielcheader_size

magic_number Uintl6_t Protocol identification number (this is a constant,
the value must be equal x177d).

proto_version uint16_t Protocol version (currently the value ¢s0001).

subbuf_size uint32_t Size for the sub-buffers of this tracefile (in
bytes).

tracefile_path char|] Null-reminated string containing the relatiye

tracefile path.

18 |ntegers are transferred using tiig-endianconvention.

16 DRDC Valcartier TR 2008-300

Table 2. Transferred sub-buffer information.

Identifier Type Description
subbuf_bytes uint32_t The number of bytes transmitted |in
subbuf data . This value must be lower or
equal tosubbuf_size
subbuf_data charl] Raw data contained in the sub-buffer.
status uint8_t The status of the transmitted sub-buffer. Possible

values are:
-SUBBUF_OKO0x00):

-SUBBUF_CORRUPTHDX01):

Implementation:

This protocol was implemented directly in tttel component as well as in a néttnetd daemon
(Figure 9 shows the modified version IoFTng. Referring to the client-server model used, the
Ittnetd daemon represents the server ligrepresents the client (Figure 2).

EXEC\
Ittrctl Ittnetd Ittv
l liblttio proc
ssh
ssh
‘ sshd er
/ ,
Ltt-armall Ittct] —exec—> Ittd
‘ liblttio
proc netlink relay
‘ LTTng

Figure 9. Main components of LTTng — the Modifietsion

DRDC Valcartier TR 2008-300

17

The reception of execution traces by the servesli@s the use of the new API that is described
in Section 2.4.3. Théttctl component was modified in order to expose the otwransfer
functionality (that is offered bigtd).

Our implementation manages multiple network corinast concurrently (multiple concurrent
distributed clients) with the help of one threadttloops with calls to thgool(2) function.

Observations:

It was shown in this task that the transfer of ekieo traces from one or many computational
nodes to another one according to the client-sengetel is feasible with low technological risks.
The use of TCP/IP protocol presents many advantdgés a flexible, reliable and scalable

mechanism that checks for transfer errors and nenéigw control. TCP/IP flow may also be

tunneled in an SSH tunnel (Figure 9). It can beduse many types of network links (wired,

wireless, etc.) and many network topologies (LANAN WAN, etc.).

A number of improvements could be made to the syskeérst, currenth. TTnghas five channels
(Section 2.4.1). If one multiplies this number hg number of apparent CPUs in the system and
then multiplies the result by the number of disttdd SMP or multi-core systems, it becomes
apparent that connections that are concurrentlgisgrexecution traces toward the same server
may cause network transmission performance probl€&ng solution envisioned would be to
replace the traditionalool(2) function by a more efficient event notification chanism. An
example of such an improvement could be to es8I(7) under Linux 2.6 okqueue(2)

under FreeBSD. Another solution would be to modifg communication protocol in order to
multiplex into a single connexion all the tracefileriginating from a computational node.

Second, our implementation &fTTng is not multi-threaded; it does not make use of the
parallelism capability that is offered on SMP orltiacore systems. Based upon CPU workload
attribution, improvements in this direction may/lgli@ifferent strategies for monitoring, tracing
and analyzing systems.

Finally, it should be mentioned that embedded systenay not have the necessary network
infrastructure to support the proposed trace temafotocol mechanism. In this case, our solution
would need to be revised for this kind of systems.

2.4.5 Task 3 — Problem of latency transfer

As mentioned earliet, TTngmaintains buffers for each tracefile of every eximm trace. These

buffers are not flushed until they get full. Thisynpresent a problem in the context of online
trace analysis; if the rate of event generationoishigh enough, the data will stay in buffers for
long periods of time, causing lags in trace analyBhese buffers must thus be regularly flushed.

The Flushing of data buffers:
The LTTng kernel component was modified in order to allow ftushing of data buffers on a
regular basis. A timer was installed on each tibec@f order to trigger periodic flushing of the

buffer. This timer is launched when the tracetasted, and it is reset to zero when the buffer is
flushed (either if the timer expires or the buffets full). The value of the timer can be specified

18 DRDC Valcartier TR 2008-300

when the execution trace is created (byieflink command). Specifying a negative value
deactivates the timer.

The Reduction of execution trace volume:

Sub-buffers are stored entirely into the traceditel they often include unused bytes at the end of
the buffer. The premature flushing of the sub-huffeéggered by ending timers) will cause the
storage of partially filled sub-buffers and willuse significant memory waste. Ideally, sub-
buffers should be of variable size so that onlyhktes used would be stored. However, we are
limited by the current version &fT TV, which only supports fixed size sub-buffers.

Modifications were made in order to optimize reseuusage. First, anoct| command was
added to query (from user space) the number of hgexb in reserved sub-buffers. Second, the
implementation of the trace transfer protocol wasdiiied in order to transmit only the used
bytes of the sub-buffers. Finally, the storage imautwvas changed to leave unallocated blocks
inside the files, where there are irrelevant datgions. Unallocated blocks enable us to reduce
storage consumption while keeping sub-buffersfireal size as required ByTTV.

Observations:

One timer was implemented per buffer. If we consittee possibility of having multiple
concurrent CPUs, the number of timers may growdtgpiand have negative performance
impacts. A solution to this potential problem woublel to use only one timer per CPU, and flush
all channels at the same time.

Despite the fact that these optimizations contaksignificantly to a reduction in wasted network
traffic and storage space caused by premature rbfliffehing, the mechanisms used are not
perfect and should be improved. For instance, tialacated blocks are not considered in the
total file size and may confuse the user. Also,dbtmization can be lost if tracefiles are moved
to another system. An ideal solution would be td @akiable sub-buffer size support infoTV.

2.4.6 Task 4 — Remote control

This task aimed to investigate the possibility ofii@ving remote secure control lIof Tng SSH
and its authentication mechanism were chosen farig and reliability reasons (Figure 9).

The prototyped solution implements the networkgfanof commands for controllirigiT Tng An
APl is used to encapsulate the interfacing with 8H their sending over the network.

Observations:

Results of this prototyping effort show that the a$ SSH significantly eases the implementation
of the needed capability. There is no need to eraatew control protocol, since this mechanism
already offers authentication, encrypting and tlingecapabilities.

The effort and technological risks associated whik task are relatively low. One limitation of

this solution is related to the use of SSH in endieedsystems, where resources are restricted and
networking support may be absent.

DRDC Valcartier TR 2008-300 19

2.4.7 Task 5 — Decoding of received execution trace s

Raw execution traces must be decoded and mergecelt&ey can be remotely analyzed on the

server. The current implementation IOF TV cannot be used to achieve online remote analysis
because this software only deals with completel lexacution traces, which are already recorded

on hard disks.

The feasibility of achieving remote online analysfexecution traces was shown. The modified
version of LTTV (Figure 9) reads and decodes many traces onlim,itaworks with many
concurrent tracefiles. The development of the ysetbtype was not developed to its final stage
because refactorization b TVis planned by the official programming team (LTT&§08).

Observations:

A mechanism for the synchronization of many corenirrtracefiles was implemented. One

limitation of this mechanism is that it concurrgntiorks exclusively in batch mode (for the

moment). Technological risks associated with theagament of received execution traces are
relatively low.

Possible improvements ta' TV could be: 1) direct reading of execution tracesnfthe network,
without having to save the trace on the hard désid 2) continuous refreshing of the GUI
showing received traces. These improvements shmuldbne after theTTV refactorization will
be achieved by the official programming team.

The used prototype raises the problem of tracehsgnization on the server side. Each trace
element has a time stamp that was given by thek@éthe computational node from which it
originates. As the clocks of computational nodesrait synchronized, and they drift differently,
the reassembling of trace elements that originate fmany computational nodes will present a
synchronization problem. This problem should bereskked as well.

20 DRDC Valcartier TR 2008-300

3 R&D Thread 2 — Toward trace abstraction and
analysis

The remote analysis of received execution tracesamputational node 2 (Figure 3) was
deliberately omitted in R&D Thread 1. R&D Threadbdilds on the results obtained in R&D
Thread 1 and evaluates the feasibility of remaedrabstraction and analysis. It aims to provide
officers on duty with updated and accurate knowdeditheir systems’ health. Both R&D threads
(when considered together as a whole) aim to etaltree possibility of buildindeedback-
directed diagnostic systems

The main focus of this chapter is the study of thdcal and technical concepts and mechanisms
allowing trace abstraction and analysis. The taaoftware used in this chapter is the same as
the one used in R&D Thread LTTng.

3.1 Initial premises and workload for this R&D thre ad

An execution traceis defined in this document aschronological suite of records resulting from
observations that were made on a running systewifgrent instants ‘{’, during a specific
period “delta-t”. Trace events are captured whetTTng probes” located in the software are
encountered or executed. Depending on the numhbativke probes in the system, it is clear that
execution traces may quickly become very huge, ngakilement-by-element analysis nearly
impossible to achieve.

The feasibility of trace abstraction and analysissiudied in R&D Thread 2. The strategy
considered consists in: 1) the analysis of therimitesemantic oETTng trace elements, 2) the
identification of interrelationships between theand 3) the building/use of execution models to
deduce higher-level behaviour abstractions. Thenrpemises that were considered in this work
are:

1) The analysis olLTTng trace elements will aid in abstracting them intoren
significant (or higher level) behaviour abstraction

2) Trace abstraction will in turn aid in improvimgany aspects of trace analysis and
comparison.

3) Trace abstraction and analysis can be done orordinuous basis (during
operations), thereby providing a continuous updstefficers’ knowledge regarding
the health of their systems.

The workload of this R&D thread was structured ourf different but complementary and
sequential tasks. The goals of each task are ypde#icribed below.

Task 1 — Overview of current related works:

DRDC Valcartier TR 2008-300 21

Trace abstraction and analysis are relatively nemains in computer science. The main goal of
this task consists in conducting a review of therddic literature and identifying potential
proven solutions that could aid in solving desatipeoblems.

Task 2 —Analysis of execution traces:

The second task in R&D Thread 2 consists in anadyzixecution traces that were generated by
LTTng The goal consists in understanding their contieterent logic and structure and then
deducing hints for the feasibility of trace absti@t and analysis.

Task 3 —Theoretical considerations for trace abstretion:

Having understood. TTng execution traces, the next task consists in stigdthe feasibility of
abstracting them into higher level behaviours fdysequent analysis.

Task 4 — Program analysis toolkit (PAT) for automaing trace analysis:

This task is dedicated to the study of technical practical aspects of the problem. It aims to
verify the feasibility of automatic trace analysiaring operations. This task will involve the
development of prototypes that implement studiesitétical concepts and mechanisms.

3.2 Experiment

This section describes the experiment that wasechout to produce the studied execution trace.
Figure 10 illustrates the system used, and thewvatg lines provide a brief description of the
experimentation.

Linux was used as the operating system. In thisestnthe CPU executes processes in one of the
two execution modesuser moden the user spaceor supervisor modén the kernel spacé®.
Interactions of user space applications with thehlvare are usually achieved through calls to the
glibc library, which make calls to appropriatystem calls System calls then trigger the
execution of appropriate kernel modules in the &kespace. Returning notifications from the
hardware to the user space application is usuatlyiesed through ititerruptions” (not
illustrated in Figure 10 for clarity purposes).

In this experiment, the running application (ugsace; client side) imicro_httpd® (Micro_httpd,
2008). This application is a tiny Unix-based HTTéPver (7 Kb). It runs from messages arriving
from the daemonxinetd and it implements all the basic features of an RTSErver including
security, filename snooping, the common MIME tygesiling-slash redirection, index.html, and
directory listings.

Briefly, xinetdmanages Internet services on Linux systems bgnliisty on specified ports (80 in
our case), and redirects requests to the appreméater rhicro_httpd. The servemicro_httpd
receives requests froxinetd and then offers the service for this request (ggntack a web
page for instance).

19 More technical details on Linux and its kernel tarfound in Corbet et al. (2005) and Fusco (2007).
% The source code of this application is listed imax D.

22 DRDC Valcartier TR 2008-300

In this experimentL. TTngproduces execution traces by capturing eventsatieatriggeredt the
user/kernel interface (system calls)

User space
xinetd
micro_httpd
J /‘ LTTng
(glibc A ‘
G etom &
Kernel space ystem calls f
Traces
Kernel
module
Kernel LTTng
module & /‘
Kernel
module
Hardware Y]

Figure 10. Cascade effects of the execution ofitieeo_httpd application.

All figures in this chapter show execution trackattare actually portions of one bhig execution
trace, which is listed in Annex E. This executioace corresponds to a full execution of the
micro_httpdapplication. The reader may compare directly #xscution trace with the source
code of micro_httpd (Annex D.1). This will provide a complete pictuté events that are
happening at the kernel's interface, notably attloenentmicro_httpdis started and stopped.

3.3 Exploration and analysis — Results and observat ions

3.3.1 Task 1 — Overview of current related works

The field of trace analysis is still in its infanclyo our knowledge, no trace analysis technique or
technology can be used generically in differenttexts. Currently, each technique addresses one
or a few specific problems and is hard to adapsédving different problems. However, there are
a number of similar fields from which it is possitiio draw inspiration for the design of trace
analysis solutions. Of these fields, intrusion deta (ID) offers particular promise.

This section provides a quick overview of the cotrevork that could make significant
contributions to trace abstraction and analysis.

3.3.1.1 Trace analysis techniques

Four categories of trace analysis can be identifibey are described below.

DRDC Valcartier TR 2008-300 23

Trace visualization:

Trace visualization aims to make it easier to ustded trace elements. It makes use of different
graphic representations and related facilitiesi{sagczooming) to show precisely selected parts of
the execution trace. Two important references amél-Lhadj (2005) and Lianjiang (2005).

Two examples of a visualization tool that can beduto identify similarities (or differences)
between execution traces are: Cornelissen and Mo@@97) and Fischer et al. (2005). The first
paper aims to identify recurrent patterns in executraces, while the second aims to follow the
evolution (execution) of a program by the visuahparison of traces.

Pattern detection in execution traces:

Pattern detection in execution traces is somewmailas to intrusion detection (ID), but it
addresses a broader spectttithan ID. Pattern detection can be used to verifgm@m integrity
(detecting bugs in a program) and to identify tablksd place heavy demands on the CPU.

Some selected papers on pattern detection in eésaduaces are: Ezust and Bochmann (1995):
verifying that traces conform to specifications;uLet al. (2003): learning program behaviours
without access to the source code; Langevine (2@@®straint programs trace analysis; Chen et
al. (2003): verifying system design through analyai traces using constraint language (logic of
constraint); and Paxton (1997): analyzing TCP maltdmplementation through the analysis of

exchanged packets.

Statistics on trace elements:

A number of measurements are made on the elemémtdrace in order to produce statistical
information regarding the execution of the progr&ome examples of these statistics are: “the

most often observed behaviour”, “the proportionvitich a method or system call is called”, etc.

Chapter 3 of Hamou-Lhadj (2005) presents numeraetsics that can be used to study execution
traces.

Trace compression:
Compression aims to reduce the size of executewesr by grouping together selected elements

or parts. For instance, a method is proposed byddabhadj (2005) to group many similar trace
elements that originate from the repetitive exexutf the same function within the program.

3.3.1.2 Intrusion detection

The intrusion detection field has yielded a numifetoncepts and mechanisms for analysis that
must be considered in trace anal§fsig this context, the term intrusion means “aerafit to get
confidential information to maliciously exploit ggsn resources”.

2L As shown later in this section, ID mainly addrasissues of security and related behaviours.
2 Couture, Mathieu (2005) provides a good descriptiblntrusion Detection (ID) systems, languages an
analysis. A number of important references in fieisl are provided as well.

24 DRDC Valcartier TR 2008-300

ID aims to detect: 1) if information confidentiglihas been compromised and 2) malicious uses
of system resources. In order to address the IBl@ny three approaches were identified in the
literature: behaviour, scenario and mix approachksy are introduced below.

Behaviour approach:

The behaviour approach has two distinct phaseghénfirst phase, a model of the user’s
behaviour is built. In the second phase, an evialuatf the difference between this model and
observation of other users’ behaviours is maderdteroto detect anomalies that could originate
from malicious activities on the system.

The building of the model is achieved through areey process. No matter what techniques are
used, the same problem must be addressed: wherecaay that learning can be stopped? One
solution that was considered in the literature Imgs learning on a continuous basis.

The main advantages of this approach are thati$ dot prescribe a predefined list of malicious
behaviours, and this allows it to identify previusnknown malicious activities. This approach
is often used to verify if users’ behaviours areegtable. A significant disadvantage of this
approach is that it may trigger false positives.

Scenario approach:

Here, observations are compared with a pre-defisedf unwanted behaviours. The goal is to
detect well known specific unwanted behaviéurs

The main advantage of this approach is that it wit trigger false positives. A significant
disadvantage is that not all unwanted behavioveskaown in advance, and some important
unwanted behaviours may be inadvertently missed.

Mix approach:
This approach involves the concurrent use of betialiour and scenario approaches. The goal is
to exploit advantages and minimize disadvantagesirstance, CISCO IDS (Cisco_IDS, 2008)

makes use of this approach.

Table 3 lists the advantages and disadvantagé® dfehaviour and scenario approaches.

Table 3. Advantages and disadvantages of desctibegproaches.

Behaviour approach Scenario approach

Advantages Possible detection of unkown| No false positives
unwanted behaviours

Disadvantages False positives False negatives

%3 Unlike the behaviour approach.

DRDC Valcartier TR 2008-300 25

False negatives Limited to well known
scenarios

Relatively long learning
process

3.3.1.3 Kleene algebra

The Kleene algeb?é(Lajeunesse-Robert, 2008; Dexter, 1990; Dexteddl®exter, 2004) is a
mathematical tool used to represent software progra abstract form. Actually, it represents a
formalism containing a set ofiles that capture the semantic of program operationd, then
permits abstraction manipulation and significarftigilitates logical reasoning. Some types of
software operations (instructions) that can be asgmted by this formalism are sequences of
actions, choice between actions, and iterationctibas. The application of a set of rules to a
software program will allow it to be progressiveiynsformed into the form of a Kleene
algebraic expression, which will serve as the biasianalysis, comparison, verification, etc. This
algebraic expression formally represents an aligiraof the software program.

A number of studies have shown that by using thelss it is possible 1) to formally prove that

two programs are equivalent (Dexter, 1997a and B9%2j to certify that code optimization made

by a compiler is correct (Dexter and Patron, 20®))to verify that a program has expected
behaviours (Bolduc, 2006; Dexter, 2003); 4) to prdhe consistency of a communication

protocol (Paxton, 1997); 5) to verify compiled jagade (Kot and Kozen, 2005); and 6) to

achieve model verification (Ktari et al., 2008).Wwhver, it must be said here that reasoning with
this formalism may become very difficult to achieivecertain circumstances. In other words,
despite the fact that it may be easy to transfosuffware program into an algebraic expression,
it may be very hard (even impossible) to find hawprove the equivalence of two programs
(Cohen et al., 1996; Hardin and Kozen, 2002; Haatid Kozen, 2003; Hardin, 2005; Dexter and
Patron, 2000).

Another significant advantage of the Kleene forsraliis that it can take into account different
realities or contexts. Examples of R&D efforts ttapt the Kleene algebra to software programs
involving complex operations other than the onstedl earlier (such as C “pointers” and others)
can be found in Kamal and Kozen (2007), Allegra Kionden (2001), Adam and Kozen (2002),

Desharnais et al. (2004), Desharnais et al. (20B6in (2004), Jipsen (2004), Dexter (1990),

Dexter (1997a and 1997b), Dexter (1998), Dextef420and 2004b), Leil3 (2006) and Mathieu
(2006).

It must be borne in mind that, despite the lackrof evidence tending to limit the types of reality
that can be expressed by this formalism, adaptin@y require considerable effort.

%4 Studies such as Neumann (2000) and Neumann (280d)many others such as Schneider (1999) and
Jackson et al. (2007)) recommend the considerafitormal methods fodemonstrating consistency of
specification with requirements, and consistencyoafe with specification; formal verification anadel
checking; analysis tools for detecting charactécisecurity flaws, buffer overflowstc.

26 DRDC Valcartier TR 2008-300

3.3.2 Task 2 — Analysis of execution traces

The semantic of trace elements, their inherentclagid interrelationships between them are
studied in greater depth in this section.

Content of LTTng execution traces:

Figure 11 shows a portion of the execution traee Was generated Ayl Tng while executing
micro_httpd(lines 35-39 of Annex E). Each line correspondtht execution of &TTngprobe
(herein called “event”), which are all located la interface user/kernel space (system calls). The
meaning of selected fields (bolded in line 35his following:

* kernel_arch_syscall_entry : LTTngmarker ID (the probe identification).
e 5277.041364003 : the time when the event was recorded.

* 4566: PID, or process identification.

e 1 (just before 0x0, SYSCALL "): PPID, or parent process identification.

e SYSCALL it provides information regarding the mode of theecution (could also be
USER_MODE like in line 39) as well as kernel's sities.

e {syscall_id = 120 [sys_clone+0x0/0x40], ip = 0xb804 6424} : attributes
associated with the event. For instance, in thée ayscall_id = 120 corresponds to “clone”
or create a child process.

Actually, this portion of the execution trace shothat the daemominetd receives a “GET
findex.html” request. First, it carries oufagk (line 36) to create a new child process (which is
the micro_httpdserver). Second, it wakes up and schedules thepnegess (lines 37, 38) and
then passes the control to the newly created pedties 39 is the end of the process creation) for
the request to be serviced (not shown in this &yur

In this example, th&inetds process number is 456%netds parent process is the well known
UNIX/Linux init process (PID = 1), the newly created process hB#Daequal to 4979 and
process 4979's parent processiigetd(PID = 4566).

This newly created process is not a thread; it dudsshare the resources of its parents. It is
rather a regular process having its own resoutdass 133-137, and more particularly line 136
of Figure 12, correspond to the launching of thiscpss fc_exec).

xinetd carries on a fork() ,the CPU is available for the process that was jus t created
35- kernel_arch_syscall_entry : 5277.041364003 (/tmpl/trace-httpd/cpu_0), 4566, 4566,
xinetd, , 1,0x0, SYSCALL{ syscall_id =120 [sys_clone+0x0/0x40], ip = 0xb8046 424}

36- kernel_process_fork: 5277.041457157 (/tmpl/trace -httpd/control/processes_0), 4566,

4566, xinetd, , 1, 0x0, SYSCALL { parent_pid = 4566 , child_pid = 4979, child_tgid = 4979 }

37- kernel_sched_wakeup_new_task: 5277.041459577 (/ tmpl/trace-httpd/cpu_0), 4566, 4566,

DRDC Valcartier TR 2008-300 27

xinetd, , 1, 0x0, SYSCALL { pid = 4979, state =0 }

38- kernel_sched_schedule: 5277.041466725 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, xinetd, ,
4566, 0x0, SYSCALL { prev_pid = 4566, next_pid = 49 79, prev_state=0}
39- kernel_arch_syscall_exit: 5277.041486672 (/tmp/ trace-httpd/cpu_0), 4979, 4979, xinetd,

, 4566, 0x0, USER_MODE { ret =0}

Figure 11. Execution trace — Portion A.

Launch “micro_httpd”

131- kernel_arch_syscall_entry: 5277.045111538 (/tm p/trace-httpd/cpu_0), 4979, 4979,
xinetd, , 4566, 0x0, SYSCALL { syscall_id = 66 [sys _setsid+0x0/0xd0], ip = 0xb8046424 }

132- kernel_arch_syscall_exit: 5277.045115067 (/tmp ltrace-httpd/cpu_0), 4979, 4979,
xinetd, , 4566, 0x0, USER_MODE { ret = 4979 }

133- kernel_arch_syscall_entry: 5277.045125131 (/tm p/trace-httpd/cpu_0), 4979, 4979,
xinetd, , 4566, 0x0, SYSCALL { syscall_id = 11 [sys _execve+0x0/0x80], ip = 0xb8046424 }

134- fs_close: 5277.045319969 (/tmp/trace-httpd/cpu _0), 4979, 4979, xinetd, , 4566, 0xO0,
SYSCALL {fd=5}

135- fs_close: 5277.045394854 (/tmp/trace-httpd/cpu _0), 4979, 4979, xinetd, , 4566, 0xO0,
SYSCALL{fd=3}

136- fs_exec: 5277.045421309 (/tmp/trace-httpd/control/p rocesses_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { filename =
"/usr/local/sbin/micro_httpd" }

137- kernel_arch_syscall_exit: 5277.045424721 (/tmp ltrace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=0}

Figure 12. Execution trace — Portion B.
Possible de-multiplexing of execution traces:

As shown in this example, tHeTTng framework provides information regarding currenta
newly created processes that are running in théests Knowing PIDs and PPIDs, it is
relatively easy to segregate (or de-multiplex) theents of a raw trace based upon these
identification numbers. The result of de-multiplexiis a number of sub-traces, each reflecting
activities related to one specific process runiinge system.

Interrelationships between processes and open daesbe identified by searching execution
traces for information such as:

% Similar information on running processes can aiokd with the use of other Linux commands and
tools such as strace, ps, top, /proc/ GProf, etc.

28 DRDC Valcartier TR 2008-300

e LTTngmarker ID fist_file_descriptor ", Taking for instance line number 12 (Figure
13), one can see that process 4974 is performirgparation on a file (file descriptor fd =
3). Line number 12 also shows that the file ispePi

» Operations on these files. Lines 23, 55, 62, 90a®d 101 (Figure 13) are good examples

(fs_select, fs_close, fs_open, fs_read). Process PID’s are included in each of
these lines.
9- list_file_descriptor: 5270.945015874 (/tmpl/trace -httpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "/dev/null", p id = 4566, fd =0}
10- list_file_descriptor: 5270.945017342 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "/dev/null*, p id = 4566, fd=1}
11- list_file_descriptor: 5270.945018858 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "/dev/null*, p id = 4566, fd=2}
12- list_file_descriptor: 5270.945021038 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "pipe:[9851]", pid = 4566, fd =3}
13- list_file_descriptor: 5270.945022718 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "pipe:[9851]", pid = 4566, fd =4 }
14- list_file_descriptor: 5270.945024729 (/tmpl/trac e-httpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "socket:[9860] ", pid = 4566, fd =5}
15- list_file_descriptor: 5270.945026921 (/tmp/trac e-httpd/cpu_0), 4974, 4974, lttctl, ,
4973, 0x0, MODE_UNKNOWN { filename = "socket:[9854] ", pid = 4566, fd =7}
23- fs_select: 5277.041308682 (/tmp/trace-httpd/cpu _0), 4566, 4566, xinetd, , 1, 0xO,

SYSCALL{ fd=3 ,timeout=-1}

55- fs_close: 5277.041884668 (/tmp/trace-httpd/cpu_ 0), 4979, 4979, xinetd, , 4566, OxO0,
SYSCALL{ fd=3 }

62- fs_close: 5277.041891919 (/tmp/trace-httpd/cpu_ 0), 4979, 4979, xinetd, , 4566, OxO0,
SYSCALL{ fd=0 }

90- fs_open: 5277.044684136 (/tmp/trace-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0xO,
SYSCALL{ fd=0 |, filename ="/etc/hosts.allow" }

97- fs_read: 5277.044759137 (/tmp/trace-httpd/cpu_O), 4979, 4979, xinetd, , 4566, 0xO,
SYSCALL{ fd=0 ,count=4096}

101- fs_close: 5277.044946441 (/tmp/trace-httpd/cpu _0), 4979, 4979, xinetd, , 4566, 0x0,
SYSCALL{ fd=0 }

Figure 13. Execution trace — Portion C.

The utilization of system resources by executinggmms will trigger typical sequences of events
at the user/kernel interface (system calls). Tleesaits will be captured by thd Tngframework

and saved in an execution trace. Specific sequenfcégce elements could be recognized as
behaviours related to resource utilization. Theesaf lines 90, 97 and 101 in Figure 13 is an

% Recall that for Linux (and UNIX-like) operatingstgms everything (including pipes) is considered as
file.

DRDC Valcartier TR 2008-300 29

obvious example showing such a sequence of eventhd utilization of the fildhosts.allow
by one process.

The identification of such sequences in executiaces may be problematic if accesses to the file
are achieved by other concurrent processes. Ftanicss, this situation happens when a file that
was created by a process is accessed by one dfilitsprocesséé The inclusion of sub-tasks
within tasks may also make it harder to identifguences in execution traces. Following are
some conditions that make it easier to identifyelirglationships between executions of
concurrent processes.

1. Keeping an up-to-date table showing correspondepeeseen files and processes. Knowing
the parent-child relationships between active Bses, it is possible to deduce to which
parent the process that accessed the file belongs t

2. For each system call that is called by the usgdieation, twoLTTngmarkers are recorded
in the trace: Rernel_arch_syscall_entry " and “kernel_arch_syscall_exit ”. One
should verify that trace elements lying in betwé®sse markers are exclusively related to the
called system call.

3. Levels of these twaTTngmarkers should be taken into account as well.reig4 shows an
example of inclusion having two hierarchical leydisvel one (lines 271 to 281) contains
level 2 (lines 274 to 279).

The following important observations can be made.

e |t is possible to de-multiplex raw execution tradessub-traces based upon process
identification numbers.

« Considering the information available in executtaarces, it is relatively easy to establish
interrelationships between processes, and keep-dpte the whole hierarchical structure of
processes.

* It is possible to establish dependencies betweecepses and files, and identify operations
that were made on these files.

» |tis possible to identify the files that are sttheanong processes.

* These analyses may possibly be done automatically.

271- kernel_arch_syscall_entry: 5277.047178396 (/tm p/trace-httpd/cpu_0), 4979, 4979,
lusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id = 4 [sys_write+0x0/0xa0],

ip = 0xb8046424 }

272- fs_write: 5277.047179914 (/tmp/trace-httpd/cpu _0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { fd =1, count =311}

273- net_dev_xmit: 5277.047200820 (/tmpl/trace-httpd /cpu_0), 4979, 4979,
Just/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { skb = 0xd96c9cb4, protocol = 8 }

274- kernel_softirg_entry: 5277.047206305 (/tmpl/tra ce-httpd/cpu_0), 4979, 4979,

2" For Linux, a parent process may create child mse Under certain conditions (when the childgake
the form of a thread), both processes (parent hitd)anay share the parent’s resource.

30 DRDC Valcartier TR 2008-300

/usr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ { softirg_id = 3
[net_rx_action+0x0/0x240] }

275- net_dev_receive: 5277.047209489 (/tmp/trace-ht tpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ { skb = 0xd96c9cb4, protocol = 8 }

276- net_dev_xmit: 5277.047224538 (/tmpl/trace-httpd /cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ { skb = 0xd96ade00, protocol =8 }

277- Kkernel_sched_try wakeup: 5277.047228132 (/tmp/ trace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ { pid = 3689, state =1}

278- net_dev_receive: 5277.047235954 (/tmp/trace-ht tpd/cpu_0), 4979, 4979,
lusr/local/sbin/micro_httpd, , 4566, 0x0, SOFTIRQ { skb = 0xd96ade00, protocol = 8 }

279- kernel_softirg_exit: 5277.047238183 (/tmp/trac e-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { softirg_id = 3
[net_rx_action+0x0/0x240] }

280- kernel_timer_set: 5277.047241141 (/tmp/trace-h ttpd/cpu_0), 4979, 4979,
/ust/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { expires = 1486724, function =
0xc03336b0, data = 3745083136 }

281- kernel_arch_syscall_exit: 5277.047252314 (/tmp [ltrace-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=311}

Figure 14. Execution trace — Portion D.
Running processes — Trace analysis:

Once the execution trace has been de-multiplextedsinb-traces (each of them corresponding to
the execution of a specific process), it is easiernalyze process activities or behaviours. A firs
criterion that can be used to discriminate traeenehts of sub-traces is the mode under which the
processes are executed. It is possible to idethiéy mode by searching execution traces for
markers starting with the labelseéhtry " and “_exit ”. The mode corresponds to the type of the
marker “ entry "

As shown in the last example (Figure 14), the kvl “ entry " and “_exit ” markers are
easily identifiable. The first level of abstracti¢isend an ACK”) corresponds to lines 271-281
and the second level (“deal with interruptions”yregponds to lines 274-279. It should be noted
that problematic situations could happen iferfitry ” markers are not closed by their
corresponding “exit " markers.

Many levels of abstraction can be identified if a@nsider: 1) the levels of these two markers;
and 2) if deeper events within the kernel are aereid. The activity of the kernel can also be
deduced by examining the marker specifying the mufdne kernel. For instance, line 274 in
Figure 14 tells that the kernel is dealing withemtiptions kernel_softirg_). Possible values
of this field should be identified and describedved in future studies.

Trace abstraction — Preliminary technical consideréons:

It was shown in this section that it is possibledesmultiplex execution traces into sub-traces,
each corresponding to a running process. It is pdssible to group trace elements of sub-traces

DRDC Valcartier TR 2008-300 31

according to their inherent semantic. We will nawdy how execution traces can be abstracted
into higher-level behaviours.

The process that is considered for trace abstradtiobased on the building and use of an
execution model that represents the user’s softajpéication. This model reflects all the effects
that this program may trigger in the system (in cage, at the level of system calls). The model
maps all program functions (high-level behaviouvih events that are expected to happen at the
user space/kernel space interface when they autexk There can be one or many levels of
abstraction in the model.

The availability (or not) of the source code oftbtite user’'s program and the operating system
(OS) is a determining factor in the execution mdmelding process. Both situations lead to quite
different building methods. In the case wheregberce code is not availablea learning phase
involving the running and tracing of the user’s lgggtion (and OS) in numerous different
situations is necessary to generate (or deducehdidel. It is generated by compiling the analysis
of these numerous execution traces. Not havingtliece code presents a number of limitations
for trace abstraction and analysis. This casetisomsidered in this study.

In the case where thsurce code is availabfé the learning phase is replaced by a static (and
dynamic) analysis of the source code and compitedrpms. The execution model has a greater
chance of being more complete and precise in thg&e.cNevertheless, trace abstraction and
analysis will always be limited by the content afeution traces. It is impossible to trace all
aspects of the kernel with full resolution; theesef the trace would be unmanageable. Traces
will thus always contain a limited number of elertsen

The utilization of the execution model (when theresponding software program is executed) is
explained here. Figure 15 is a theoretical reptasien of relations that may exist between: 1)
traced events of an executing program, and 2) paftten execution model. As the program
evolves over time, different functions (potentiglocesses) of the program are executed. These
functions trigger system calls, and they generate events that are captured in execution traces
by theLTTngframework. These events are then compared withtewe each execution path of
the model in order to identify the functions tharer executed. This verification process is similar
to that of “string matching”.

Missing eventS in execution traces can make this identificationcpss more complex. An
incomplete trace may not allow the identificatidnagorecise path in the model. Moreover, low-
resolution execution traces may cause problenimifes processes are executed simultaneously.
This strongly suggests that an effort should be eni@mdensure that the level of detail within
execution traces (or the number of actiielngprobes) is sufficient for the analysis needed, and
there is no loss of elements during transmissiebsden computational nodes.

Another potential problem is the possibility thaeeution models will not have a sufficient level
of detail. This problem would necessarily leaditoations in which specific behaviours would be

% The choice of using FOSS was made in this pr@@ettion 2.2.1).
%9 Recall that execution traces cannot be compreterisaces would be unmanageable. Consequently,
there will always be missing events in executiaces.

32 DRDC Valcartier TR 2008-300

inadvertently missed. It may happen, for instarten execution trace contained information
regarding interruptions in the kernel that areta&en into account in the model.

Events

Execution trace /

URE0 000 0@ noopn.

'] ()

Execution model N Instruction executions
N (L) observable in the
execution trace

Figure 15. Correspondence between an executior taad execution model.

The chosen approach for studying the abstractioogss is divided into two parts: 1) the study of
behaviours that are not exclusive to specific ugggrams, and 2) the study of behaviours that
are exclusive to specific users’ programs.

Case 1 — Behaviours not exclusive to specific usepsograms:

Suites of related events in traces (common beheyguch as the opening, reading and closing of
files) that may be triggered by many different msses in the user space should first be
identified. Most of the time, their events will Iszattered in the execution trace, and not
necessarily ordered. Efforts should be made taucaphese suites of events and the logic of their
chronology (if any) in an execution model.

Deeper activities in the kernel may trigger aciggtindependently of the users’ processes as well.
These events are basic operations achieved by lkeradules to keep the whole system
operational and optimized with respect to time antlvities. They may be visible in traces if
deepLTTng probes are activated in the kernel. Efforts shdadldnade to capture these suites of
events and the logic of their chronology (if anyjan execution model.

Case 2 — Behaviours that are specific to users’ pgoams:
Behaviours that are specific to users’ programstinesaptured in the form of execution paths in

the execution model. As mentioned earlier, thetifleation of the running process will involve
the comparison of traced elements with those ofttexzution model. Once a minimum number

DRDC Valcartier TR 2008-300 33

of trace elements are recognized in one of the wietr paths of the model, the function or
process will be identified (with a certain levelagfrtitude).

The following example refers to Figure 16. It shalwe mapping between two portions of the
source code of thmicro_httpdserver with the two corresponding portions ofexecution trace.
The first mapping involves the functiehdir() and the second involves the reading of the time
system. Call to functionshdir() andtime() triggers system calls that can be observed in the
execution trace.

In this case, the limited resolutiSrof the trace would make its content harder torpret. There

is thus a need to be able to control the tracirfiyvaoe in such a way that it would be possible to
produce high resolution traces with appropriateufoevhen needed. The choice of specific
resolution and focus would depend on the type dftrabtion and analysis that would be
achieved.

Mapping #1:

Lines of code:

59-if (chdir (argv[1l])<0)

60- send_error(500, "Internal Error", (char*) 0, " Config error - couldn't chdir().");

Execution trace elements:

182- # “micro_httpd” carries on a chdir() in order to move into the directory containing
server’s files

183- kernel_arch_syscall_entry: 5277.046274494 (/tm p/trace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id = 12 [sys_chdir +0x0/0x70],
ip = 0xb8046424 }

184- kernel_arch_syscall_exit: 5277.046283568 (/tmp [ltrace-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=0}

Mapping #2:

Lines of code (in the functionsend_header()
147-now = time ((time_t*) 0);

Execution trace elements:

224- #Read the system time (to be inserted in the H TTP header; see send_header())

225- # (glibc opens "/etc/localtime” to know the sy stem’s time zone)

226- kernel_arch_syscall_entry: 5277.046854659 (/tm p/trace-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id = 13 [sys_time +0x0/0x30],

30 Focusrefers to the specific software objects beingetdaandesolution refers to the number of active
probes used.

34 DRDC Valcartier TR 2008-300

ip = OxD8046424 }

227- kernel_arch_syscall_exit: 5277.046856255 (/tmp ltrace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=1211549623 }

228- kernel_arch_syscall_entry: 5277.046888105 (/tm p/trace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id =5 [sys_open+0x0/0x40], ip

= 0xb8046424 }

229- fs_open : 5277.046899066 (/tmpl/trace-httpd/cpu_0), 4979, 49 79,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { fd = 4, filename = "/etc/localtime" }
230- kernel_arch_syscall_exit: 5277.046900144 (/tmp [ltrace-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=4}

237- kernel_arch_syscall_entry: 5277.046925133 (/tm p/trace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id =3 [sys_read +0x0/0xaQ], ip

= 0xb8046424 }

238- fs_read : 5277.046926752 (/tmpl/trace-httpd/cpu_0), 4979, 49 79,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { fd=4 , count =4096 }

239- kernel_arch_syscall_exit: 5277.046964889 (/tmp ltrace-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=3477}

240- kernel_arch_syscall_entry: 5277.046988062 (/tm p/trace-httpd/cpu_0), 4979, 4979,
Just/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id = 140

[sys_llseek +0x0/0xd0], ip = 0xb8046424 }

241- fs_llseek 5277.046990756 (/tmpltrace-httpd/cpu_0), 4979, 49 79,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { fd=4 , offset = 3453, origin=1}

242- kernel_arch_syscall_exit: 5277.046991972 (/tmp [ltrace-httpd/cpu_0), 4979, 4979,
/usr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=0}

243- kernel_arch_syscall_entry: 5277.047000434 (/tm p/trace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id =3 [sys_read +0x0/0xa0], ip

= 0xb8046424 }

244- fs_read : 5277.047001351 (/tmpl/trace-httpd/cpu_0), 4979, 49 79,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { fd=4 , count =4096 }

245- kernel_arch_syscall_exit: 5277.047004344 (/tmp ltrace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=24}

246- kernel_arch_syscall_entry: 5277.047008992 (/tm p/trace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { syscall_id = 6 [sys_close+0x0/0x110],

ip = 0xb8046424 }

247- fs_close : 5277.047010329 (/tmp/trace-httpd/cpu_0), 4979, 49 79,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, SYSCALL { fd=4 }

248- kernel_arch_syscall_exit: 5277.047015507 (/tmp [ltrace-httpd/cpu_0), 4979, 4979,
Jusr/local/sbin/micro_httpd, , 4566, 0x0, USER_MODE {ret=0}

Figure 16. Execution trace — Portion E.

The capability of online modifying both the focusdathe resolution oETTng execution traces
according to the analysis that is needed appedys &ssential for trace abstraction and analysis.

DRDC Valcartier TR 2008-300 35

The resolution of the model should be fixed arghituld allow the capture of all behaviours that
may be present in execution traces.

Observations:

So far, it was shown that it is possible to de-ipldk elements of execution traces produced by
the LTTng framework according to the running processes i@ tinux kernel. This de-
multiplexing facilitates the analysis process. Hogre the trace abstraction appears to be possible
only under specific circumstances or conditions.

« First, the source code of the traced applicatiorstnine available if we are to be able to
produce detailed and precise execution modelswiiabe used in trace abstraction and
analysis.

» Second, the resolution of the execution trace shbelhigh enough to allow abstraction and
the resolving of behaviours that are found in tkecetion model.

« Third, the execution model of the executed programst be sufficiently complete and
precise.

A lack of resolution in execution traces may cagngents to be associated with many different but
similar execution paths in the model. In this casecution paths may not be resolvable. For
instance, it might be impossible to tell which wbtsimilar functions was executed based on the
comparison of the trace and model.

On the other hand, very high resolution traces teag to the creation of enormous traces, so
large that they would be impossible to manage. dg@ropriate selection of active probes in the

system must thus be guided or driven by well stidied understood strategies. Strategies that
can be used in operations remain to be identifiebstudied in future.

An interesting solution for the problem of inadetguaesolution in execution traces could be
solved by giving unresolved execution paths “prdliiégs” of being “the one”. For instance, a
low resolution trace may not allow the resolutidntwo similar execution paths in the model;
there are not enough significant elements in theetr The probability of each execution path of
being the one could be calculated based on the eupftsuccessful comparisons between trace
elements and the model. The value of these pratiediwill evolve over time and active probes.
With the arrival of new events in the trace, eviolutof the trend would be observed. It could
eventually become possible to state with certitudhéch execution path was involved in the
production of trace elements, even if the resotutibthe trace was relatively low.

Trace resolution and the level of detail of theaexisn model are decisive for the identification
of problematic behaviours in the system (maliciousiot). The problem of detecting unwanted
behaviours in systems can be tackled using twedifft and complementary strategies (Section
3.3.1).

» Problematic behaviours are known This is similar to the virus detection processR©s;
a number of virus signatures are known and thectete process examines executable
codes (and the execution model) in order to detecipresence of unwanted signatures. In
our case, known problematic behaviours should Ipeesented in the form of suites of

36 DRDC Valcartier TR 2008-300

events or signatures (trace abstractions). Pateragnition techniques such as “string
matching” will then help to identify these behavigin execution traces.

» Problematic behaviours are unknown This case is more complex, as signatures of
problematic behaviours are not available at runtiame we know that their probability of
occurrence in the system is not negligible. A stygt based upon system coherence
verification could be adopted in this case. In case, the system’s coherence would involve
many of its inherent metrics, their normal ranged the interrelationships between them.
They would complement the model of execution witirgmeters defining the “normal
conditions” of the system.

Some critical events may regularly occur at spedifines or situations in the system. The

identification of these times and situations shduddcaptured in an execution model. When the
user's program is executed, we know (from its ekienumodel) what critical events should be

triggered and when. The presence of one or a catibinof these critical events at the wrong

time would raise a flag. The resolution and focfid. 6Tng active probes could be changed in

order to produce more relevant execution tracese®an analysis, appropriate actions would be
taken on specific components of the system.

Some selected unsolved problems in this R&D thraed the building of complex execution

models; processes that share the same resouragkgcbfimemory, etc.); parallel processes on
multi-core CPUs; finding the appropriate level etall for an execution model; how many active
LTTng probes are needed; the effect in execution trateeliberately introduced errors in the

system; the use &fT Tngwith Linux standardized tools.

3.33 Task 3 — Theoretical considerations for trace abstraction

This section presents results that were obtaindtk wharifying the feasibility of trace abstraction
and analysis. It presents theoretical and pragbiespectives on trace abstraction and analysis.

Initial simplifications and context:

A number of simplifications were initially brougho this work in order to keep its finality
achievable. They are:

* The first simplification was already mentionedla beginning of this chapter: only system
calls to the kernel are considered. Moreover, thtues of their parameters was not
considered. Parameters that are associated witheaamt are probably importdhtThey
could for instance allow the identification of umad behaviours such as those that violate
information integrity.

» Processes are studied individually. Nowadays, oipgraystems such as Linux concurrently
execute many processes “at the same time”. Themegses are often interlinked (and not
necessarily in a parent-child relationship). Thalgsis of many concurrent processes is left
to future studies.

* Recursive functions are not considered in this warkl the execution of any function of the
program is always considered as “finite”.

31 R&D work is needed in this direction to identifgw they should be taken into account.

DRDC Valcartier TR 2008-300 37

» It is assumed that we have access to the soureeafall software, as well as the operating
system.

» |tis also assumed that static and dynamic analyspsograms have yielded a complete and
detailed execution model, which defines an exeautiee containing all possible execution
paths.

Using these simplifications, the mapping of anytiporof the source code with the corresponding
portions of execution traces should be relativalgyeto identify. For instance, comparing trace
elements with the content of the program’s exeautimdel would allow the identification of one
or many potential execution paths. Trace elementiesponding to the execution of a specific
function could then eventually be abstracted byrédrme of this function.

Generation of the program’s execution model:

The execution model @hicro_httpdis constructed by capturing its behaviours, wihichur case
involves calls to system calls exclusively. Moregsely, for eachmicro_httpdfunction that
leads to a system call, an execution path is adolede execution model; it has the form of a
directed graph. Annex D.2 shows the resulting madilg the C programming language.

Under listed simplifications, the execution modahde represented by an algebraic expression
by using the Kleene formalish This formal representation of the program allowgical
reasoning regarding its behaviour and facilitatesitientification of operations that will lead to
trace abstractions.

Table 4 shows the algabraic expression of rtfiero_httpd execution model. Following is a
description of how this model was obtained.

It was shown earlier that the Kleene algebra uséssrto capture the semantic of the basic
program’s operations. These basic operations asgrited by what is calledoperators’.
Examples are:

« A sequence of two consecutive programs is exprdsgede operator;”™. The sequence of
“fn_1 " followed by “fn_2 " would thus be expressed a1 “1;fn_2 .

« The choice between two programs is representechédyperator +”. The C instruction
“if " determining the choice between two execution dth1” and “c_ 2" would be
expressed asc“1+c 2 .

» The finite number of iterations of a suite of instions such as the while loopfile ...
{P} " is represented by the operatar’ This loop would be expressed a&*", meaning
that the programP”’ may be executed a finite number of times (inahgdd times).

« Additionally, Kleene algebra represents progranas tto nothing by 1” and programs that
abort by 0.

%2 |n the case where the nature of captured evergsamsidered (the parameters of each System a&all),
modified version of the Kleene formalism (or anajtshould be used.

38 DRDC Valcartier TR 2008-300

Using this Kleene representation scheme, it becosasy to understand how thacro_httpd
model can be translated into an algebraic expres3ioe reader will note that instructions *

in the program do not have the associatsde” " instruction, but the algebraic expression still
considers theélse ” by using the 1” operator.

Table 4. Transcription of the micro_httpd modebiatKleene algebraic expression.

Function name of Kleene expression (program’s model)
micro_httpd

(send error + 1); chdir; (send error + 1); fgetssénd error + 1); (send
main() error + 1); Fgets*; (send error + 1); (send error 4); (send error + 1);
stat; (send error + 1); ((send error + 1); stataffen; (1+send error);
send headers; (getc; putchar)*; fflush; exit + semehders;
scandir)+fopen; (1 + send error); send_headers;t@geutchar)*; fflush;

exit)

send headers;
send_error() fflush;

exit
send_header() time

Trace abstraction:

A number of system calls are done whaitro_httpdis executed. They are captured in the
execution trace. Using the execution modehtéro_httpdthat was just generated, it becomes
relatively easy to identify the portions of the smicode (execution paths in the model) that
correspond to each element included in the exattitaxe.

Two cases will be discussed in this section. Theydefined by the coverage of the execution
trace.

» Case 1the execution trace covers the whole execution dfe program.

» Case 2pnly a portion of the execution trace is available

For each case, we will formally present what issie to achieve in terms of trace abstraction
and we will present how it can be achieved usimgiieene algebra.

The reader should note at this point that, foritylggurposes, we will use a theoretical program
that is simpler thammicro_httpd. It should be borne in mind that achieving the sappe of
analysis with the same simplifications (listedta beginning of this section) for thaicro_httpd
program would have led to similar results regardimgfeasibility of trace abstraction.

The model of the program that will be studied iis tection is illustrated in Figure 17. The lines
represent execution paths. This program is mad# tipee parts:

« part 1 (Fnl); it is executed after the event “eHsuriggered;

DRDC Valcartier TR 2008-300 39

» part 2 (Fn2); it is executed after the event “e2suriggered; and
« part 3 (Fn3); it is executed after the event “ediswriggered.

Figure 17. Example of a program model (A).
Case 1 — The execution covers the whole executidrtlee program:
a) Informal description:

One thing that can be done in Case 1 is to usprdgram’s execution model to check if captured
events in the trace are generated by the programd [ATng probe¥). For instance, the
program’s execution model illustrated in Figureshows that the observation of events el, e4,
eb, e6 and e7 in the trace would correspond to afnthe possible execution paths of the
program’s execution model (the red execution patRigure 18). An execution of Fnl that would
not yield these elements (el, e4, e5, e6 and eiud)dwndicate that the executed program was
modified in one way or another.

In Case 1, this process is made easier becausedgiing of the execution trace corresponds to
the beginning of the program execution. It is tbasy to “follow” (in the execution model) the
execution of the program element by element, aadtify executed paths. In other words, when
the application is launched, we use events in theetto identify where (in the model) the
executed program stands. As the execution progresse/ events are compared with the model,
allowing the identification of the new executiorthathat are used.

%3 Recall that a process number is associated with ei@ment (event) in the LTTng execution trace.

40 DRDC Valcartier TR 2008-300

Figure 18. Example of a program model (B).

If the resolution of the execution trace is notrhanougf, trace elements may not be sufficient
to identify the executed path. In this case, mbemtone execution path could then be associated
with trace elementd Nevertheless, further additional events in tiaedrwould contribute to the
identification of the execution path used, and glate the others.

The analysis of trace elements results in the ifiestion of the execution paths. Knowing which
function is currently executing, it is possibleaistract sequences of trace elements by the name
of the function that was executed.

Referring to our example (Figure 18), we see thatexecution trace could be abstracted by: “el”
followed by “Fnl” and “e7” (as illustrated in Figrd9 by red lines).

% There are not enough active probes in both thevacé and the operating system. The content of
execution traces is not dense enough to allowddetification of execution paths.

% The end of Section 3.3.2 introduces the possjtilitgiving each found execution path a probability
level.

DRDC Valcartier TR 2008-300 41

-

Figure 19. Example of a program model (C).

In real life, there would be additional eventslie trace that would not necessarily be related to
the execution of function Fnl. These events arsezhly the execution of other programs or
kernel moduled.

b) Using the Kleene algebra formalism:

The Kleene formalism can be used to represent:pgyadions in execution traces and 2) the
model of the executed program. It provides a méamformal reasoning. So far, we have shown
a simple example of trace abstraction (Case 1)willenow present how the Kleene formalism

can be used in this context. We will translate éRecution model (Figure 17) into an algebraic
expression.

Table 5 shows the transcription of our theoretipabgram (Figure 17) into an algebraic
expression. The methodology and symbolism describvdtie previous section were used. The
main() function is represented by a choice between tleewdion of three functions (Fnl, Fn2
and Fn3) and the symbol “...” designates portionghef execution model that are not given
explicitly.

The execution model of a program lists all posséiecution paths that can be executed while
the program is running. To determine if an executttace matches the execution model
(expected behaviours), one must verify whetheratrtime execution trace is consistent with the
model. Using the Kleene formalism, this can be esped as:

t<M (Eq.1)

38 But as shown earlier, we can discriminate them.

42 DRDC Valcartier TR 2008-300

where “t” represents the observed execution trand &v" the execution model. The
methodology defined by Lajeunesse-Robert (2008) marused to verify whether or not this
inequality (Eqg. 1) is valid. In our example (Figut&), Eq. 1 is equivalent to the following
algebraic expression:

el; e4; e5; e6; eI main (Eq. 2)

Table 5. Transcription of micro-httpd functionsdr€leene algebraic expressions.

Function name Kleene algebra expression
main() el; Fnl; e7 + e2; Fn2; e8 + e3; Fn3; e9
Fnil e4; (... + eb; eb)
Fn2 e4; e5;eb + ...
Fn3

The online study of program execution involves idhentification of all execution paths in the
model that contain captured trace elements (anéxbleision of all other paths). In other words,
every time a trace element is captured a new execuatodel is generated, which keeps only
execution paths that contain trace elements. Theergdon of this new model is easily
represented by Eq. 3:

e\M (Eq.3)

where “e” represents the observed event (traceeslitshand “M” represents the current model.
In our example (Figure 17), the capture of thedralement “el” would yield a new execution
model that would contain the set of possible edenupaths. It can be represented by the
following expression:

el\ main (Eq. 4)

Eqg. 4 represents the execution model found in T#&blé&he graphic representation of the
execution model (Figure 17) shows that there iy onk path that starts with trace element “el”:
the one that leads to the function “Fnl”. Keepimdydhe execution paths of the model that start
with “el” we obtain the algebraic expression listed able 6.

As new trace elements are captured, new executiodel®m are generated from the current
models. In the case where a trace element woultheniicluded in the model’s logic, the result
would be represented by:

e\MisO0 (Eq. 5)
Having found the execution model that correspondsié¢ last execution of the program, we can
then abstract the execution trace by the nameeofuihictions that were executed. To do that, we

must modify the execution model that was founduohsa way that it will allow the inclusion of
the information regarding the “range” of executeddtions. Tags are added to the execution

DRDC Valcartier TR 2008-300 43

model to designate the beginning and the end df &awtion. Table 7 illustrates this execution
model in the form of an algebraic expression.

Table 6. Reduced Kleene algebraic expression.

Function name Kleene algebra expression
main Fnl; e7
Fnl e4; (... + e5; eb)

Table 7. Kleene algebraic expression with “tags'tad.

Function name Kleene algebra expression
main main_begin; (el; Fnl; e7 + e2; Fn2; e8 + @3; E9); main_end
Fnl Fnl begin; e4; (... + €5; e6); Fnl_end
Fn2 Fn2_begin; (e4; e5; e6 + ...); Fn2_end
Fn3 Fn3_begin; ...; Fn3_end

The execution model found contains more informatr@n real executions (the tags). These tags
make it impossible to compare the found model it execution trace because the latter does
not contain tags. To solve this problem, a dummgnévs added between each element of the
trace in order to specify that tags may be encoedtdnstead of writing the trace: {el; e4, e5;
e6; e7}, we would for instance write it as:

et:= (tag)*; el; (tag)*; e4; (tag)*; 5; (tag)*; e@ag)*; e7; (tag)* (EQ. 6)

where the symbol “tag” designates the set of adisgle tags that can be added to the execution
model. In our case, “tags” corresponds to:

tag:= main_begin + main_end + Fnl_begin + Fnl_eRd2 begin + Fn2_end + Fn3_begin +
Fn3_end (Eq. 7)

Once this operation is done, we can then abstnadrace by identifying execution paths that are
common to the trace and the found model. Thisgsesented by the following expression:

tNM (Eqg.8)
In our example this operation gives the followingmssion:
main_begin; el; Fnl_begin; e4; e5; €6; fnl_endpwiin_end (Eq. 9)

Events contained between a “_begin” and a “_endy toa abstracted by the corresponding
function. Lajeunesse-Robert (2008) shows how toutale ‘N” and “\".

Case 2 — Only a portion of the trace is available:

a) Informal description:

44 DRDC Valcartier TR 2008-300

So far, we have considered the case where it wssilpe to follow step by step the execution of
the program from the beginning of the program’scetien. There will be situations where
execution traces will be incomplete; trace elemerdgresponding to the beginning of the
execution will not be available (as for Case 1)isTdase is more likely to happen than Case 1.

The first thing that must be done in this casenisdrify that the incomplete execution trace is
included in one or more execution paths of the @ods model. Referring to our example
(Figure 17), a trace like {e4; e5; e6} would copesd to two execution paths (red lines in Figure
20).

Figure 20. Example of a program model (D).

Additional events would then be captured in executraces over time, making it possible to
identify the exact executed path. Once identifiedijitional trace elements would then confirm
this result. Figure 21 shows that e7 or €8 is edgueto happen. If the executed function is Fnl,
e7 would be observed at the end of Fn1.

The process consists thus in finding (in the exenutodel) the execution paths to which trace
elements correspond, but the process now invohesdvering of the whole model (Figure 22).
One starts by identifying all possible executiothpahat could potentially generate these trace
elements. The new execution model is generated tl@se entry points (not from the main
function as in Case 1). The same process as theresented in Case 1 is then used to carry on
the generation of the execution model (based ondketrace element).

DRDC Valcartier TR 2008-300 45

e6

e9

Figure 21. Example of a program model (E).

Once the execution path is found, it becomes plessitdeduce past trace elements (the ones that
were triggered before we started to record elemienthe execution trace) based on the full
program’s execution model. This is illustrated iigufe 22 (red lines). It is then possible to
abstract partial execution traces in terms of fiomest that were called.

Proc

el

(ﬂ:nl

e7

Figure 22. Example of a program model (F).

b) Using the Kleene algebra formalism:

46 DRDC Valcartier TR 2008-300

The Kleene formalism can be used to express a nuafittbeoretical operations that can be done
on execution traces as well as on the program’sutian model. It provides a means for formal

reasoning. The problem of finding if a partial exé@n trace can be associated with a specific
execution path (Case 2) can be solved by searchimgvhole execution model for these trace
elements (or events). In Kleene formalism, thie@esented by Eq. 10.

w;t;oNM (Eqg. 10)

where “t” represents the incomplete execution trama “M” the execution model. Actually, the
expression t «” designates the set of all execution traces tbatain the incomplete trace “t”.
The goal is to find if the set of all traces thahde generated by the model “M” has common
traces (") with the set of all traces containing the incdatp trace (%; t; «").

The identification of execution paths in the mofi&sed on trace elements) is done in the same
way as described earlier. The model (it is a graplsearched for trace elements and, once they
are found, the corresponding paths (from that lonah the graph) are captured. Another way is
to identify every execution path that ends with dieserved partial execution trace. This is
represented by Eq. 11.

ot | M (Eq. 11)

where “t” corresponds to the observed incompletecetion trace and “M” the model. The
expression & t” designates the set of all traces that end withincomplete trace “t”. To find
corresponding execution paths from the model, veati€ly the set of all traces that begin with
this incomplete trace. This is represented by Bg. 1

M |t o0 (Eq. 12)

We can identify from the model the execution pathgounding an incomplete execution trace.
This is represented by Eq. 13.

tl_|M)|_t2 (Eg.13)

where “t1” designates the part of the model thatfiweé before the observed incomplete trace,
“t2” the part of the model that we find after thisserved incomplete trace, and “M” is the model
of the program.

Observations:

The Kleene algebra is a good theoretical frameworkrepresenting (up to a certain limit)
programs that are executed on a system and comndisigo execution traces. Using this
formalism, algebraic expressions can be manipuledaed logical reasoning about these
expressions can be achieved.

Despite the fact that the Kleene formalism offersanms that could be used to solve numerous
problems in this domain, it may not be as usefuteal operational situations where concrete
trace analysis must be effectively and efficiemtthieved (in quasi real-time mode). The lack of
specificity of this formalism represents a majosadivantage in terms of performance because

DRDC Valcartier TR 2008-300 47

algorithms are generic; they were not expresslyarfad solving specific problems. It appears
from this study that dedicated algorithms must é&estbped.

Nevertheless, the Kleene formalism could be usedcéatifying that programs have expected
behaviours; it is relatively easy to verify thaeogtions on execution traces are valid.

3.34 Task 4 — Program Analysis Toolkit (PAT) fora utomating trace
analysis

This section describes an academic tool (PAT) west developed for studying the feasibility of
achieving the “automatic abstraction of executiaces” (as described in this chapter).

Technological choices regarding the developmerAT, the description of its functionalities
and utilization as well as important observationd &uture works are presented in this section.
More details regarding PAT and the syntax usedhélgiven in a report to be published in 2009.

3.34.1 Technical considerations

The technical choices that were made in this taskte following.
« C was the programming language considered.
* The program under study does not contain recursions

* Only system calls were considered both in the @nomgs execution model and execution
traces.

PAT is made up of three main parts: 1) a graphér irgerface (GUI), 2) the abstraction part,
which achieves trace abstraction from algebraicasgmtations of programs and execution traces,
and 3) the model generation part, which generaeptogram’s execution model in the form of
an algebraic expression. Following is a brief idtretion of each part.

Part 1: PAT's graphic user interface

In order to be able to run PAT remotely, PAT's GkHs developed with ASP.NET. Figure 23
and subsequent figures show the PAT GUIL.

Part 2: Abstraction:
This part of the tool was made with the F# programgnianguage (F#, 2008) for three reasons:

1. F#is a functional programming language. It faaiis the implementation of algorithms that
are used to manipulate algebraic expressions.

2. F# is an object-oriented programming language.llttwa the structuring of programs in
classes and objects, and the use of inheritance.

48 DRDC Valcartier TR 2008-300

3. F# is integrated with the Microsoft .NET framewofikiis framework allows the concurrent
use of other programming languages plus quick-totasls that are useful in the prototyping
context.

It should be mentioned that the current form of RI®ES not offer the best performance; F# is an
interpreted programming language. In real-worldiagibns, where online analysis must be
achieved in quasi real-time, PAT should take thenfwmf an efficient, effective and secure

standalone executable program.

This part is divided into three separate but irgpehdent layers:

» Layer 3: this layer makes use of 1) the lower layand 2) the notions of program and
execution traces to perform trace abstraction ¢ipei In other words, layer 3 uses
available algebraic expression operations (lay¢o Perform trace abstraction.

« Layer 2: this layer is used to manipulate algebeajoressions. It contains the definition of
all operations that can be performed on algebrajressions. Operations allow the
implementation of many types of program analysig #re based on the algebraic approach.

« Layer 1: this layer offers the higher layers gemaseful functionalities.
Part 3: Model generation from the source code:

A C programming language parser (ckit, written MLS is used to generate the model from the
source code; the parser transforms the programigceacode into an “abstraction syntax tree”,
which is then used to generate the model. Thiseparsrifies many aspects of the program
(syntax, types) and it offers a number of compliybhdvantages with the .NET framework.

Another SML module transforms C source code (inftie of an abstraction syntax tree) into an
algebraic expression according to the rules defin&gction 3.3.3.

3.3.4.2 PAT's functionalities

PAT's GUI (Figure 23) shows two edit boxes (EB) whitis initially started. These edit boxes
allow the user to enter the model of the C prog(ift EB) or/and the observed execution trace
(right EB). Both the model and the trace shouletdde form of an algebraic expression.

Figure 23 shows a situation where both the progradel and the execution trace were entered
by the user. PAT starts the analysis of the exenutiace according to the program model when
the “Process Trace” button is pressed.

Once the analysis is ended, a message is givametader. This message tells if the execution
trace belongs to one of the possible executionspattthe model provided. In this case (in Figure
23, below the “Process Trace” button) the messagjeates that the execution trace is part of one
of the model execution paths.

DRDC Valcartier TR 2008-300 49

Trace abstraction
About

LNIVERSITE

Program {regular

expression) Trace (regular expression)
—>main A syscall 1:;syscall 2
main =: write + chdir;printf [

write sock =: syscall l;syscall 2 £

write file =: syscall 3

write =: write_ sock + write file

Fhdir =+ ayacall 4 &l

Process Trace

The trace is contained in ons

nf tha tracas nanaratad hy

Copyright @ 2007/2008

Figure 23. PAT’s graphic user interface.

In the case where the execution trace is “parthef grogram model”, additional information
regarding the analysis process is available bidlizon the “Results” link of the GUI (Figure
24). PAT will then expand the GUI and provide aditidnal section containing this information.

Figure 24 shows the result of this operation wlig éxample provided.

The following information is provided by PAT:

» Abstracted Trace: the trace considered (in absttafcrm).

» Sub-process generating traces containing the dreee: the portion of the program that is

exactly restricted to the path that generatesrtuet

» Sub-process generating traces containing the gik@re as sub-trace: the part of the

program model that generates the trace.

» Sub-process leading to the trace: the preliminany pf the program model that generates

the trace.

» Sub-process following the trace: the ending parthef program model that generates the

trace.

» Sub-process not generating the trace: the paheoptogram model that does not generate

the trace.

The information provided in the “Results” sectiande useful for many types of trace analysis.

50 DRDC Valcartier TR 2008-300

write =: write_sock + write_Tile

- -
mhddir * =mu=c~all 4
Process Trace
Abstracted Trace
write sock {;write_sock } ¥

Sub process generating traces containing the given trace

syscall 1:syscall 2 -

Sub process generating traces containing the given trace as sub trace
main {;write {;write_sock &
{;syscall 1l:;syscall 2;write sock };write };main }

Sub process leading to the trace

main {;write {;write sock { -

Sub process following to the trat_;e

write sock };write };main } #

Sub process not generating the trace
(main {;chdir {:syscall 4:;chdir }:printf -
{;syscall S;printf };main }) + (main {;write
{;write file
{:syscall 3:write file }:write }:main })

Figure 24. Trace analysis results.

PAT also offers the possibility of finding (in tlexecution path provided) the portion of path that
corresponds to a specific function. This functidgails particularly useful when the execution

trace is large. The section of the GUI allowingsthinctionality can be activated by clicking on

the “Extract sub Trace” link (Figure 25).

Figure 25 shows an example where the user wantiemhtify the part of the execution trace that

corresponds to the functiomfite_sock ”. Corresponding trace elements were generated by
clicking on the “Get Sub Trace” button.

DRDC Valcartier TR 2008-300 51

FR-RH UNIVERSITE

Trace abstraction
About

Sl 0

Program {regular -

ipresiion) Trace (regular expression}

—>main E syscall 1;syscall 2 -
main =: write + chdir;printf |

write_sock =: syscall 1:;syscall 2 =

write file =: syscall 3

write =: write_ sock + write_file

chdir =: avarall 4

Process Trace |
The trace is contained in one

af tha tracrac nonaratad b

Extract Sub Trace

Function name: write sock 5

-

Get Sub Trace

syscall 1;syscall 2 -

Copyright @ 2007/2008

Figure 25. Identification of functions in executiwaces.

Finally, PAT’s conversion module also allows thengeation of program models in the form of
algebraic expressions. The section of the GUI afigwhis transformation can be activated by
clicking on the “Inputs” link (Figure 26).

The program C source code is entered (or impoitettje left edit box. The algebraic expression

corresponding to the program provided is generatbdn the “Translate” button is clicked.
Figure 26 shows a simple example.

52 DRDC Valcartier TR 2008-300

Trace abstraction
About

Brogram (C code) __ Mace
void main() ~ -
i
syscall 1():
sysecall 2():
;.
- -
Tarsite
Frog ram_ {reguiar Trace {regular expression}
expression)
—>main p A
main =: syscall 1;syscall 2
- -

Results.

Figure 26. Translating a C program into an algelraixpression.

Observations:

It was mentioned that PAT consists of three diffitrparts: GUI, Abstraction and Model
generation. This prototype could be improved andienautonomous by modifying the current
modules and by adding others. Following are sonterpial improvements.

« Purge all unnecessary behaviours from the progratysis before its model is generated.
Unnecessary behaviours are those that are notvalasar the execution trace. In our case,
only the parts of the program containing calls t{stem calls would be kept. This
preliminary program analysis optimization shoulddome automatically prior to the model
generation process.

» An interface module should be added between Tngtrace generation module and PAT,
allowing the appropriate transformation of raWTnhgexecution traces.

» Preliminary static (and potentially dynamic) pragranalysis would certainly help improve
PAT’s functionalities.

DRDC Valcartier TR 2008-300 53

4 Conclusion and recommendations

Detailed tracing and monitoring of distributed s&yst is starting to be used in a number of
industrial applications. New applications that asecuted on heavily used multi-core systems
present significant challenges in terms of: 1)cidfitly retrieving the monitoring data with
minimal disturbance on the system and 2) convertirg timestamp of each captured event
(originating from different cores) to a common tifb@se. The benefits are however significant;
low-disturbance efficient tracing of distributed Itivgore systems is the only way to monitor and
understand the behaviour and performance (undédoad) of these systems. The absence of
such a complete and integrated toolset severelyslithe speed and efficiency with which such
systems can be designed and deployed. This has ibestified as a software gap, and it
represents a major challenge to those who wargk® advantage of the performance and power
efficiency gains associated with multi-core systems

Interestingly, this new technology offers trememsi@otential for C2 systems. These systems,
when deployed in military or industrial settingse ancreasingly multi-core, distributed multi-
applications with numerous networked clients anfl seal-time expectations. In this context,
tracing and offline analysis tools are needed febudjging and tuning. In addition, the low
disturbance and detailed level of the data gengriyethese tools can be used to monitor C2
systems continuously and detect the early sigreewéral problems, including security attacks.
Indeed, low disturbance ensures that monitoring leapermanently active, and minimizes the
chances that an attacker will detect the monitoring

As discussed in the previous two chapters, theree ie/o important technological risks
associated with the use of this tracing technolGmyonline monitoring, which was initially
targeted for debugging and tuning.

1. First, the architecture of data collection and gsial was optimized for low impact, a
posteriori and offline trace retrieval and analy3ise possibility of the generalization of the
LTTngframework for online tracing was assessed duri&® Rhread 1 (Chapter 2).

2. Second, if detailed levels of the captured dataeseential for a posteriori analysis, it may
represent an overwhelming workload in the conteixtowline analysis. R&D Thread 2
(Chapter 3) addresses this issue by looking anaatied algorithms for the online abstraction
and analysis of this data.

These two complementary R&D threads were conduateDRDC Valcartier during summer
2008 and the results were presented at DRDC Vacdttajeunesse-Robert, 2008; Prenoveau,
2008). The aim of the threads was to study andpne¢ a number of concepts and mechanisms
(and to assess their applicability in this new eahbf online tracing and analysis of C2 systems)
before the launch of a major R&D project in thigedtion (Dagenais 2008b; Couture and
Charpentier, 2008).

54 DRDC Valcartier TR 2008-300

4.1 Main observations

4.1.1 R&D Thread 1

In order to extend the tracing and monitoring framek to online data retrieval and display, three
elements needed to be developed or adapted.

1. Support for network transfer. In the original framework, the tracing data wasexl on
local files. This capability was extended in thieriu The data can now be sent across
networks to a remote server. Care had to be takieite vilushing data buffers. While
buffering is important for performance reasonsjqaic flushing of buffers (which fill too
slowly) is required to put an upper bound on thteriay of tracing data transfer. This was
implemented successfully. Some easily solvableessuere encountered: minimizing the
number of timers for the periodic flushing and @#ntly managing partially filled buffers.

2. Remote control TheLTTngframework was extended to allow remote contradk telatively
easy to build on currently available secure comwation and command execution
frameworks like SSH.

3. Continuous decoding of execution tracesThe feasibility of online display and analysis of
tracing data has been assessed as wellLTR¥ trace viewer already separates the viewing
of the online captured raw data from the backgrocomhputation of the complete trace. A
small adjustment is required to continuously digple online data while it is generated. The
background computation source code will need tordarchitected in order to allow
incremental computation of some specific globalpprties (e.g. current system state at any
point in the trace, average values over some timdaw for different parameters, etc.).

This R&D thread has successfully identified ardttiteal changes, techniques and algorithms to
generalize thd.TTng framework for continuous and online data gatheing analysis. As a
consequence, the risks associated with this dritexzhnical aspect of the R&D project were
identified and reduced.

It is recommended that, early in the projecE,Tngand the associated daemitid be extended
for online tracing. Special care will be requirechtinimize the number of timers and connections
required on multi-core systems. Moreover, the tiadiection server will be a critical element in
the scalability of this system, and it must be giesd accordingly. Early in the R&D project, the
LTTV viewer must be adapted to allow online viewinghef raw data. The adaptation for online
display of the background calculation of higherelesynthesized trace information may be done
later.

The reading of the tracing information and the cotapion of higher level information were re-
architected in order to: 1) facilitate the integratof tracing data from several sources, and 2)
make this data available to a richer integratiemiework (Eclipse was chosen for this purpose;
Couture et al., 2008). The Eclipse framework wilable the effective exploitation of the captured
data through several specialized high-level viewasswnell as higher level information on the
monitored system (e.g. source code, UML models).

DRDC Valcartier TR 2008-300 55

41.2 R&D Thread 2

In order to achieve effective and efficient anaysf execution traces, three elements needed to
be considered.

1. Simplification of execution traces The semantic of trace elements, their inheregitland
the relationship between them have been studiamtdar to simplify execution traces. For
instance, using the information provided IBYTng framework it is possible to de-multiplex
the events of a raw trace and obtain different tsades where each one of them reflects
activities related to one specific running prodeshe system. Moreover, it is possible to find
the relationship between processes and the systspunces they use (e.g. files), and to
capture the different operations that were madehese resources. It is also possible to
identify the resources that are shared betweenepses. However, care must be taken to
handle situations where a resource is accesseiffésedt concurrent processes. The analysis
of traces coming from concurrent processes igdefiture work.

2. Abstraction of execution traces The next step was to study how execution traceshe
abstracted into high-level behaviours. In this gfutiwas assumed that the source codes of
both the user’'s program and the operating systeme vawailable. Care must be taken
regarding the resolution of execution traces. Témolution must be high enough to allow
abstraction.

3. Implementation of trace abstraction and analysisWe used the Kleene algebra formalism
to represent both the events in execution tracdgst@model of the executed program. This
formalism provides a means for formal reasoningac@r abstraction has been achieved
through manipulations and logical reasoning onlaigie expressions. Two cases have been
studied: 1) the case where only a portion of thedtris available, and 2) the case where the
trace covers the whole execution of the programs Was implemented successfully as a
toolkit (PAT), which can achieve automatic tracealgsis, model generation and trace
abstraction.

This R&D thread has successfully identified teclueis) and algorithms to analyze and abstract
execution traces. An additional interesting obsiowmais that trace analysis can be improved by
using techniques that were developed in other reseaeas. Intrusion detection systems (IDS) is
one example, in which techniques designed to aeahgtwork packets (searching for attack
patterns) can be adapted to the context of traglysis.

As mentioned earlier, trace abstraction requirexetion traces that have an appropriate level of
resolution. If the level of details is not high egh, some suspicious behaviours can be missed
during analysis. If the level is too high, the higecution trace may become unmanageable (for
online analysis). Hence, the resolution of executiaces must be appropriately chosen.

Despite the fact that the Kleene algebra formalisffiers an appropriate way to represent
abstractions of programs, it remains that in rgedrational situations, where trace analysis must
be effective and efficient, the lack of specifiaitfythis formalism represents a major drawback in
terms of performance.

56 DRDC Valcartier TR 2008-300

Finally, the successful results of this R&D threagre obtained based on a number of
simplifications. Namely, 1) only calls to the kermaterface (system calls) were considered, 2)
processes were only studied individually, 3) weuassd that the source codes of both the
software and the operating system were availabid, 4 we considered only non-recursive
functions. These simplifications will have to beaesidered in future work so that more realistic
systems can be handled.

4.2 Recommendations for the next R&D efforts

Results and observations from R&D Threads 1 andedrly show the great potential of the
proposed R&D project. Each of the components studfer online monitoring, tracing and
analysis of distributed multi-core systems) is diefeasible and very promising. Four important
challenges must be addressed. Actually, they catobsidered as recommendations for the next
R&D efforts.

1. First, the overhead associated with tHETng framework should be as low as possible to
ensure that it is widely applicable and effectivew overheads do not affect the throughput
of the system being monitored, providing a moreuegte picture of its behaviour and making
it stealthier in the face of sophisticated securtyacks, which attempt to detect such
defensive detection measures.

2. The second important challenge is to facilitateititegration of the different sources of data
(e.g. static and dynamic, kernel and user leveletpoints) from different processor cores,
virtual and physical machines and distributed systeMoreover, the database structure must
allow synthesized information to be added to the ewent traces (e.g. state information,
synthesized abstract higher level events, etc.neSof the problems to be solved are
algorithmic (e.g. trace synchronization and corneer$o a common time base), while others
are architectural or simply involve adaptation hedw different formats. Nevertheless,
integration is important to enable experimentatiothe different contexts (e.g. different C2
systems, military or telecom, different operatiygtems, etc.). The analysis framework must
then allow various analysis modules to use andrifané to the shared information database.
The analysis modules and underlying algorithms khbenefit from a flexible architecture
and the availability of detailed and accurate infation through a flexible framework.

3. The third important challenge is related to thelysis of execution traces in real operational
situations. Traces obtained from concurrent andilighrprocesses that are executed on
distributed multi-core CPUs and which access shaesturces must be analyzed. The
resolution issue must be addressed as well. Asoigaal out in our study, an interesting
solution for this problem could be given by usinglmbilities, which can have a positive
impact on the evaluation and approximation of systealth.

4. Finally, another important challenge consists irdiing the most appropriate formalism for
trace analysis, trace abstraction and fault deteclihe Kleene algebra formalism is adequate
for the certification process but not for the @#itt online handling of huge execution traces.
A formalism to solve these specific problems mustdentified or developed.

DRDC Valcartier TR 2008-300 57

58

This page intentionally left blank.

DRDC Valcartier TR 2008-300

References

A.l1 Papers, reports, theses and books

Adam, B. and D. Kozen, 2002. Equational Verificatmf Cache Blocking in LU Decomposition
using Kleene Algebra with Tests. Technical RepofR2002-1865, Computer Science
Department, Cornell University, Ithaca, New YoriSA, June 2002.

Allegra, A. and D. Kozen, 2001. Kleene Algebra witlests and Program Schematology.
Technical Report 2001-1844, Cornell University, Bement of Computer Science, Cornell
University, Ithaca, NY, USA, July 2001.

Avizienis, A., B. Randell and C. Landwehr, 2004 sBaConcepts and Taxonomy of Dependable
and Secure Computing. IEEE Transactions on Depdémdaiol Secure Computing, Vol. 1, No. 1.

Benaskeur, A. and D. Blosgett, 2008. Multi-agenbrdmation techniques for naval tactical
combat resources management. DRDC Valcartier TR6-284. Defence R&D Canada -
Valcartier; July 2008.

Bligh, M., M. Desnoyers and R. Schultz, 2007. Lirkexnel debugging on Google-sized clusters.
In Proceedings of the 2007 Linux Symposium, Ottaatario. pp. 29-40.

Bolduc, C., 2006. Oméga Algebre : Théorie et appiim en vérification de programmes.
Master’s Thesis, Université Laval, Quebec, Canada.

Carbone, R., 2006a. Operating system hardware figooation — A case study for Linux. DRDC
Valcartier TM 2006-595. Defence R&D Canada — Vdlear November 2006.

Carbone, R., 2006b. Enterprise Linux licenses -ofgarison of licenses between Red Hat and
Suse Enterprise Linux. DRDC Valcartier TN 2006-5T#&fence R&D Canada — Valcartier;
October 2006.

Carbone, R. and R. Charpentier, 2006. Life-Cyclppdut for Information Systems Based on
Free and Open Source Software. In proceedings efitf! ICCRTS, paper number I-136.
International Command and Control Research andii@ofy Symposium. ICCRTS, “Coalition
Command and Control in the Networked Era”, Septen2@ 28, 2006, Cambridge, UK.

Carbone, R., 2008. Long-term operating system raaarice — A Linux case study. DRDC
Valcartier TN 2007-150. Defence R&D Canada — VdlegrJanuary 2008.

Charpentier, R. and R. Carbone, 2004. Free and (Bmmce Software — Overview and
Preliminary Guidelines for the Government of CanaB®®kDC Valcartier ECR 2004-232.
Defence R&D Canada — Valcartier; December 2004.

Chen, X., H. Hsieh, F. Balarin, and Y. Watanabd)2QAutomatic trace analysis for logic of
constraints. In Proceedings of the 40th Conferemc®esign Automation, Anaheim, CA, USA,

DRDC Valcartier TR 2008-300 59

June 2-6, 2003. DAC '03. ACM, New York, NY, 460-4@8%is document could be found in 2008
at: http://doi.acm.org/10.1145/775832.775952

Cohen, E., D. Kozen, and F. Smith, 1996. The coritylef Kleene algebra with tests. Technical
Report TR96-1598, Computer Science Department, éliddmiversity, Ithaca, New York, USA,
July 1996.

Cornelissen, B. and L. Moonsen, 2007. Visualiziigifarities in Execution Traces. Proceedings
of the 14 Working Conference on Reverse Engineering, Oct@bér, Vancouver, BC, Canada.

Couture, Mathieu, 2005. Détection d'intrusions eélgse passive de réseaux. Master's Thesis,
Université Laval, Quebec, Canada.

Couture, M., 2007. Complexity and chaos — Statthefart — Overview of theoretical concepts.
DRDC Valcartier TM 2006-453. Defence R&D Canadaalcdrtier; August 2007.

Couture, M. and R. Charpentier, 2008. Multi-Corerfifloring and Soft Redundancy for Cyber-
Attack Protection. DRDC Valcartier project proposaid presentation. TAG 15B, Ottawa,
October 14, 2008, DRDC Valcartier TM 2006-453. Defe R&D Canada — Valcartier; October
2008.

Couture, M., M. Dagenais, D. Toupin, R. Charpent@r Matni, M. Desnoyers, P.M. Fournier,
2008. Monitoring and tracing of critical softwargsteems — State of the work and project
definition. DRDC Valcartier TM 2008-144. Defence R&anada — Valcartier; June 2008.

Corbet, J., A. Rubini, G. Kroah-Hartman, 20Q3nux Device Drivers O'Reilly Media, &
edition, ISBN: 0-696-00590-3, 615 pages.

Dagenais, M., 2008a. State-of-the-Art — Tracing &uwhitoring of Multi-core Systems. Ecole
Polytechnique de Montréal. This document could beund in 2008 at:
http://Itt.polymtl.ca/tracingwiki/index.php/Main_Ba

Dagenais, M., 2008b. Tracing and Monitoring ToalsDistributed Multi-Core Systems. NSERC
Application for Grant, Form 101. Area of applicatio1207/801. Natural Sciences and
Engineering Research Council of Canada. 42 pages.

Desnoyers, M. and M. Dagenais, 2006a. Low distwwbambedded system tracing with Linux
Trace Toolkit next generation. In Proceedings ef 2006 Consumer Electronics Linux Forum,
San Jose, California, USA.

Desnoyers, M. and M. Dagenais, 2006b. The LTTngeaA low impact performance and
behavior monitor for GNU/Linux. In Proceedings dfet 2006 Linux Symposium, Ottawa,
Ontario, Canada, pp. 209-224.

Desnoyers, M. and M. Dagenais, 2008. LTTng: Tracaumgoss execution layers, from the

Hypervisor to user-space. In Proceedings of the82Diux Symposium, Ottawa, Ontario,
Canada, pp. 101-106.

60 DRDC Valcartier TR 2008-300

Desharnais, J., B. Moller, and G. Struth, 2004. Mddleene Algebra and Applications — A
Survey. Journal on Relational Methods in Computéei®e (JORMICS), 1:93-131, 2004.

Desharnais, J., B. Mdller, and G. Struth, 2006.eK&e algebra with domain. ACM Transactions
on Computational Logic, 7(4):798-833. ACM, New YokkY, USA, 2006.

Dexter, K., 1990. On Kleene algebras and closedrsgys. In Rovan, editor, Proceedings of
Mathematical Foundations of Computer Science, Velu#b2 of Lecture Notes in Computer
Science, pages 26—47, Banska-Bystrica, Slovakin@p-Verlag.

Dexter, K., 1994. A Completeness Theorem for Kle@tgebras and the Algebra of Regular
Events. Information and Computation, 110:366—398y N1994.

Dexter, K., 1997a. Kleene Algebra with Tests. ACkafsactions on Programming Languages
and Systems, 19(3):427-443, May 1997.

Dexter, K., 1997b. On the Complexity of Reasoningieene Algebra. In Logic in Computer
Science (LICS’97), pages 152-162, 1997.

Dexter, K., 1998. Typed Kleene algebra. Technicapdt TR98-1669, Computer Science
Department, Cornell University, Ithaca, NY, USA, idia 1998.

Dexter, K. and M.-C. Patron, 2000. Certificationcoimpiler optimizations using Kleene algebra
with tests. In John Lloyd, Veronica Dahl, Ulrich reach, Manfred Kerber, Kung-Kiu Lau,
Catuscia Palamidessi, Luis Moniz Pereira, YehosBagiv, and Peter J. Stuckey, editors,
Proceedings of the™lnternational Conference on Computational LogitZ@00), Volume 1861
of Lecture Notes in Artificial Intelligence, pagé68-582, London, UK, July 2000. Springer-
Verlag.

Dexter, K., 2003. Kleene Algebras with Tests anel 8tatic Analysis of Programs. Technical
Report 2003-1915, Computer Science Department, dllotdniversity, Ithaca, NY, USA,
November 2003.

Dexter, K., 2004a. Introduction to Kleene Algebf@omputer Science Department, Cornell
University, Ithaca, NY, USA.

Dexter, K., 2004b. Introduction to Kleene Algebtacture 19 (see Dexter, 2004), Computer
Science Department, Cornell University, Ithaca, WBA, Spring 2004.

Dexter, K., 2004. Introduction to Kleene Algebra_ecture 2 (see Dexter, 2004), Cornell
University, Ithaca, NY, USA, Spring 2004.

DRDC, 2006. Defence S&T Strategy. Science and Taolgy for a Secure Canada. ISBN: D2-
186/2006 978-0-662-49705-9, NDID: A-JS-007-000/A040This document could be found in
2008 athttp://descartes.drdc-rddc.gc.ca/default.aspx

Ehm, T., 2004. Pointer Kleene Algebra. In Sprin@arlin / Heidelberg, editor, Tools and
Algorithms for the Construction and Analysis of &yms, Volume 3051/2004 of Lecture Notes in
Computer Science, pages 99:111, May 2004.

DRDC Valcartier TR 2008-300 61

Ellison, B. and C. Woody, 2007a. Scale: System [bgraent Challenges. US Department of
Homeland Security, Build Security In — Setting ghgr standard for software assurance. This
document could be found in 2008 &ittps://buildsecurityin.us-cert.gov/daisy/bsi/de&best-
practices/system-strategies/882-BSl.html

Ellison, B. and C. Woody, 2007b. Introduction tosfgyn Strategies. US Department of
Homeland Security, Build Security In — Setting ghgr standard for software assurance. This
document could be found in 2008 &titps:/buildsecurityin.us-cert.gov/daisy/bsi/da&best-
practices/system-strategies/883-BSl.html

Ellison, B. and R. Creel, 2007. Acquisition OvewieThe Challenges. US Department of
Homeland Security, Build Security In — Setting ghgr standard for software assurance. This
document could be found in 2008 &ititps:/buildsecurityin.us-cert.qgov/daisy/bsi/da&best-
practices/acquisition/893-BSI.html

Ezust, S. A. and G. v. Bochmann, 1995. An automatice analysis tool generator for Estelle
specifications. SIGCOMM Computer Communication Rewi25, 4 (Oct. 1995), 175-184. This
document could be found in 2008 lattp://doi.acm.org/10.1145/217391.217428

Fischer, M., J. Oberleitner, H. Gall and T. GschilyiB005. System Evolution Tracking through
Execution Trace Analysis. Proceedings of the" 18ternational Workshop on Program
Comprehension, St. Louis, MO, USA.

Fusco, J., 2007. The Linux Programmer’s ToolbornBce Hall, ISBN 0132198576

Hamou-Lhadj, A., 2005. Techniques to Simplify thaadysis of Execution Traces for Program
Comprehension. Ph. D. thesis. Ottawa-Carleton tinietifor Computer Science, School of
Information Technology and Engineering, UniversifyOttawa, 171 pages. This document could
be found in 2008 ahttp://users.encs.concordia.ca/~abdelw/HamoulLh&i[RBsis.pdf

Hardin, C. and D. Kozen, 2002. On the EliminatidiHgpotheses in Kleene Algebra with Tests.
Technical Report 2002-1879, Department of Comp8taence, Cornell University, Ithaca, NY,
USA, November 2002.

Hardin, C. and D. Kozen, 2003. On the complexityhaf Horn theory of REL. Technical Report
TR2003-1896, Computer Science Department, Cornaltdysity, Ithaca, NY, USA, May 2003.

Hardin, C., 2005. Proof Theory for Kleene AlgeldralICS '05: Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science (LIOS), pages 290-299, Washington, DC,
USA, 2005. IEEE Computer Society.

Heikkila, E. and J. Gulliksen, 2007. Multi-Core Comting in Embedded Applications. VDC
Market Research. September 2007.

Jackson, D., M. Thomas, and L.l. Millett, 2007. t8afre for Dependable Systems: Sufficient
Evidence? Committee on Certifiably Dependable SafénSystems, National Research Council.
Daniel Jackson, Martyn Thomas, and Lynette |. Mill&ditors. ISBN: 0-309-66738-0, 148
pages. This document could be found in 2008&t#p://www.nap.edu/catalog/11923.html

62 DRDC Valcartier TR 2008-300

Jipsen, P., 2004. From Semirings to Residuatedni€léattices. Studia Logica, 76(2):291-303,
2004.

Kamal, A.-H. and D. Kozen, 2007. Local Variable Siog and Kleene Algebra with Tests.
Journal of Logic and Algebraic Programming, 200Q1D 10.1016/j.jlap.2007.10.007.

Kot, L. and D. Kozen, 2005. Kleene Algebra and Bygtie Verification. In Fausto Spoto, Editor,
Proceedings of the 1st Workshop on Bytecode SepwnfVerification, Analysis, and
Transformation (Bytecode’05), Edinburgh, Scotlapaes 201-215, April 2005.

Ktari, B., F. Lajeunesse-Robert, and C. Bolduc,&@®@pblving Linear Equations in *-continuous
Action Lattices. In Bernhard Moller, editor, Retats and Kleene Algebra in Computer Science,
volume 4988 of Lecture Notes in Computer Scienagep 289-303. Springer, April 2008.

Lajeunesse-Robert, F., 2008. Résolution d’équatiemsalgebra de Kleene — Applications a
I'analyse de programme. Master's Thesis, Univetsii@l, Quebec, Canada.

Langevine, L., 2002. Automated analysis of CLP (pBjgram execution traces. Proceedings of
the International Conference on Logic Programmibhgcture Notes in Computer Science.
Springer-Verlag. Pages 470-471.

Lau, T., P. Domingos and D.S. Weld, (2003). Leagni®rograms from Traces using Version
Space Algebra. Proceedings of the 2nd Internati@oaiference on Knowledge Capture. ACM,
New York, NY, USA.

Lei3, H., 2006. Kleene Modules and Linear Languagksurnal of Logic and Algebraic
Programming, 66:185-194, 2006.

Lianjiang, F., 2005. Exploration and Visualizatioh Large Execution Traces. M. Sc. thesis.
Ottawa-Carleton Institute for Computer Science Mdrsity of Ottawa, 127 pages. This document
could be found in 2008 athttp:/www.site.uottawa.ca/~tcl/gradtheses/Ifu/Lhi€BisJun30-

2005Final.pdf

Linger, R.C. and A. P. Moore, 2001. FoundationsSarvivable System development: Service
Traces, Intrusion Traces, and Evaluation Modelsrn€gie Mellon University Software

Engineering Institute, Survivability Systems. Teiclah Report CMU/SEI-2001-TR-029, ESC-
TR-2001-029. Carnegie Mellon University, PittsburgiA, USA.

Mathieu, V., 2006. Vérification des systémes a pilemoyen des algébres de Kleene. Master's
Thesis, Université Laval, Quebec, Canada, 2006.

Neumann, P.G., 2000. Practical Architectures fawviSable Systems and Networks. Phase-Two
Final Report based upon work supported by the W81y Research Laboratory (ARL), under
contract DAKF11-97-C-0020, SRI International, 2G@es.

Neumann, P.G., 2004. Principled Assuredly Trustiwo@omposable Architectures. Final report.
Contract number N66001-01-C-8040. DARPA Order Nda3®l SRI Project P11459. 222 pages.

DRDC Valcartier TR 2008-300 63

Paxson, V., 1997. Automated Packet Trace AnalyiSisGP Implementations. ACM SIGCOMM
Computer Communication Review. Volume 27 Issue @VA

Schneider, Fred B., 1999. Trust in Cyberspace. Citteen on Information Systems
Trustworthiness, Commission on Physical Scienceathbmatics, and Applications, National
Research Council. Fred B. Schneider, Editor. ISB09-51970-5, 352 pages. This document
could be found in 2008 atttp://www.nap.edu/catalog/6161.html

Yaghmour, K. and M.R. Dagenais, 2000. Measuring elmatacterizing system behavior using
kernel-level event logging. In Proceedings of teANIIX 2000 Annual Technical Conference,
San Diego, California, USA, pp. 13-26.

Yaghmour, K., 2001. Analyse de performance et ¢arsation de comportement a l'aide
d’enregistrement d'événements noyau. Master's $hdscole Polytechnique de Montréal,
Montreal, Quebec.

Zanussi, T., K. Yaghmour, R. Wisniewski, R. Mooend M. Dagenais, 2003. Relayfs: An

efficient unified approach for transmitting datarfr kernel to user space. In Proceedings of the
Ottawa Linux Symposium, Ottawa, Ontario, pp. 519-53

A.2 Presentations

Lajeunesse-Robert, F., 2008. Abstraction de tratesécution de programmes. Science and
Technology Matinées. DRDC Valcartier, August 190920

Prenoveau, F., 2008. Tracage de systemes d'infmmamn ligne. Science and Technology
Matinées. DRDC Valcartier, August 19, 2008.

A3 Web sites

Cisco_IDS, 2008http://www.cisco.com/warp/public/cc/pd/sagsw/sqidtsaéx.shtml

F#, 2008 http://research.microsoft.com/fsharp/fsharp.aspx

Foldoc, 2008http://foldoc.org/

Kernel, 2008http://kernel.org/

LTTng, 2008:http://ltt.polymtl.ca/

Micro_httpd, 2008http://www.acme.com/software/micro_httpd/

Relayfs, 2008http://relayfs.sourceforge.net/

WikipediaWs, 2008http://en.wikipedia.org

64 DRDC Valcartier TR 2008-300

Annex B Tracing for distributed multi-core systems —
Motivations and drivers

A tutorial/workshop on monitoring and tracing ofdrmation systenid was held in January 2008
in Montréal (Couture et al., 2008) Several of the most advanced playeia the areas of
advanced communications, information managementamputer security discussed the state of
the art with regard to current tools, associateblems and unmet needs. The main goals of this
tutorial/workshop were:

» to ask these international experts in these domamnsiescribe the leading edge of
knowledge relative to tracing and monitoring oftdisuted computer systems (SMP or
single/multi-core), and

e to ask advanced users to present the most chatigngroblems they are facing, and
potential solutions.

The most promising avenues for solutions were ifledtwith the guidance of key industrial,
governmental and academic researchers in the fadg.findings of the tutorial/workshop are
presented in this section.

B.1 Initial drivers of the effort

The long-term vision key points that were initiaflyoposed to the participants of the workshop
were the following:

» low-overhead instrumentation is critical to mosalrevorld applications;
» equally important are in-lab debug and in-field {lime) monitoring;

* many applications are distributed (i.e. multi CPWs)d threaded in multi-core;

The technologies to be promoted are:
« Linux shall be considered as the most appropriafef@ this work’;

« standard protocols, formats and integration framegcshall also be considered; and

Open-Source reference implementations shall beugaged as well.

3" This event corresponds to step four of the usetiodelogy (Section 1.2).

% The text initalic in this section was literally reproduced verbatiom Couture et al. (2008).

%9 Representatives from Defence R&D Canada at VaécaEnea, Ericsson, Freescale, IBM, MontaVista,
Nokia, Rational, Red Hat, Oracle, Wind River an@lgere were present.

0 A wide variety of Operating Systems are encountén Linux appears to be the most appropriate OS
for R&D demonstration since it is shared by a lasgenmunity of users and expected to increase in
importance in the future.

DRDC Valcartier TR 2008-300 65

B.2 Identified long term challenges
The following long-term challenges were identiflegthe participants during the workshop:

1. Full spectrum trace visualization Full spectrum trace visualization appears to ésrdble
in most analyses (i.e. from silicon, hypervisor,, ®$!, and simulator up to user application).
Abstraction towards a modelling level was also egped as a valuable visualization enabler
in some system designs and analyses.

2. Multiple CPUs and multi-core within an integrated FR1J: Understanding interactions
between multiple CPUs and multi-core within an gneded CPU is also mandatory to
complex system analysis and in particular to ensgedability of performance.

3. Reusability and comparability of functions and tras Tracing and monitoring functions
should be designed in ways that enable regressbating and periodic (repetitive)
maintenance.

4. Measures of system health and interventiorsxploitation of low-level instrumentation to
assess general system health of on-line comporfantsigh level) and the activation of
reactive measures when appropriate are also peeckias being critical to autonomous
complex systems. Ultimately, a “continuous procetdeedback-directed adaptation and
optimization” could emerge from such capabilities.

5. Forensics Conditioning captured data for forensics expltiva could also be highly
appreciated for criminal investigations when matftions are suspected to originate from an
attack on a key component of a critical infrastuuret

6. Ensure technology adoption in a broader communitiyusers by prioritizing “ease-of-use”.

B.3 Identified Areas of R&D

Six key areas of R&D were identified during theotidl/workshop. They are listed in the
following lines (this text comes from Dagenais, 80D

1) Adaptative fault probing:

Static probe sites may be inserted at compilatioretand remain dormant until activated at
runtime, typically to generate tracing informatiopon need. Dynamic probes can be added at
runtime, to adapt the system behavior, for exartipteace various parts of the operating system
for diagnosing a problem. DTrace [8] is probablyethest known recent implementation of static
probe sites and dynamic probes. SystemTap [9],ectly under development, offers a similar
functionality for dynamic probes under Linux. Thestnimportant characteristics of static probe
sites and dynamic probes is their ability to beeitsd anywhere (including in interrupt and even
non-maskable interrupt context), their low overhaihimal performance hit when dormant and
when activated) and their low disturbance (do rfwrgye the real-time behavior).

66 DRDC Valcartier TR 2008-300

The group under the supervision of Michel Dagerais started working on static probe sites,
providing an initial implementation for the maindirLinux kernel, named Kernel Markers, used
by thousands of developpers and installed on maliof computers around the world. The
challenge is to simultaneously minimize the nundfeexecution cycles required for a probe,
including the effect of the added instructions lo& tnemory cache, while not interfering with the
real-time response of the system, and enablingatiigation of probes even when the program
may be simultaneously accessed by several proseesoa multi-core system. To achieve this,
atomic operations local to a CPU, per CPU bufferslalata structures, and special techniques
for code patching online multi-threaded binary exable code may be used.

Some interesting preliminary results have beeniobthwith the Kernel Markers and LTTng [2].
The interoperability with SystemTap dynamic probas also been planned. Further research
and development to refine and optimize the undeglglgorithms will be needed to provide a
robust, low disturbance and extremely efficientastructure for adaptative fault probing within
the operating system kernel and for user level iappbns (D1.1 to D1.4). While this
infrastructure will be prototyped for Linux, at ap#ing system and user level, the same
algorithms will be adapted for a number of otheemiing systems (e.g. BSD) in use at Ericsson,
Defence R&D Canada and elsewhere to trace hetemmen distributed systems (D1.5 and
D1.6).

2) Multi-level, multi-core distributed traces synobnization:

The probes installed at the different software tayéhypervisor, operating system, virtual
machine, system libraries, applications) may beduweprovide monitoring and tracing data.
Each processor, with its own local clock, then gates a steady flow of events. These events,
from multiple cores on each system, and from sédéstiibuted systems, must then be collected
and stored efficiently. The events coming frondifferent cores must be synchronized and allow
navigation through the possibly huge traces. Theenily available trace visualization tools
have often targeted detailed traces for small igale embedded systems, or much less detailed
system logs for larger systems. As a result, ndribeosystems evaluated for the 2008 Tracing
Summit [4] were capable of handling traces of mtiven a few tens of megabytes. The Linux
Trace Toolkit Viewer, developed at Ecole Polyteghaj is capable of handling huge traces of
several gigabytes or more. However, a new architects required to handle huge traces while
allowing the collection of traces from multiple ®ms and embedded devices (R1.2, R1.4 and
R1.5), for both online and a posteriori offine ays$ and viewing.

More importantly, further work is required to deeopl algorithms for the synchronization of
events coming from multiple nodes, multiple comes even multiple virtual machines (R1.1 and
R1.3). Existing tracing tools for distributed syateoften use coarse level events, for which local
clocks differences may not be a problem. Tooldring newer distributed real-time systems
[13] rely on the local clocks synchronization andcur a significant loss of accuracy. A
posteriori synchronization of traces allows morew@aate drift estimation because the network
delay variations are amortized over a large numbemessage exchanges and a long period of
time [14].

3) Trace abstraction, analysis and correlation:

DRDC Valcartier TR 2008-300 67

The detailed event lists gathered independentiy fseveral processors need to be processed to
extract higher level information suitable for arsily at higher levels of abstraction. This may be
achieved by detecting self similar sections of tlaee, or sections matching use case maps,
which may correspond to higher level utility opévat. Different metrics may be used (frequency
of occurence, number of different contexts in wiiicdequence is used) in order to estimate the
likelihood of a sequence to represent a higher lledsstract utility operation. These new
techniques have been used successfully for highel hested method calls traces [15]. The
context is significantly different in system letrglces where asynchronous work queues and
interrupts mix with simpler nested calls.

As a first step, the possible events abstractidhbeiexamined on a single system (H1.1 to H1.5).
For instance, a sequential file reading operatioaynbe the abstract representation of numerous,
possibly out of order, disk block reads. New edfitialgorithms will be developed based on
pattern detection techniques to abstract out thatet of low-level traces generated from
multicores systems. Pattern detection algorithnig ®@ matching criteria to assess the extent to
which various parts of a trace can be deemed similakey activity of this milestone is to study
how existing matching criteria can be applied torlevel traces and if there is a need to create
new ones. The resulting algorithms will vary in thay existing (or new) matching criteria are
combined and weighed.

This trace reduction and abstraction step is uséfultself to reduce the size of traces and
simplify their understanding for the human viewleralso allows the automated comparison of

multiples traces, to quantify and classify the diemces, establishing equivalence in result even
if implementation differs. This will be useful iififekent contexts. It may be used for regression
analysis between traces sampled periodically, nooinig the system performance and detecting
any degradation, or to insure that subsequent fengof a software system have not introduced
programming errors. It may also be used to comphectraces of redundant servers, performing
the same work but through distinct software implataigons, in order to detect any malfunction

possibly caused by a security breach.

As a second step, the abstraction algorithms vélebhanced and extended to analyze multilevel
distributed systems (H2.1 to H2.5). For examplé&ntiserver requests may be identified by
finding specific sequences of message send and/eeeeents (e.g. DNS UDP packets). This is
different from the distributed traces synchroniaatiresearch thread where simple pairs of
matching lower level packet send and receive ev@pscally TCP) are identified wherever
possible to obtain common time reference points.

A significant challenge is to cope with the varldpi and uncertainty associated with the
approximate time synchronization of events fronepahdently clocked cores and computers,
and the unobvious matching of request and resppass, particularly in the presence of non
connection oriented protocols with lost packets egtcansmissions.

4) Automated fault identification:
By carefully examining execution traces of an infation system, experts can detect problematic

behaviors that are related to software design dsfenefficiencies as well as malicious activities.
Examples of such faulty behaviors may include: ssige swapping, lock contention, undue

68 DRDC Valcartier TR 2008-300

latency, inefficient task scheduling, attempts nase system logs, modification of system files,
etc.

Mechanisms allowing fault detection already existritrusion Detection Systems (IDS). Among

others, they analyze network packet traces and fookattack patterns. Many of these use

specialized languages to represent faulty conditigtenarios, patterns, etc. These languages
have different flavors, some are: domain speclianoptis, Snort, NeVO), imperative languages

(ASAX, BRO), finite states (STAT, IDIOT, BSML)geéexgystems (P-BEST, LAMBDA), temporal

logic (LogWeaver, Monid, Chronicles).

A similar approach is chosen in this project to yide an online flexible automated fault
identification mechanism for execution traces. Thain goal is to allow systems to trigger
alarms during operations when specified problematanditions, scenarios or patterns are
detected in execution traces. Such detection systikisignificantly improve the decision making
process as well as thoughtful analysis and respomkie maximizing time for risk mitigation.

Problematic conditions that are found in executtcaces will first be studied in depth (K1.1,
K2.1 and R2.1) in order to clearly identify whatremtic must be represented by the language. A
state of the art will then be done to identify anfoer of complementary languages and potential
solutions that could be used (K1.2). New algorithpatterns and techniques will then be
developed to detect a wide range of non timingcatitproblems (K1.3 to K1.5), then for timing
critical problems (K2.2 to K2.5), including denial service cyber-attacks, and finally for multi-
level distributed systems specific problems (R2R2.5).

5) System health monitoring and corrective measargivation:

System irregularities and overall performance delgttion [16] can be observed and measured
to a new level of awareness by the enabling tedyes described above (trace abstraction,
analysis and correlation, automated fault idengfion, adaptive fault probing, etc). The

objective of this research and development threadoi define and to validate quantitative
measures that may be used to assess global sysaith tand appropriate activation of

corrective measures.

System health can be evaluated using an arrayfferdint, often complementary, approaches. A
more traditional approach is using the low levalaie) metrics [17] or statistics computed
directly in the probes. Similar metrics may be buwih higher level abstracted events. The
comparison of correlated traces from redundant esyst will use different techniques to extract
the differences, and measure their size and s@gmifie; different techniques such as measuring
the edit distance, used to study the temporal éeolwf source code in a project, or to detect
cloned source code blocks, may be used.

A model of healthy behavior may be described ouded from system characterization through
the analysis of several traces. Thereafter, anycattbn that the trace of a monitored system
diverges from the healthy model is then flaggeduapicious. Additionally, strict access rules for
the different system resources by the differentgsses may be defined and checked during the
trace monitoring; these access rules may be muate fitee grained and thus precise than what
is supported by the operating system. The pattanguages developed for automated fault

DRDC Valcartier TR 2008-300 69

identification and traces abstraction may be usedharacterize important aspects of the system
health.

The resulting system health or reliability measusaimcan be highly informative to the system
administrator to increase the level of surveillanoe to activate additional protective and
reactive measures such as logging more informatiooglifying packet filtering rules, inserting
and/or activating probes dynamically, modifyingteys behaviour or simply shutting down some
computers in order to protect them from hackingnadicious exploitation (D3.1 to D3.8).

6) Trace directed modeling:

Many benefits can be achieved by processing traeate so as to reconstruct a higher-level
model, such as state machine or an interaction iddecessary operations to build such a
model include filtering less-relevant items (e.tilities) from the trace; the process also builds
on trace abstraction, analysis and correlation. Kahallenges are to manage the scope and to
determine the appropriate abstractions; this cangb@led by the presence of an original UML
model used to create the system (if available).erample of the above is taking a series of
transmissions in a system and recognizing thatpt@sents a single transaction (L1.1 and L1.5).

The reconstructed model can then applied in severas: 1) It can be used for anomaly
detection and analysis by comparing it to either ¢higinal UML model, or to models generated
from previous correct or anomalous runs. 2) Deldimjng and resource usage can be analysed
at the level of the abstract entities in the mo@}l.Various visualization techniques can be
applied to the model to allow engineers to obtaisights. 4) It becomes possible to change the
model (e.g. change the amount or distribution gbreces, or change a condition) and estimate
the effect on the system's performance or behayidu6 to L1.8).

Building on the synchronization of distributed rilétzel multi-core traces, the basic operating
system model currently available in the LTTng vie[@g will be extended to represent multi-
level (system and user level virtual machines)rilisted systems by modeling explicitly the
relationships and interactions between these rea a&irtual systems (D2.1 to D2.5). These
interactions will then be analyzed to identify areport critical paths detailing the delay
components, for instance explaining the time eldpsetween a query and a response on a
distributed system.

70 DRDC Valcartier TR 2008-300

Annex C Used tracing softwate — Overview

An overview of LTTng is presented in this annex. The reader should keepind that this
description refers to the 2006 version of the safew Since then, the software has been the object
of intensive evolution phases designed to makauiit gf the mainline of the Linux kernel. The
reader will find a more complete description in Begers and Dagenais (2008).

C.1 Overview of the LTTng architecture

The first version oL TTngwas actually calledTT (Yagmour, 2001). The main goal of this work
was to build a set of tools that could provide thesers an exact continually updated picture of
the dynamical aspects of their system. The knovdeofperformance issues and associated
causes were at the centre of this R&D effort. Atheginning in 2001, execution of the first
versionLTT was already showing low relative CPU costs of 2.5%

The arrival of the new version off T, “LTT new generation”l(TTng, confirmed the necessity of
keeping these CPU costs as low as possible whdimglegth increasingly complex systens.
low impact, high performance tracing systappears to bte only tool capable of collecting the
information produced by instrumenting the wholetays while not changing significantly the
studied system behaviour and performafigesnoyers and Dagenais, 2006b).

One of the challenges that were encountered abahaning of theL TTngdevelopment was to
obtain aflexible and extensible tracer with precise timegta, across multiple architectures,
running from several MHx to several GHz, some bengti-processorslts flexibility would
facilitate the addition of new instrumentation geias well as plugins for the analysis and display
of the traced data.

The architecture dfTTngcan be described using five interlinked architeadtuiews; 1) Control,

2) Data flow; 3) Instrumentation; 4) Event type istgtion; and 5) Tracing. These views are
introduced in the following lines. This text (andglire 27) essentially was borrowed from
Desnoyers and Dagenais (2006b); the reader isthtd consult this paper (and subsequent) for
more details.

1) Control:

There are three main parts in tHiETngarchitecture (Figure 27):

« lttctl: a user space command-line application that is usedontrol tracing. It starts Ittd
and controls kernel tracing behavior through a fbymodule bridge which uses a netlink
socket

« lttd: a user space daemon that waits for trace data argsvit to disk

« a kernel part that controls kernel tracing.

The core module of LTTng lig-core. This module is responsible for a number of LTt
eventslt controls the following helper modules:

DRDC Valcartier TR 2008-300 71

 Itt-heartbeat this modeulegenerates periodic events in order to detect ancbant for
cycle counters overflows, thus allowing a singlenatonically increasing time base even if
shorter 32-bit (instead of 64-bit) cycle counts atered in each event.

« ltt-facilities: this modeuldists the facilities (collection of event typesyremtly loaded at
trace start time.

« ltt-statedump this modeuleggenerates events to describe the kernel stateaeé tstart time
(processes, files...).

A builtin kernel objectjtt-base contains the symbols and data structures requlygdouiltin
instrumentation. This includes principally the tirag control structures.

. \ i - -
libtll-usertrace libtll-usertrace-fast

(system call)

‘ litd H lttctl H liblttctl

User space
Netlink
socket

Kernel space

Itt-syscall
Itt-control

Itt-core

Ctrl

\ Itt-statedump

Itt-base
Ctrl

Itt-heartbeat ‘ ‘ Itt-facilities ‘

Figure 27. Architecture of the tracing software logT
2) Data flow:

The data flows from the kernel to the user spacthénfollowing mannerAll data is written
through Itt-base into RelayFS circular buffers (Zanussi et al., 2003; RelayFS, 2008Yhen
subbuffers are fulplease refer to Section 2.4.1 of this document definition of buffers
subbuffersandchannel$, they are delivered to tHéd disk writer daemonlttd is a standalone
multithreaded daemon which waits &elayFS channels (files) for data by using the poll file
operation. When it is awakened, it locks the chmnfoe reading by using a relay buffer get ioctl.

72 DRDC Valcartier TR 2008-300

At that point, it has exclusive access to the sfibbit has reserved and can safely write it to
disk. It should then issue a relay buffer put idctielease it so it can be reused.

A side-path]ibltt-usertrace-fast running completely in user space, has been dpedidor high
throughput user space applications which need IpigHiormance tracing(...) Bothlttd and the
libltt-usertrace-fastcompanion process currently support disk output, dhould eventually be
extended to other media like network communicati@hapterError! Reference source not
found. addresses partially this problematic).

3) Instrumentation:

LTTng instrumentation(...) consists in an XML event description that is udmdh for
automatically generating tracing headers and asadaetainformation in the trace files. These
tracing headers implement the functions that mestcalled at instrumentation sifésto log
information in traces. Most common types are sufgubin the XML description: fixed size
integers, host size integers (int, long, pointéest), floating point numbers, enumerations, and
strings. All of these can be either host or netwoyke ordered. It also supports nested arrays,
sequences, structures, and unions. The tracingtiims; generated in the tracing headers,
serialize the C types given as arguments into fh€ trace format. This format supports both
packed and aligned data types. A record generaged probe hit is called an event. Event types
are grouped in facilities. A facility is a dynamiiyaloadable object, either a kernel module for
kernel instrumentation or a user space library f@er space instrumentation. An object that calls
instrumentation should be linked with its assoddtility object.

4) Event type registration:

Event type registration is centralized in tktacilities kernel object...). It controls the rights to
register specific type of information in traces.rHastance, it does not allow a user space
process using the ltt-usertrace API to registerilites with names conflicting with kernel
facilities. The Itt-heartbeat built-in object and thelttstatedump also have their own
instrumentation to log events. Therefore, they akgister toltt-facilities, just like standard
kernel instrumentation. Registered facility nand®cksums and type sizes are locally stored in
Itt-facilities so they can be dumped in a special low trafficncled at trace start. Dynamic
registration of new facilities, while tracing is tae, is also supported. Facilities contain
information concerning the type sizes in the coatipih environment of the associated
instrumentation. For instance, a facility for a BR-process would differ from the same facility
compiled with a 64-bit process from its long anéhper sizes.

5) Tracing:

(...) traced information must have its metainformatiomgistered intoltt-facilities. (...) The
tracing path has the biggest impact on system heh&éecause it is called for every event. Each
event recorded uséts-base container of the active traces, to get the paiite RelayFSbuffers.
Used lockless mechanisns make them reentrant obeasand precise.

“!n this papercall site, is defined ashe original code from the instrumented program rettee tracing
function is callecandinstrumentation site is defined ashe tracing function itself

DRDC Valcartier TR 2008-300 73

C.2

The procedure for installing the tracing softw&fETng is listed in this section. It was made
especially for the Ubuntu Desktop 8.10 LTS (Jurt§8).

1.

10.

11.

12.

13.

74

Installation of LTTng

BHHBHH R R R R
Tools that are needed for this installation process

BHAHBHH R R R R
Create a working directory and change directory:

a. mkdir ~/lttng_stuff/

b. cd ~/lttng_stuff

Download, from the LTTng web site (LTTng, 2008), th
last version of these files are choosen, the reader
numbers correspond to the one of the Linux kernel t

a. patch-2.6.25.4-Ittng-0.10-pre55.tar.bz2
b. Itt-control-0.48-27022008.tar.gz
c. Ittv-0.10.0-pre11-10032008.tar.gz

Download from Kernel 2008] the Linux kernel. The r
version number of the kernel is the same as the one
downloaded at step 5. In our example, the following

a. linux-2.6.25.4.tar.bz2

Install development tools that will be needed. The
installation:

a. sudo apt-get install build-essential quilt libncurs
package libgtk2.0-dev libpopt-dev

BHHBHH R R R R
Compile and install the downloaded Linus kernel

BHHBHH R R R
Extract file from downloaded files using the follow

a. tar xjflinux-2.6.25.4.tar.bz2

b. tar xjf patch-2.6.25.4-Ittng-0.10-pre55.tar.bz2

Apply the patches with the following commands:

a. cdlinux-2.6.25.4

b. In-s ../patch-2.6.25.4-lttng-0.10-pre55 patches

c. quilt push -a

Configure the Linux kernel. Here, we copy the defau

a. cp /boot/config-"uname -r’ .config

b. make menuconfig

HHHHH B

HHHHHH BB

e following three files: (if the
should make sure the version
hat will be used).

eader should make sure that the
of the three files that were
file should be downloaded:

following line triggers this
es-dev fakeroot kernel-

HHHHHH B

HHHHHH B

ing commands:

It configuration.

DRDC Valcartier TR 2008-300

14. The last command (#13-b) will laungh a menu allowin

15.

16.

17.

18.

19.

20.

reader should make sure that the following options
a. General Setup --->
i [X] Activate markers
b. Linux Trace Toolkit --->
i [X] LTTng fine-grained timestamping
i. [X]Linux Trace Toolkit Instrumentation Support
ii. <*>Linux Trace Toolkit Relay+DebugFS Support
iii. <*> Linux Trace Toolkit Serializer
iv. <*> Linux Trace Toolkit Marker Control
V. <> Linux Trace Toolkit Tracer

vi. [*] Align Linux Trace Toolkit Traces

Vii. [*] Support trace extraction from crash dump

viii. [] Write hearbeat event to shrink trace (EXPERIMEN

ix. <M> Linux Trace Toolkit Netlink Controller
X. <M> Linux Trace Toolkit State Dump

Following olptions should be disabled in order to lo
modules. It
desactivated.

c. Kernel Hacking --->
i. []Enable unused/obsolete exported symbols
i. []Kernel debugging
iii. [] Compile kernel with debug info

Once_ this c_:onfiﬁuration_process has ended, quit and
compiled using the following commands:

a. make-kpkg clean
b. fakeroot make-kpkg --initrd --append-to-version=-It

The kernel compilation process may take a long time
containing the kernel and its modules will be creat
containing the source of the kernel. Use the follow
compiled kernel.

a. cd.
b. sudo dpkg -i linux-image-2.6.25.4-lttng-0.10-pre55_

The computer must be restarted in order to load the
will have to select among two or many compiled kern
enabled kernel.

HHHBHH R

Configuration of the file system “debugfs”

DRDC Valcartier TR 2008-300

is important thay the reader make sure

g the selection of options. The
are selected:

TAL)

wer the size of the kernel and its
that these elements be

save. The kernel may now be

tng-0.10-pre55 kernel_image

. When it is finished, a package
~ed and saved in the directory
ing commands to install the new

2.6.25.4.deb

new kernel. While bootin%, the use
els. S/he should select the LTTng

HHARHH R

75

21. HHBHHEHHHHE R R R
22. Create adirectory in /mnt that will allow the moun
a. sudo mkdir /mnt/debugfs

23. Edit the file “/etc/fstab” and add the following li
quit the editor:

a. debugfs /mnt/debugfs debugfs rw 0 0
24. Mount the file system debugfs using the following ¢

a. sudo mount /mnt/debugfs
25, HHBHHEHHHHE R
26. Compilation and installation of Itt-control
27. (Itt-control is the application allowing the contro
28. HHBHH B R T R
29. Compile and install ltt-control with the following

a. tar xzf Itt-control-0.48-27022008.tar.gz

b. cd ltt-control-0.48-27022008

c. .Jconfigure

d. make

e. sudo make install
30. HHHHHEHHHHEHHHH T
31. Compilation and installation of Ittv
32. (Ittv is the visualisation tool).
33, HHHHHHHHHH R R R
34. Compile and install Ittv with the use of the follow

a. tar xzf Ittv-0.10.0-pre11-10032008.tar.gz

b. cd Ittv-0.10.0-pre11-10032008

c. ./configure

d. make

e. sudo make install
35. Finally, update the dynamical library index with th

a. sudo Idconfig

C.3 How to use

L. B R

76

HHARHH R

ting of the debugfs file system.

ne at the end of the file, save and

ommand:

HHARHH B

| of the tracing).
HHHHHHHHHHHH

commands:

HHHBHH B

HHHHHH B

ing commands:

e following command:

HHHHHH BB

DRDC Valcartier TR 2008-300

2. Mettre un mot de passe root
3. HHHHHE R T T R T HHHHHHHHHHH

4. In order to control the tracing with lIttv, the pass word of Ittv should be configured
with tha one of the root. Use the following command :

a. sudo passwd

b. Enter the password twice
5. HHBHHHHHHHH R R R R B
6. Testing LTTng
T, B B R R R R A B H R

8. Load modules and arm markers with the following com mands (these commands must be
retyped after every start of the computer):

a. sudo modprobe Itt-control
b. sudo modprobe lit-statedump

c. sudo ltt-armall

9. L‘_I'Tn% is now ready to be used. The graphical interf ace of LTTng (LTTV) may be lauched
with the following command:
a. Ittv-gui

10. To start a trace, click on the red/[)(/ellow/green ico n that is located in the tool box.
En ter the root password and click on start.

11. \-I/-i%vsgrd tracing, click on stop. The application ddahen ask for loading the trace into its

C.4 Listof LTTng active markers (or probes)

The following list corresponds to the one that barfound in the last version bTf Tng(LTTng,
2008).

1. marker: kernel_arch_kthread_create format: "pid %ld fn %p"

2. marker: kernel_arch_trap_exit format: " "

3. marker: kernel_arch_trap_entry format: "trap_id %d ip #p%old”
4. marker: statedump_idt_table format: "irqg %d address %p symbol %s"
5. marker: kernel_arch_ipc_call format: "call %u first %d"

6. marker: kernel_arch_syscall_exit format: "ret %Id"

7. marker: kernel_arch_syscall_entry format: "syscall_ id %d ip #p%eld"
8. marker: kernel_irq_entry format: "irq_id %u kernel_ mode %u ip %lu"
9. marker: kernel_irq_exit format: "handled #1u%u"

10. marker: kernel_softirq_entry format: "softirq_id %l u"

DRDC Valcartier TR 2008-300 77

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.

32.

33.
34.
35.
36.
37.

38.

78

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker

kernel_softirg_exit format: "softirq_id %lu
kernel_softirq_raise format: "softirq_id %u
kernel_tasklet_low_entry format: "func %p d
kernel_tasklet_low_exit format: "func %p da
kernel_tasklet_high_entry format: "func %p
kernel_tasklet_high_exit format: "func %p d
kernel_kthread_stop format: "pid %d"
kernel_kthread_stop_ret format: "ret %d"
kernel_sched_wait_task format: "pid %d stat

kernel_sched_try wakeup format: "pid %d sta

kernel_sched_schedule format: "prev_pid %d
kernel_sched_migrate_task format: "pid %d s
kernel_send_signal format: "pid %d signal %
kernel_process_free format: "pid %d"
kernel_process_exit format: "pid %d"
kernel_process_wait format: "pid %d"
kernel_process_fork format: "parent_pid %d
kernel_timer_itimer_expired format: "pid %d

. kernel_timer_itimer_set format: "which %d i

value_sec %ld value_usec %ld"

marker

marker

: kernel_timer_set format: "expires %lu funct

: kernel_timer_update_time format: "jiffies #

walltomonotonic_sec %ld walltomonotonic_nsec %ld"

marker

marker

marker

marker

marker

marker

: kernel_timer_timeout format: "pid %d"

: kernel_printk format: "ip %lu"

: kernel_vprintk format: "loglevel %c string
: kernel_module_free format: "name %s"

: kernel_module_load format: "name %s"

> mm_wait_on_page_start format: "pfn %lu bit_

kernel_sched_wakeup_new_task format: "pid %

ata %Iu"
ta %lu"
data %lu"

ata %Iu"

e %ld"

te %ld"

d state %ld"

next_pid %d prev_state %ld"
tate %ld dest_cpu %d"

d"

child_pid %d child_tgid %d"

nterval_sec %lId interval_usec %ld

ion %p data %lu"

8u%llu xtime_sec %Ild xtime_nsec %ld

%s ip %lu"

nr %d"

DRDC Valcartier TR 2008-300

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker:

marker

marker:

marker:

marker:

marker:

marker:

marker:

marker:

mm_wait_on_page_end format: "pfn %lu bit_nr
mm_huge_page_free format: "pfn %lu"
mm_huge_page_alloc format: "pfn %lu"
mm_handle_fault_entry format: "address %lu
mm_handle_fault_exit format: "res %d"
mm_page_free format: "order %u pfn %lu"
mm_page_alloc format: "order %u pfn %lu"
mm_swap_in format: "pfn %lu filp %p offset
mm_swap_out format: "pfn %lu filp %p offset
mm_swap_file_close format: "filp %p"
mm_swap_file_open format: "filp %p filename
fs_buffer_wait_start format: "bh %p"
fs_buffer_wait_end format: "bh %p"

fs_exec format: "filename %s"

fs_ioctl format: "fd %u cmd %u arg %Iu”
fs_open format: "fd %d filename %s"
fs_close format: "fd %u"

fs_lseek format: "fd %u offset %ld origin %
fs_llseek format: "fd %u offset %lld origin
fs_read format: "fd %u count %zu"

fs_write format: "fd %u count %zu"

: fs_pread64 format: "fd %u count %zu pos %ll

fs_pwrite64 format: "fd %u count %zu pos %l
fs_readv format: "fd %lu vlen %Iu"

fs_writev format: "fd %lu vien %Iu"

fs_select format: “fd %d timeout #8d%lId"
fs_polifd format: "fd %d"

ipc_msg_create format: "id %ld flags %d"

ipc_sem_create format: "id %ld flags %d"

DRDC Valcartier TR 2008-300

%d"

ip #p%ld write_access %d"

%lu"

%lu"

%s"

%u"

lu

79

68.
69.
70.
71.
72.
73.

74.

75.

76.
77.
78.

79.

80

marker:

marker:

marker:

marker:

marker:

marker:

marker:

ipc_shm_create format: "id %ld flags %d"
input_event format: "type %u code %u value
net_dev_xmit format: "skb %p protocol #2u%h
net_dev_receive format: "skb %p protocol #2
net_insert_ifa_ipv4 format: "label %s addre
net_del_ifa_ipv4 format: "label %s address

net_insert_ifa_ipv6 format: "label %s al5 #

all #1x%c al0 #1x%c a9 #1x%c a8 #1x%c a7 #1x%c ab #
#1x%c al #1x%c a0 #1x%c"

marker:

net_insert_ifa_ipv6 format: "label %s al5 #

all #1x%c al0 #1x%c a9 #1x%c a8 #1x%c a7 #1x%c ab #
#1x%c al #1x%c a0 #1x%c"

marker:

marker:

marker:

marker:

net_socket_sendmsg format: "sock %p family
net_socket_recvmsg format: "sock %p family
net_socket_create format: "sock %p family %

net_socket_call format: "call %d a0 %lu"

%d"

u%hu"
ss #4u%u"
#4u%u"

1x%c ald #1x%c al3 #1x%c al2 #1x%c
1x%c a5 #1x%c a4 #1x%c a3 #1x%c a2

1x%c ald #1x%c al3 #1x%c al2 #1x%c
1x%c a5 #1x%c a4 #1x%c a3 #1x%c a2

%d type %d protocol %d size %zu"
%d type %d protocol %d size %zu"

d type %d protocol %d fd %d"

DRDC Valcartier TR 2008-300

Annex D The micro_httpd application

Following pages contain a listing of th@cro_httpdapplication.

DRDC Valcartier TR 2008-300

81

D.1

Source code of the micro_httpd application

The source code of tmicro_httpdapplication is listed “as is” in this section.

1.

10.
11.
12.
13.
14.
15.
16.
17.

18.

82

/* micro_httpd - really small HTTP server

** Copyright © 1999,2005 by Jef Poskanzer <jef@mail
** All rights reserved.

** Redistribution and use in source and binary form

** modification, are permitted provided that the fo

** are met:

** 1. Redistributions of source code must retain th
**notice, this list of conditions and the follo

** 2. Redistributions in binary form must reproduce
**notice, this list of conditions and the follo

** documentation and/or other materials provided

** THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONT
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BU
** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNES
** ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR

** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, E

** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREM

** OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR B

.acme.com>.

s, with or without

llowing conditions

e above copyright

wing disclaimer.

the above copyright

wing disclaimer in the

with the distribution.

RIBUTORS TAS IS" AND

T NOT LIMITED TO, THE

S FOR A PARTICULAR PURPOSE
CONTRIBUTORS BE LIABLE
XEMPLARY, OR CONSEQUENTIAL
ENT OF SUBSTITUTE GOODS

USINESS INTERRUPTION)

DRDC Valcartier TR 2008-300

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, W

** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHE
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* SUCH DAMAGE.

*

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <dirent.h>

#include <ctype.h>

#include <time.h>

#include <sys/stat.h>

#define SERVER_NAME "micro_httpd"

#define SERVER_URL "http://www.acme.com/software/mi
#define PROTOCOL "HTTP/1.0"

#define RFC1123FMT "%a, %d %b %Y %H:%M:%S GMT"
[* Forwards. */

static void file_details(char* dir, char* name);

static void send_error(int status, char* title, ch

static void send_headers(int status, char* title,

static char* get_mime_type(char* name);

DRDC Valcartier TR 2008-300

HETHER IN CONTRACT, STRICT
RWISE) ARISING IN ANY WAY

OF THE POSSIBILITY OF

cro_httpd/"

ar* extra_header, char* text);

char* extra_header, char* mime_type, off_t length,

83

time_t mod);

42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
84

static void strdecode(char* to, char* from);
static int hexit(char c);

static void strencode(char* to, size_t tosize, con

/i
int main(int argc, char** argv)
{
char line[10000], method[10000], path[10000], prot
char* file;
size_tlen;
int ich;
struct stat sb;
FILE* fp;
struct dirent **dl;
inti, n;
if (argc!=2)
send_error(500, “Internal Error", (char*) 0, "Co
if (chdir(argv[1])<0)
send_error(500, "Internal Error", (char*) 0, "Co
if (fgets(line, sizeof(line), stdin) == (char*)
send_error(400, "Bad Request", (char*) 0, "No re
if (sscanf(line, "%["] %["] %[]", method, pa
send_error(400, "Bad Request", (char*) 0, "Can't

st char* from);

FkkkKkkk

0col[10000], idx[20000], location[20000], command[2

nfig error - no dir specified.");

nfig error - couldn't chdir().");
0)

quest found.");
th, protocol) 1=3)

parse request.");

DRDC Valcartier TR 2008-300

0000];

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

while (fgets(line, sizeof(line), stdin) != (cha ™) 01
if (strcmp(line, "\n") == 0 || strcmp(line, " \n\n")==0)
break;
}
if (strcasecmp(method, "get") !'=0)
send_error(501, "Not Implemented"”, (char*) 0, "T hat method is not implemented.");
if (path[0] !="7")
send_error(400, "Bad Request", (char*) 0, "Bad f ilename.");
file = &(path[1]);
strdecode(file, file);
if (file[0] =="0")
file ="./";

len = strlen(file);

if (file[0] =="/"|| strcmp(file, "..") ==0 strnemp(file, "../", 3) == 0 || strstr(file, "
ol str((:mp[(fiIe[Ie|r|1-3]), P(')==0)) | ! p() I (
send_error(400, "Bad Request", (char*) 0, "llleg al filename.");

if (stat(file, &sb)<0)
send_error(404, "Not Found", (char*) 0, "File no t found.");
if (S_ISDIR(sh.st_mode) {

if (file[len-1] ="'){

(void) snprintf(location, sizeof(location), "Loc ation: %s/", path);
send_error(302, "Found", location, "Directories must end with a slash.");
}
(void) snprintf(idx, sizeof(idx), "%sindex.html" , file);

DRDC Valcartier TR 2008-300 85

[.I") 1= (char¥)

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100

101.

102.

103.

104.

105.

106.

107.

108.

109.

86

if (stat(idx, &sb)>=0)

file = idx;
goto do_file;
}
send_headers(200, "Ok", (char*) 0, "text/html", -1, sb.st_mtime);
%s</h4>\n<pr((\e/g\ig), i grifri}g ; "<html><head><title>Index of %s</t itte></head>\n<body bgcolor=\"#99cc99\"><h4>Index o

n = scandir(file, &dl, NULL, alphasort);
if(n<0)

perror("scandir");
else

for (i=0;i<n;++i)

file_details(file, dI[i]->d_name);

. SERVER_NAME) (void) printf("</pre>\n<hr>\n<address>%s</address>\n</body></htmI>\n", SERVER_UR
}
else{
do_file:
fp = fopen(file, "r");
if (fp == (FILE*) 0)
send_error(403, "Forbidden", (char*) 0, "File i s protected.");
send_headers(200, "Ok", (char*) 0, get_mime_type (file), sh.st_size, sh.st_mtime);

while ((ich = getc(fp)) != EOF)

putchar(ich);

DRDC Valcartier TR 2008-300

110. }

111. (void) fflush(stdout);

112. exit(0);

113. }

114. Il S——

115. static void file_details(char* dir, char* name)

116. {

117. static char encoded_name[1000];

118. static char path[2000];

1109. struct stat sb;

120. char timestr[16];

121. strencode(encoded_name, sizeof(encoded_name), ham e);

122. (void) snprintf(path, sizeof(path), "%s/%s", dir, name);

123. if (Istat(path, &sb)<0)

124. (void) printf("%-32.32s ?? ?\n", encoded_name, name);
125. else {

126. (void) strftime(timestr, sizeof(timestr), "%d%b% Y %H:%M", localtime(&sb.st_mtime));
127. sbst_size) (void) printf("%-32.32s %1 5s %14lld\n", encoded_name, name, timestr, (int64_t
128. }

129. }

130. Il —

131. static void send_error(int status, char* title, ch ar* extra_header, char* text)

132. {

DRDC Valcartier TR 2008-300 87

133.

134

" title, status, titl

135.

136.

137.

138.

139.

140.

141.

142.

}

{

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

88

send_headers(status, title, extra_header, "text/h

(v)oid) printf("<htmI><head><title>%d %s</title></
€)

(void) printf("%s\n", text);
(void) printf("<hr>\n<address>%s</
(void) fflush(stdout);

exit(1);

1l

static void send_headers(int status, char* title,

time_t now;
char timebuf[100];
(void) printf("%s %d %s\015\012", PROTOCOL, statu
(void) printf("Server: %s\015\012", SERVER_NAME)
now = time((time_t*) 0);
(void) strftime(timebuf, sizeof(timebuf), RFC1123
(void) printf("Date: %s\015\012", timebuf);
if (extra_header != (char*) 0)

(void) printf("%s\015\012", extra_header);
if (mime_type != (char*) 0)

(void) printf("Content-Type: %s\015\012", mime_t

if (length>=0)

tml", -1, -1);
head>\n<body bgcolor=\"#cc9999\"><h4>%d %s</h4>\n", status,
a></address>\n</body></htmI>\n", SERVER_URL, SERVER _NAME);

Fkkkkkkk

char* extra_header, char* mime_type, off_t length,

s, title);

FMT, gmtime(&now));

ype);

DRDC Valcartier TR 2008-300

time_t mod)

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

}

1

(void) printf("Content-Length: %IId\015\012", (i nt64_t) length);

if (mod != (time_t) -1 ¥
(void) strftime(timebuf, sizeof(timebuf), RFC112 3FMT, gmtime(&mod));
(void) printf("Last-Modified: %s\015\012", timeb uf);

}

(void) printf("Connection: close\015\012");

(void) printf("\015\012");

FkkkFkkk

static char* get_mime_type(char* name)

{

char* dot;

dot = strrchr(name, '.");

if (dot == (char*) 0)
return “text/plain; charset=is0-8859-1";

if (stremp(dot, ".html") == 0 || strcmp(dot, " .htm")==0)
return "text/html; charset=iso0-8859-1";

if (strcmp(dot, ".jpg") == 0 || strcmp(dot, ". jpeg")==0)

return "image/jpeg";

if (stremp(dot, ".gif") ==0)
return “image/gif";

if (strcmp(dot, ".png")==0)

DRDC Valcartier TR 2008-300 89

178. return "image/png";

179. if (strcmp(dot, ".css")==0)

180. return "text/css";

181. if (strcmp(dot, ".au")==0)

182. return "audio/basic";

183. if (strcmp(dot, ".wav")==0)

184. return "audio/wav";

185. if (strcmp(dot, ".avi")==0)

186. return "video/x-msvideo";

187. if (stremp(dot, ".mov") == 0 || strcmp(dot, ". qt')==0)
188. return "video/quicktime";

189. if (strcmp(dot, ".mpeg") == 0 || strcmp(dot, " .mpe")==0)
190. return "video/mpeg";

191. if (stremp(dot, ".vrml") == 0 || strcmp(dot, " wrl*)==0)
192. return "model/vrml";

193.

194. if (stremp(dot, ".midi") == 0 || strcmp(dot, " .mid")==0)
195. return "audio/midi";

196. if (strcmp(dot, ".mp3")==0)

197. return "audio/mpeg";

198. if (strcmp(dot, ".0gg")==0)

199. return "application/ogg";

200. if (strcmp(dot, ".pac")==0)

90

DRDC Valcartier TR 2008-300

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

return "application/x-ns-proxy-autoconfig";
return "text/plain; charset=iso-8859-1";

}

Vi FkkkFkkk

static void strdecode(char* to, char* from)

{
for (; *from !="0"; ++to, ++from) {
if (from[0] == '%"' && isxdigit(from[1]) && isx
*to = hexit(from[1]) * 16 + hexit(from[2]);
from +=2;
}
else
*to = *from;
}
*to =\0";
}
Il S—

static int hexit(char c)
{
if (c>="0'&&c<="9")
return c - ‘0"
if(c>='a'&&c<="'f)

return c - 'a’' + 10;

DRDC Valcartier TR 2008-300

digit(from[2])) {

91

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245,

246.

92

if (c>="A'&& c<="F)

return c - ‘A’ + 10;

return O; /* shouldn't happen, we're guarded by i sxdigit() */
}
Il S——
static void strencode(char* to, size_t tosize, con st char* from)
{
int tolen;
for (tolen = 0; *from !="\0' && tolen + 4 < tosi ze; ++from) {
if (isalnum(*from) || strchr("/_.-~", *from) ! =(char*) 0) {
*to = *from;
++t0;
++tolen;
}
else
{
(void) sprintf(to, "%%%02x", (int) *from & Oxff);
to +=3;
tolen += 3;
}
}
*to ="\0';
}

DRDC Valcartier TR 2008-300

D.2 First level abstraction of the application

int main(...)

{

if (...)

send_error(...);
chdir(...);
if (...)

send_error(...);
fgets(...);
if (...)

send_error(...);
if (...)

send_error(...);
fgets(...);
while (...)

fgets(...);
if (...)

send_error(...);
if (...)

send_error(...);
if (...)

send_error(...);
stat(...);
if (...)

send_error(...);

if(...)

if(...)
send_error(...);
stat(...)

if(...)

goto do_file;
send_headers(...);
scandir(...);

it(...)

else
for(...)

perror(...);

file_details(...);
else
do_file:

DRDC Valcartier TR 2008-300

micro_httpd

93

94

fopen(...);

if(...)

send_error(...);
send_headers(...);
while (...)

putchar(...);

}
fflush(...);
exit(...);

DRDC Valcartier TR 2008-300

Annex E Example of an execution trace

An example of an execution trace involving the ingrnof themicro_httpdapplication in the user space of the Linux keinethown
below. Comments (“#") were added directly to ttitig to help the reader follow the suite of evefitse reader may refer to Annex D
for the listing of thamicro_httpdapplication.

It should be noted that this example is intenddg tingive an idea of the content of a trace. Otlwaxcution traces involving different
focuses and resolutions can be produced by acty/de-activatingLTTng probes in the system. All examples used througliist
document originate from this listing.

1. HHHHEHAHE R R R R R R T THHHHE R
2. # http request from “micro_httpd” server (mounted o n xinets): "GET /index.html".
3. HHHHHEHHEHH A R R A R THHHHE I TR R

4. list_process_state: 5270.943605493 (/tmp/trace-ht!t;p d/control/processes_0), 4974, 0, , , 0, 0x0, MODE_U NKNOWN { pid = 4566,
parent_pid =1, name = "xinetd", type = 0, mode = , submode = 0, status =5, tgid = 4566 }

5 #

6. # File descriptors for xinetd

7. # Note that stdin, stdout and stderr point toward ' /dev/null' (xinetd is a deamon)
8. # socket:[9854] (fd=7) is possibly the listening so cket (port 80)
9. list_file_descriptor: 5270.945015874 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename =

"Jdev/nall”, pid = 4566, fd = 0 }

10. list_file_descriptor: 5270.945017342 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename =
"/dev/null", pid = 4566, fd =1}

11. list_file_descriptor: 5270.945018858 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename =
"/dev/null", pid = 4566, fd =2}

12. list_file_descriptor: 5270.945021038 (/tmp/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename
"pipe:[9851]", pid = 4566, fd = 3 }

list_file_descriptor: 5270.945022}718 (/tmpl/trace-ht tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U NKNOWN { filename

"pipe:[9851]", pid = 4566, fd = 4

DRDC Valcartier TR 2008-300 95

14.

15.

16.
17.
18.
19.
20.
21.

22.

23.
24.
25.
26.
27.

28.

29.
30.

31.

32.

33.

34,
96

list_file_descriptor: 5270.945024729 (/tmp/trace-ht
"sockef]9860]", pid = 4566, fd =5}

list_file_descriptor: 5270.945026921 (/tmpitrace-ht
"socket]9854]", pid = 4566, fd =7 }

BHHBHHH A

Beginning of the execution trace.

xinet was waiting, it just received a connexion o

BHHHHHH R R R

#
xinetd returns from sys_select. It is back on the

kernel_sched schedule: 5277.041301367 (/tmp/trace-h
next_pid = 4566, prev_state =1}

fs_select: 5277.041308682 (/tmp/trace-httpd/cpu_0),
fs_select: 5277.041310786 (/tmp/trace-httpd/cpu_0),
kernel_arch_syscall_exit: 5277.041314293 (/tmpl/trac
#

xinetd accepts the connexion (sys_accept)

kernel_arch_syscall_entry: 5277.041321095 (/tmp/tra

102 [sys_socketcalIJ?OxO%deO], ip = 0xb8046424 }
net_socket_call: 5277.041322235 (/tmpi/trace-httpd/c
kernel_arch_syscall_exit: 5277.041333764 (/tmpl/trac

kernel_arch_syscall_entry: 5277.041342886 (/tmp/tra
[sys_time+0x0/0x307; ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.041344268 (/tmp/trac
1211549623}

#

xinetd carries on a fork(), the CPU is available

tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U

tpd/cpu_0), 4974, 4974, lttctl, , 4973, 0x0, MODE_U

BHHBHHHHHHHHH AR

n port 80 (HTTP)

BHEHBHHHH R

runqueue and the scheduler makes it back running.

ttpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL

4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd = 3, ti
4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd =5, ti

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

pu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { call
e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

for the process that was just created

DRDC Valcartier TR 2008-300

NKNOWN { filename

NKNOWN ({ filename

{ prev_pid = 3689,

meout = -1}
meout = -1}

MODE {ret=1}

ALL { syscall_id =

=5,a0=5}
MODE {ret=6}

ALL { syscall_id = 13

MODE { ret =

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

kernel_arch_syscall ent8/: 5277.041364003_(/tmp/tra
120 [sys_cloné+0x07/0x40], ip = 0xb8046424 }

kernel_process_fork: 5277.041457157 (/tmp/trace-htt
parent_pid = 4566, child_pid = 4979, child_tgid = 4

kernel_sched_wakeup_new_task: 5277.041459577 (/tmp/
state =0}

kernel_sched_schedule: 5277.041466725 (/tmp/trace-h
next_pid = 4979, prev_state =0}

kernel_arch_syscall_exit: 5277.041486672 (/tmp/trac
#
xinetd carries on the signal treatment setup for

kernel_arch_syscall_entry: 5277.041836096 (/tmp/tra
174 [sys_rt_“sigaction+0x0/0xa0], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.041840053 (/tmp/trac

kernel_arch_syscall_entry: 5277.041842114 (/tmp/tra
174 [sys_rt_sigaction+0x0/0xa0], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.041843332 (/tmpl/trac

kernel_arch_syscall_entry: 5277.041845174 (/tmp/tra
174 [sys_rt_“sigaction+0x0/0xa0], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.041846569 (/tmp/trac

kernel_arch_syscall_entry: 5277.041848351 (étmp/tra
174 [sys_rt_sigaction+0x0/0xa0], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.041849365 (/tmp/trac

kernel_arch_syscall_entry: 5277.041865837 (/tmpl/tra
175 [sys_rt_“sigprocmask+0x0/0x110], ip = 0xb8046424

kernel_arch_syscall_exit: 5277.041868008 (/tmp/trac
#

xinetd closes useless file descriptors (for “micr

DRDC Valcartier TR 2008-300

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC
pd/control/processes_0), 4566, 4566, xinetd, , 1, O

979}

trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, S

ttpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCA

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

the new process

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

%e-httpd/cpu_O), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

o_httpd”)

97

ALL { syscall_id =

X0, SYSCALL {

YSCALL { pid = 4979,

LL { prev_pid = 4566,

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

54.

55.
56.

57.

58.
59.

60.

61.
62.

63.

64.
65.

66.

67.
68.
69.
70.

71.

72.

73.

98

kernel_arch_syscall_entry: 5277.041882743 (/tmp/tra
6 [sys_closé+0x0/0x110], ip = 0xb8046424 }

fs_close: 5277.041884668 (/tmp/trace-httpd/cpu_0),
kernel_arch_syscall_exit: 5277.041886529 (/tmp/trac

kernel_arch_syscall_entry: 5277.041888033 (/tmp/tra
6 [sys_close+0x0/0x110], ip = 0xb8046424 }

fs_close: 5277.041888832 (/tmp/trace-httpd/cpu_0),
kernel_arch_syscall_exit: 5277.041889729 (/tmpl/trac

kernel_arch_syscall_entry: 5277.041891157 (/tmpl/tra
6 [sys_close+0x0/0x110]; ip = 0xb8046424 }

fs_close: 5277.041891919 (/tmp/trace-httpd/cpu_0),
kernel_arch_syscall_exit: 5277.041893175 (/tmpl/trac

kernel_arch_syscall_entry: 5277.041894615 (/tmp/tra
6 [sys_close+0x0/0x110], ip = 0xb8046424 }

fs_close: 5277.041895357 (/tmp/trace-httpd/cpu_0),
kernel_arch_syscall_exit: 5277.041896043 (/tmp/trac

kernel_arch_syscall_entry: 5277.041897466 (/tmp/tra
6 [sys_closé+0x0/0x110], ip = 0xb8046424 }

fs_close: 5277.041898192 (/tmp/trace-httpd/cpu_0),
#

The process is currently “root”. Process’s UID an
kernel_arch_syscall_exit: 5277.041898870 (/tmp/trac

kernel_arch_syscall entrg: 5277.041928143 E/tmp/tra
214 [sys_selgid+0x07/0x100], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.041931343 (/tmpl/trac

kernel_arch_syscalI_entr)/: 5277.041956887 gtmp/tra
206 [sys_setgroups+0x0/0x100], ip = 0xb8046424 }

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =3}
e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =4}
e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =0}
e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =1}
e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =2}

d PID are replaced by “nobody”.
e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

DRDC Valcartier TR 2008-300

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

kernel_arch_syscall_exit: 5277.041960633 (/tmp/trac

kernel_arch_syscall entrg: 5277.041964819 ZS/tmp/tra
213 [sys_setuid+0x0/0x150], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.044378401 (/tmp/trac
#
getpeername()

kernel_arch_syscall_enti

X ?/: 5277.044582578 gtmp/tra
102 [sys_socketcall+0x0/0x2d0], ip = 0xb804

424}
net_socket_call: 5277.044584667 (/tmp/trace-httpd/c
kernel_arch_syscall_exit: 5277.044588931 (/tmpl/trac
#

getsockname()

kernel_arch_syscalI_ent?/: 5277.044593305 gtmp/tra
102 [sys_socketcall+0x0/0x2d0], ip = 0xb8046424 }

net_socket_call: 5277.044594417 (/tmp/trace-httpd/c
kernel_arch_syscall_exit: 5277.044595992 (/tmp/trac
#

Read the file “hosts.allow”; is the connexion sho

kernel_arch_syscall_entry: 5277.044662474 (/tmp/tra
5 [sys_open+0x0/0x40], ip = 0xb8046424 }

fs_open: 5277.044684136 (/tmp/trace-httpd/cpu_0),
"/etc/hosts.allow" }

kernel_arch_syscall_exit: 5277.044685328 (/tmp/trac

kernel_arch_syscall entgl: 5277.044736861 (/tmp/tra
197 [sys_fstat64+0x0/0x30], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.044740104 (/tmpl/trac

DRDC Valcartier TR 2008-300

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

pu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { c

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

pu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL { c

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

uld be accepted?

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

979, 4979, xinetd, , 4566, 0x0, SYSCALL { fd

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

99

0,

f

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

YSCALL { syscall_id =

all=7,a0=6}

ER_MODE {ret=0}

YSCALL { syscall_id =

all=6,a0=6}

ER_MODE {ret=0}

YSCALL { syscall_id =

ilename

ER_MODE {ret=0}

YSCALL { syscall_id =

ER_MODE {ret=0}

94. kernel_arch_syscall_entry: 5277.044747184 E(tmp/tra
192 [sys_mmap2+0x0/0xe0], ip = 0xb8046424 }

95. kernel_arch_syscall_exit: 5277.044755413 (/tmp/trac
1207676928}

96. kernel_arch_syscall_entry: 5277.044757526 (/tmp/tra
3 [sys_read+0x0/0xa0], ip = 0xb8046424 }

97. fs_read: 5277.044759137 (/tmpl/trace-httpd/cpu_0), 4

98. kernel_timer_set: 5277.044781687 g/tmg/trace—httpd/
function = 0xe1037100, data = 3753167648 }

99. kernel_arch_syscall_exit: 5277.044800527 (/tmp/trac

100. kernel_arch_syscall_ent% 1?%]77..04409%4501864(/tmp/tra
X ,ip = 0x

syscall_id =6 [sys_close+0x0
101. fs_close: 5277.044946441 (/tmpl/trace-httpd/cpu_0),

102. } kernel_arch_syscall_exit: 5277.044952676 (/tmpl/trac

103. kernel_arch_syscall_entry: 5277.044954851 ZE/tmp/tra
syscall_id =91 [sys_munmap+0x0/0x60], ip = 0xb8046

104. } kernel_arch_syscall_exit: 5277.044967635 (/tmpl/trac

105. kernel_arch_syscall entrg: 5277.045056131 (/tmpltra
syscall_id =221 [sys_fcnfl64+0x0/0xc0], ip = 0xb80

106. #

107. # Close the listening socket (port 80).

108.) kernel_arch_syscall_exit: 5277.045059620 (/tmp/trac

109 yscal o fays Hoe Fox0Ix110], i = OxbBodBa. TP
110. fs_close: 5277.045081321 (/tmp/trace-httpd/cpu_0),
111. #

112. # Process’s input/output redirection. (stdin, stdou

100

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd=0, c

cpu_0), 4979, 4979, xinetd, , 4566, 0x0, SYSCALL {

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566,

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =0}

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566,

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566,
46424 }

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, Ox0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =7}

t et stderr toward the socket).

DRDC Valcartier TR 2008-300

YSCALL { syscall_id =

ER_MODE { ret = -

YSCALL { syscall_id =

ount = 4096 }

expires = 1488300,

ER_MODE {ret =98}

YSCALL {

ER_MODE {ret = 0

YSCALL {

ER_MODE { ret = 0

YSCALL {

ER_MODE {ret = 0

YSCALL {

113.) kernel_arch_syscall_exit: 5277.045082970 (/tmp/trac

114. kernel_arch_syscall_entry: 5277.045084916 E/tmp/tra
syscall_id =63 [sys_dup2+0x0/0x120], ip = 0xb8046

115.) kernel_arch_syscall_exit: 5277.045086316 (/tmp/trac

116. kernel_arch_syscall_entry: 5277.045087717 E/tmp/tra
syscall_id =63 [sys_dup2+0x0/0x120], ip = 0xb8046

117.) kernel_arch_syscall_exit: 5277.045088524 (/tmp/trac

118. kernel_arch_syscall_entry: 5277.045089876 ZE/tmp/tra
syscall_id =63 [sys_dupZ+0x0/0x120], ip = 0xb8046.

119. } kernel_arch_syscall_exit: 5277.045090680 (/tmp/trac

120. #
121. # Impose a resource limit.
122. kernel_arch_syscall_entry: 5277.045098086 (/tmp/tra

syscall_id =75 [sys_setrlimit+0x0/0x210], ip = Oxb

123. } kernel_arch_syscall_exit: 5277.045100301 (/tmp/trac

124. #

125. # Close the original socket file descriptor (socket

126. ker_nel_arch_syscalI_entr)/: 5277.045102124 (/tmpltra
syscall_id =6 [sys_close+0x0/0x110], ip = 0xb80464

127. fs_close: 5277.045102888 (/tmp/trace-httpd/cpu_0),

128. } kernel_arch_syscall_exit: 5277.045103944 (/tmpl/trac

129. #

130. # Launch “micro_httpd”

DRDC Valcartier TR 2008-300

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US
ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US
ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US
ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

24}

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S
8046424 }

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

’s redirection toward stdin/stdout was already done

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =6 }

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

101

ER_MODE {ret = 0

YSCALL

ER_MODE {ret=0

YSCALL

ER_MODE {ret=1

YSCALL

ER_MODE {ret =2

YSCALL

ER_MODE {ret=0

YSCALL

ER_MODE {ret=0

131.

132.
497

133.

134.
135.

136.

137.

138.
139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

102

kernel_arch_syscall_entry: 5277.045111538 (/tmpi/tra
syscall_id =66 [sys_setsid+0x0/0xd0], ip = 0xb8046

9k}ernel_arch_syscalI_exit: 5277.045115067 (/tmpl/trac

kernel_arch_syscall_entry: 5277.045125131 (/tmpl/tra
syscall_id =11 [sys_execve+0x0/0x80], ip = 0xb8046

fs_close: 5277.045319969 (/tmp/trace-httpd/cpu_0),
fs_close: 5277.045394854 (/tmp/trace-httpd/cpu_0),

fs_exec: 5277.045421309 (/tmp/trace-httpd/control/p

SYSCALL { filename = "/usr/local/sbin/micro_httpd"

kernel_arch_syscall_exit: 5277.045424721 (/tmpl/trac
0x0, USER_MODE{ret =0}

#
Initialize “micro_httpd”. Load libraries (.s0).

kernel arch_syscall__entQ/: 5277.045473574 gtmp/tra
0x0, SYSCALL {'syscall_id = 45 [sys_brk+0x0/0x100],

kernel_arch_syscall_exit: 5277.045474938 (/tmp/trac
0x0, USER_MODE{ ret =134524928 }

kernel arch_syscall__ent%/: 5277.045553130 (/tmpltra
0x0, SYSCALL {'syscall_id = 33 [sys_access+0x0/0x30

kernel_arch_syscall_exit: 5277.045561376 (/tmp/trac
0x0, USER_MODE {ret =-2 }

kernel arch_syscall__entg/: 5277.045597090 (]/tmp/tra
0x0, SYSCALL {syscall_id = 5 [sys_open+0x0/0x40],

_ fs_open: 5277.045610405 (/tmp/trace-httpd/cpu_0), 4
3, filename = "/etc/Id.so.cache" }

kernel_arch_syscall_exit: 5277.045611506 (/tmp/trac
0x0, USER_MODE {ret =3}

kernel arch_syscall_ent?/: 5277.045613448 gtmp/tra
0x0, SYSCALL {syscall_1d = 197 [sys_fstat64+0x0/0x

kernel_arch_syscall_exit: 5277.045616316 (/tmp/trac
0x0, USER_MODE{ret =0}

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, S

e-httpd/cpu_0), 4979, 4979, xinetd, , 4566, 0x0, US

ce-httpd/cpu_0), 4979, 4979, xinetd, , 4566, Ox0, S

4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =5}
4979, 4979, xinetd, , 4566, 0x0, SYSCALL {fd =3}

rocesses_0), 4979, 4979, /usr/local/sbin/micro_http

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce—httgd/cpu_O), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb805bechb }

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce—httgd/c&)u 0), 4979, 4979, /usr/local/sbin/micro_
], ip = 0xb805c761 }

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb805c624 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httgd/cpu_o, 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb805c5ee

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

DRDC Valcartier TR 2008-300

YSCALL {

ER_MODE { ret =

YSCALL {
d, , 4566, 0x0,
ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,

, SYSCALL {fd =

ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,

149.

150.

151.

152. 3
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.

165.

kernel arch_syscall__ent?/: 5277.045618160 Sltmp/tra
0x0, SYSCALL {syscall_1id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.045637317 (/tmpl/trac
0x0, USER_MODE{ ret =-1207734272 }

kernel arch_syscall_entgl: 5277.045639201 (/tmp/tra
0x0, SYSCALL {syscall_Td = 6 [sys_close+0x0/0x110]

fs_close: 5277.045640113 (/tmp/trace-httpd/cpu_0),

kernel_arch_syscall_exit: 5277.045641698 (/tmp/trac
0x0, USER_MODE {ret=0}

kernel arch_syscall__entg/: 5277.045699289 (]/tmp/tra
0x0, SYSCALL {syscall_id = 5 [sys_open+0x0/0x40],

_ fs_open: 5277.045711045 (/tmp/trace-httpd/cpu_0), 4
3, filename = "/lib/libc.s0.6" }

kernel_arch_syscall_exit: 5277.045712189 (/tmp/trac

0x0, USER_MODE {ret =3}

kernel arch_syscall_ent%/: 5277.045714048 (/tmpltra
0x0, SYSCALL {syscall_Td = 3 [sys_read+0x0/0xa0

fs_read: 5277.045715671 (/tmp/trace-httpd/cpu_0), 4
3,count=512}

kernel_arch_syscall_exit: 5277.045723748 (/tmpl/trac
0x0, USER_MODE { ret =512 }

kernel arch_syscall_ent?/: 5277.045733316 S/tmp/tra
0x0, SYSCALL {syscall_Td = 197 [sys_fstat64+0x0/0x

kernel_arch syscall__exit: 5277.045734639 (/tmpltrac

0x0, USER_MODE{ret =0}

kernel arch_syscall_ent?/: 5277.045737333 S/tmp/tra
0x0, SYSCALL {syscall_id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.045740834 (/tmpl/trac
0x0, USER_MODE{ ret =-1207738368 }

kernel arch_syscall_ent?/: 5277.045763122 S/tmp/tra
0x0, SYSCALL {'syscall_id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.045766827 (/tmp/trac
0x0, USER_MODE { ret =-1209049088 }

DRDC Valcartier TR 2008-300

. ce—httgd/cpu 0), 4979, 4979, /usr/local/sbin/micro_
], ip = 0xb805¢c8b3 |

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
, Ip = 0xb805c65d §

4979, 4979, /usr/local/sbin/micro_httpd, , 4566, Ox
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb805c624 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
ip = 0xb805c6a4 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httgd/cpu_O}, 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb805c5ee

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httgd/cpu 0), 4979, 4979, /usr/local/shin/micro_
], ip = 0xb805c8b3 T

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httgd/cpu 0), 4979, 4979, /usr/local/shin/micro_
], ip = 0xb805c8b3 T

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

103

httpd, , 4566,

ttpd,

4566,

httpd, , 4566,

0, SYSCALL {fd =

ttpd,

httpd, ,

4566,

4566,

, SYSCALL {fd =

ttpd,

httpd, ,

4566,

4566,

, SYSCALL { fd =

ttpd,

httpd, ,

ttpd,

httpd, ,

ttpd,

httpd, ,

ttpd,

4566,

4566,

4566,

4566,

4566,

4566,

4566,

166. kernel_arch_syscall ent?/925277 .045768633 Sltmp/tra ce-| httgd/cpu 0), 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566,

0x0, SYSCALL {syscall_id [sys_mmap2+0x0/0xe0], ip = 0xb805c8b3

167. kernel_arch_syscall_exit: 5277.045781522 (/tmpltrac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE{ ret =-1207762944 }

168. kernel_arch_syscall ent?/ 5277.045799596 S/tmp/tra ce- httgd/cpu 0), 4979, 4979, /usr/local/shin/micro_ httpd, , 4566,
0x0, SYSCALL {syscall_id = 192 [sys_mmap2+0x0/0xe0], ip = 0xb805c8b3

169. kernel_arch_syscall_exit: 5277.045804336 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE{ ret =-1207750656 }

170. kernel_arch_syscall entgl 5277.045826075 (/tmp/tra ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_ httpd, , 4566,
0x0, SYSCALL {syscall_id [sys_close+0x0/0x110] ,ip = 0xb805¢c65d }~

171. 33 fs_close: 5277.045826953 (/tmp/trace-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566, Ox 0, SYSCALL {fd =

172. kernel_arch syscall eX|t 5277.045827976 (/tmpl/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE{ret=0}

173. kernel_arch_syscall ent?/ 5277.045878785 S/tmp/tra ce- httgd/cpu 0), 4979, 4979, /usr/local/sbhin/micro_ httpd, , 4566,
0x0, SYSCALL {'syscall_Td = 192 [sys_mmap2+0x0/0xe0], ip = 0xb805c8hb3

174. kernel_arch_syscall_exit: 5277.045882269 (/tmp/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE{ ret =-1209053184 }

175. kernel_arch_syscall entgf 5277.045897587 (/tmpltra ce-| httpd/cpu O% 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566,
0x0, SYSCALL {syscall_id = 243 [sys_set_thread_are a+0x0/0x30], ip = 0xb8049180 }

176. kernel_arch_syscall_exit: 5277.045900276 (/tmpl/trac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE{ ret =0

177. kernel_arch_syscall ent?/ 5277.046140617 8tmp/tra ce- httpd/cd)u (g 4979, 4979, /usr/local/sbin/micro_ httpd, , 4566,
0x0, SYSCALL {syscall_id = 125 [sys_mprotect+0x0/0 x240], ip = 0xb805¢934 }

178. kernel_arch syscall exit: 5277.046150040 (/tmpltrac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE {ret =0}

179. kernel_arch_syscall entg 5277.046162358 S/tm /tra ce- httgd/cpu 0), 4979, 4979, /usr/local/shin/micro_ httpd, , 4566,
0x0, SYSCALL {syscall_id = 91 [sys_munmap+0x0/0x60], ip = 0xb805c8f1

180. kernel_arch syscall eX|t 5277.046178697 (/tmpltrac e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h ttpd, , 4566,
0x0, USER_MODE{ret =0}

181. #

182. # micro_httpd carries on a chdir() in order to move into the directory containing server’s files

104 DRDC Valcartier TR 2008-300

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

kernel arch_syscall__ent?/: 5277.046274494 ((/)tmp/tra
0x0, SYSCALL {syscall_id = 12 [sys_chdir+0x0/0x70]

kernel_arch_syscall_exit: 5277.046283568 (/tmp/trac
0x0, USER_MODE{ret =0}

#

Read stdin (HTTP request through the socket)

kernel arch_syscall__ent?/: 5277.046327583 gtmp/tra
0x0, SYSCALL {syscall_id = 197 [sys_fstat64+0x0/0x

kernel_arch syscall__exit: 5277.046331186 (/tmpltrac

0x0, USER_MODE{ret =0}

kernel arch_syscall_ent?/: 5277.046339051 S/tmp/tra
0x0, SYSCALL {syscall_id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.046343087 (/tmpl/trac
0x0, USER_MODE{ ret =-1207676928 }

kernel arch_syscall_entg/: 5277.046345355 f/tmp/tra
0x0, SYSCALL {syscall_Td = 3 [sys_read+0x0/0xa0

fs_read: 5277.046346592 (/tmp/trace-httpd/cpu_0), 4
0, count=1024 }

kernel_arch_syscall_exit: 5277.046372029 (/tmp/trac
0x0, USER_MODE{ ret =405}

#
fstat() is triggered (probably on the "index.html

kernel arch_syscall__ent?/: 5277.046513347 (/tmpltra
0x0, SYSCALL {syscall_1id = 195 [sys_stat64+0x0/0x3

kernel_arch_syscall_exit: 5277.046519411 (/tmp/trac
0x0, USER_MODE {ret=0}

#
The Advance Programmable Interrupt Controller (AP

. kernel_irq_entry: 5277.046591673 (/tmpl/trace-httpd/
irq_id = 239, kernel_mode =0}

DRDC Valcartier TR 2008-300

. ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
,ip = 0xb8046424 T~

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce—httgd/c u O)}, 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb8046424

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httpd/c&)u 0), 4979, 4979, /usr/local/shin/micro_
], ip = 0xb8046424 T

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

“ file)

. ce—httgd/c u 0), 4979, 4979, /usr/local/sbin/micro_
0], ip = 0xb8046424°}

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

IC) sends a signal to the CPU

cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd, ,

105

httpd, , 4566,

ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,

, SYSCALL { fd =

ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,

4566, 0x0, IRQ {

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.
215.

216.

217.

106

kernel_timer_update time: 5277.046601946 /tr:rllglstzac

0x0, IRQ T jiffies = 4296453959, xtime_sec = 12
walltomonotonic_nsec = 753353119 }

kernel_softirg_raise: 5277.046605090 (/tmp/trace-ht
IRQ { softirg_id = I Trun_timer_softirg+0x0/0x1f0]

kernel_softirg_raise: 5277.046608207 (/tmg/trace—ht
IRQ { softirg_id = 8Trcu_process_callbacks+0x0/0x3

kernel_irg_exit: 5277.046615125 (/tmp/trace-httpd/c
USER_MODE

kernel _softirg_entry: 5277.046616638 (/tmp/trace-ht
SOFTIRQ {softirg_id = 1 [run_timer_softirg+0x0/0x1

kernel timer_set: 5277.046624617 (/tmg/trace—httpd/
SOFTIRQ {expires = 1486664, function = 0xc024f950,

kernel_softirq_exit; 5277.046625807 ﬁ/_tmp/trace—htt
USER_MODE { softirg_id = 1 [run_timer_softirq+0x0/0

kernel soft_irq_entrg: 5277.046626514 (/tmpltrace-ht
SOFTIRQ {softirg_id = 8 [rcu_process_callbacks+0x0

kernel _softirq_exit; 5277.046628392 (/tmp/trace-htt
USER_MODE { softirg_id = 8 [rcu_process_callbacks+0

kernel arch_syscall__entQ/: 5277.046711024 gtmp/tra
0x0, SYSCALL {'syscall_id = 45 [sys_brk+0x0/0x100],

kernel_arch_syscall_exit: 5277.046712674 (/tmp/trac
0x0, USER_MODE{ ret =134524928 }

kernel arch_syscall__entQ/: 5277.046714192 gtmp/tra
0x0, SYSCALL {'syscall_id = 45 [sys_brk+0x0/0x100],

kernel_arch_syscall_exit: 5277.046719018 (/tmp/trac
0x0, USER”_MODE{ ret = 134660096 }

#
Open the file “index.html”

kernel arch_syscall__entgl: 5277.046748424 (/tmpltra
0x0, SYSCALL {syscall_id = 5 [sys_open+0x0/0x40],

_ fs_open: 5277.046759271 (/tmp/trace-httpd/cpu_0), 4
3, filename = "index.html" }

data =

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h
9623, xtimé_nsec = 519962424, walltomonotonic_sec

tpd/cpu_0), 4979, 4979, /usr/local/shin/micro_httpd
tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd
pu_0), 4979, 4979, /usr/local/sbin/micro_httpd, |,
tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd
S%U_O)’ 4979, 4979, /usr/local/sbin/micro_httpd, ,
pd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd,
t}pd/cpu_O), 4979, 4979, /usr/local/shin/micro_httpd

d/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd,

x0/0x30] }

ce—httpglzcz?ij_O), 4979, 4979, /usr/local/sbin/micro_

ip = 0xb8046

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

ce—httpd/cEEJ_O), 4979, 4979, /usr/local/sbin/micro_

ip = 0xb804642

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_

ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0

DRDC Valcartier TR 2008-300

npgiziléiggég,
., 4566, 0x0,
., 4566, 0x0,
566, 0x0,
, . 4566, 0x0,
4566, 0x0,

, 4566, 0x0,
., 4566, 0x0,

, 4566, 0XO,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,

ttpd, , 4566,

httpd, , 4566,

, SYSCALL {fd =

218.

219.

220.

221.

222.

223.

224.

225.

226

227.

228.

229.

230.

231.

232.

233.

234.

" 0x0, SYSCALL {syscall_id =

kernel_arch_syscall_exit: 5277.046760425 (/tmpl/trac
0x0, USER_MODE {ret =3}

kernel arch_syscall__entrf/: 5277.046814182 gtmp/tra
0x0, SYSCALL {syscall_id = 197 [sys_fstat64+0x0/0x

kernel_arch_syscall_exit: 5277.046816916 (/tmp/trac
0x0, USER_MODE {ret=0}

kernel arch_syscall__entrf/: 5277.046818594 Sltmp/tra
0x0, SYSCALL {syscall_id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.046823194 (/tmp/trac
0x0, USER_MODE { ret =-1207681024 }

#
Read the system time (to be inserted in the HTTP
(glibc opens "/etc/localtime” to know the system’

kernel arch_syscall__ent?/é [5277t._0468(')540E3893 él]tmp/tra
sys_time+0x0/0x30],

kernel_arch_syscall_exit: 5277.046856255 (/tmp/trac
0x0, USER_MODE{ ret =1211549623 }

kernel arch_syscall__entgl: 5277.046888105 (/tmpltra
0x0, SYSCALL {syscall_id = 5 [sys_open+0x0/0x40],

_ fs_open: 5277.046899066 (/tmp/trace-httpd/cpu_0), 4
4, filename = "/etc/localtime" }

kernel_arch_syscall_exit: 5277.046900144 (/tmp/trac
0x0, USER_MODE{ret =4}

kernel arch_syscall__ent?/: 5277.046908152 Sltmp/tra
0x0, SYSCALL {'syscall_id = 197 [sys_fstat64+0x0/0x

kernel_arch_syscall_exit: 5277.046909877 (/tmpl/trac
0x0, USER_MODE {ret =0}

kernel arch_syscall_ent?/: 5277.046918051 gtmp/tra
0x0, SYSCALL {syscall_1d = 197 [sys_fstat64+0x0/0x

kernel_arch_syscall_exit: 5277.046919215 (/tmp/trac
0x0, USER_MODE{ret=0}

DRDC Valcartier TR 2008-300

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce—httgd/c u_0), 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb8046424

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
], ip = 0xb8046424 T

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

header; see send_header())
s time zone)

) ce—httpd/ci)u_O), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb8046424 }

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h
ce-httpd/cpu O)}, 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb8046424
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h
) ce-httgd/c u_0), 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb8046424

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

107

ttpd,

httpd,

ttpd,

httpd,

ttpd,

httpd,

ttpd,

httpd,

4566,

4566,

4566,

4566,

4566,

4566,

4566,

4566,

, SYSCALL {fd =

ttpd,

httpd,

ttpd,

httpd,

ttpd,

4566,

4566,

4566,

4566,

4566,

235.

236.

237.

238.

239.

240.

241.

242.

243.

244,

245,

246.

247.
4}

248.

249.

250.

251.

108

kernel arch_syscall__ent?/: 5277.046920681 Sltmp/tra
0x0, SYSCALL {syscall_1id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.046922723 (/tmpltrac
0x0, USER_MODE{ ret =-1207685120 }

kernel arch_syscall_entg/: 5277.046925133 f/tmp/tra
0x0, SYSCALL {syscall_Td = 3 [sys_read+0x0/0xa0

fs_read: 5277.046926752 (/tmp/trace-httpd/cpu_0), 4
4, count = 4096 }

kernel_arch_syscall_exit: 5277.046964889 (/tmp/trac
0x0, USER_MODE{ ret =3477 }

kernel arch_syscall__ent?/: 5277.046988062 (/tmpl/tra
0x0, SYSCALL {syscall_id = 140 [sys_llseek+0x0/0xd

fs_llseek: 5277.046990756 (/tmp/trace-httpd/cpu_0),
= 4, offset = 3453, origin=1}

kernel_arch_syscall_exit: 5277.046991972 (/tmp/trac

0x0, USER_MODE {ret=0}

kernel arch_syscall_ent%/: 5277.047000434 (/tmp/tra
0x0, SYSCALL {syscall_Td = 3 [sys_read+0x0/0xa0

fs_read: 5277.047001351 (/tmp/trace-httpd/cpu_0), 4
4, count = 4096 }

kernel_arch_syscall_exit: 5277.047004344 (/tmpl/trac
0x0, USER_MODE{ ret =24}

kernel arch_syscall_entgl: 5277.047008992 (/tmp/tra
0x0, SYSCALL {syscall_Td = 6 [sys_close+0x0/0x110]

fs_close: 5277.047010329 (/tmp/trace-httpd/cpu_0),

kernel_arch_syscall_exit: 5277.047015507 (/tmp/trac
0x0, USER_MODE{ret=0}

kernel arch_syscall__entg/: 5277.047017573 Sltm /tra
0x0, SYSCALL {syscall_id = 91 [sys_munmap+0x0/0x60

kernel_arch_syscall_exit: 5277.047034426 (/tmp/trac
0x0, USER_MODE{ret=0}

kernel arch_syscall_ent?/: 5277.047080847 (/tmpltra
0x0, SYSCALL {'syscall_Td = 195 [sys_stat64+0x0/0x3

. ce—httpd/cgu 0), 4979, 4979, /usr/local/sbin/micro_
], ip = 0xb8046424 F

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce—httgd/c u 0), 4979, 4979, /usr/local/sbin/micro_
0], ip = 0xb8046424°}

4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce-httg)d/cpu_O), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
,ip = 0xb8046424 T~

4979, 4979, /usr/local/sbin/micro_httpd, , 4566, Ox
e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

. ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
], ip = 0xb8046424 F

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

~ ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
0], ip = 0xb8046424°}

DRDC Valcartier TR 2008-300

httpd, , 4566,

ttpd, , 4566,

httpd, , 4566,

, SYSCALL { fd =

ttpd, , 4566,

httpd, , 4566,

X0, SYSCALL { fd

ttpd, , 4566,

httpd, , 4566,

, SYSCALL { fd =

ttpd, , 4566,

httpd, , 4566,

0, SYSCALL {fd =

ttpd,

httpd,

ttpd,

httpd,

4566,

4566,

4566,

4566,

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

kernel_arch_syscall_exit: 5277.047087277 (/tmpl/trac
0x0, USER_MODE{ret=0}

kernel arch_syscall__entrf/: 5277.047115531 (/tmpltra
0x0, SYSCALL {syscall_id = 195 [sys_stat64+0x0/0x3

kernel_arch_syscall_exit: 5277.047118841 (/tmpl/trac
0x0, USER_MODE {ret=0}

#
Read the file "index.html"

kernel arch_syscall__entrf/: 5277.047128063 gtmp/tra
0x0, SYSCALL {'syscall_id = 197 [sys_fstat64+0x0/0x

kernel_arch_syscall_exit: 5277.047130031 (/tmp/trac
0x0, USER_MODE{ret=0}

kernel arch_syscall__entrf/: 5277.047131975 Sltmp/tra
0x0, SYSCALL {syscall_id = 192 [sys_mmap2+0x0/0xe0

kernel_arch_syscall_exit: 5277.047135197 (/tmp/trac
0x0, USER_MODE{ ret =-1207685120 }

kernel arch_syscall__entg/: 5277.047137101 f/tmp/tra
0x0, SYSCALL {syscall_id = 3 [sys_read+0x0/0xa0

fs_read: 5277.047138264 (/tmp/trace-httpd/cpu_0), 4
3, count = 4096 }

kernel_arch_syscall_exit: 5277.047158913 (/tmp/trac
0x0, USER_MODE{ ret =103 }

kernel arch_syscall_ent%/: 5277.047170662 (/tmpl/tra
0x0, SYSCALL {syscall_Td = 3 [sys_read+0x0/0xa0

fs_read: 5277.047171721 (/tmp/trace-httpd/cpu_0), 4
3, count = 4096 }

kernel_arch_syscall_exit: 5277.047173613 (/tmpl/trac
0x0, USER_MODE{ret =0}

#

Flush stdout. The answer is sent on the network.

As the test is done on the loopback (127.0.0.1),

DRDC Valcartier TR 2008-300

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

~ ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
0], ip = 0xb8046424°}

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

) ce—httgd/c u_0), 4979, 4979, /usr/local/sbin/micro_
30], ip = 0xb8046424

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h
) ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_

], ip = 0xb8046424 T

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h
. ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h
) ce-httpd/cpu_0), 4979, 4979, /ust/local/sbin/micro_
ip = 0xb8046424 }

979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x0

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

the HTTP client’s endpoint receives the packet.

109

ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,
ttpd, , 4566,
httpd, , 4566,

, SYSCALL {fd =

ttpd, , 4566,

httpd, , 4566,

, SYSCALL { fd =

ttpd, , 4566,

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.
283.

284.

285.

286.

287.

110

The ACK is retransmitted immediately by the endpo

kernel arch_syscall__entQ/: 5277.047178396 ﬁ/tmp/tra
0x0, SYSCALL {syscall_1d = 4 [sys_write+0x0/0xa0],

fs_write: 5277.047179914 (/tmp/trace-httpd/cpu_0),
1, count=311}

net_dev_xmit: 5277.047200820 (/tmp/trace-httpd/cpu_
skb = 0xd96¢9cbh4, protocol = 8 }

kernel soft_irq_entrg: 5277.047206305 (/tmpltrace-ht
SOFTIRQ {’softirq_id = 3 [net_rx_action+0x0/0x240]

net_dev_receive: 5277.047209489 (/tmp/trace-httpd/c
{ skb = 0xd96¢c9cb4, protocol = 8 }

net_dev_xmit: 5277.047224538 (/tmp/trace-httpd/cpu_
skb = 0xd96ade00, protocol = 8 }

kernel_sched_try wakeup: 5277.047228132 (/tmpl/trace
SOFTIRQ {pid = 3689, state = 1 }

net_dev_receive: 5277.047235954 (/tmp/trace-httpd/c
{ skb = 0xd96ade00, protocol = 8 }

kernel _softirq_exit: 5277.047238183 éltmp/trace—htt
SYSCALL {"softirq_id = 3 [net_rx_action+0x0/0x240]

kernel_timer_set: 5277.047241141 (/tmp/trace-httpd/
SYSCALL {expires = 1486724, function = 0xc03336b0,

kernel_arch_syscall_exit: 5277.047252314 (/tmpl/trac
0x0, USER_MODE { ret =311 }

#
End the process (exit() is called)

kernel arch_syscall__entgl: 5277.047281311 (/tmpltra
0x0, SYSCALL {syscall_id = 252 [sys_exit_group+0x0

kernel_process_exit: 5277.047374690 (/tmp/trace-htt
4566, 0x0, SYSCALL { pid = 4979 }

#

SIGCHD is sent to xinetd (micro_httpd has finishe

int.
. ce—httpd/cgu_O), 4979, 4979, /usr/local/sbin/micro_
ip = 0xb8046424 }
4979, 4979, /usr/local/sbin/micro_httpd, , 4566, 0x
0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4566
tpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd
pu_0), 4979, 4979, /usr/local/shin/micro_httpd, , 4
0), 4979, 4979, /ust/local/sbin/micro_httpd, , 4566
-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ht
pu_0), 4979, 4979, /usr/local/sbin/micro_httpd, , 4
pd/cpu_0), 4979, 4979, /usr/local/sbin/micro_httpd,
4979, 4979, /usr/local/sbin/micro_httpd, |,

data = §9258%3’3136 }

e-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_h

ce-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_
/0x20], ip = 0xb8046424 }

pd/control/processes_0), 4979, 4979, /usr/local/sbi

d). The CPU resource is given back to xinetd.

DRDC Valcartier TR 2008-300

httpd, , 4566,

0, SYSCALL {fd =

, 00, SYSCALL {

, ,» 4566, 0x0,

566, 0x0, SOFTIRQ

, 0x0, SOFTIRQ {

tpd, , 4566, 0XO0,

566, 0x0, SOFTIRQ

, 4566, 0xO0,

4566, 0x0,

ttpd, , 4566,

httpd, , 4566,

n/micro_httpd, ,

288. kernel_send_signal: 5277.047388531 (/tmp/trace-http
SYSCALL {pid =4566, signal =17 }

289. kernel_sched try wakeup: 5277.047391850 (/tmp/trace
SYSCALL {'pid = 4566, state =0}

290. kernel_sched_schedule: 5277.070484305 (/tmp/trace-h
3318, next_pid = 4566, prev_state = 1}

291. } kernel_arch_syscall_exit: 5277.070492080 (/tmp/trac

292. #

293. # Reaction to the SIGCHD signal (within the signal

294. # Write in a pipe (probably toward syslogd)

295. kernel_arch syscall_entry: 5277.070517471 (/tmpltra
= 4 [sys_write+0x0/0xa0], ip ='0xb8046424 }

296. fs_write: 5277.070519201 (/tmp/trace-httpd/cpu_0),

297. kernel_arch_syscall_exit: 5277.070527602 (/tmp/trac

298. kernel_arch_syscall ent%/: 5277.070535745 (/tmpltra
=119 [sys_sigrefurn+0x070x180], ip = 0xb8046408 }

299. } kernel_arch_syscall_exit: 5277.070537570 (/tmp/trac

300. #

301. # Back to the normal execution of xinetd (not anymo

302. kernel_arch_syscall_entry: 5277.070565577 (/tmpl/tra
= 13 [sys_time+0x0/0x30], ip = 0xb8046424 }

303. kernel_arch_syscall_exit: 5277.070566610 (/tmp/trac
1211549623 }

304. kernel_arch_syscall_entry: 5277.070637518 (/tmpi/tra
= 13 [sys_time+0x0/0x30], ip = 0xb8046424 }

305. kernel_arch_syscall_exit: 5277.070638493 (/tmp/trac

1211549623 }

DRDC Valcartier TR 2008-300

d/cpu_0), 4979, 4979, /ust/local/sbin/micro_httpd,

-httpd/cpu_0), 4979, 4979, /usr/local/sbin/micro_ht

ttpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

handler)

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 4, cou
e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

re in the signal handler)

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

111

, 4566, 0x0,

tpd, , 4566, 0XO0,

{ prev_pid =

MODE { ret = 4979

ALL { syscall_id

nt=1}
MODE {ret=1}

ALL { syscall_id

MODE { ret = 4979

ALL { syscall_id

MODE { ret

ALL { syscall_id

MODE { ret

306.

307.

308.

309.

310.

311.

312

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323

324.

325

kernel_arch_syscall_entry: 5277.070662450 (/tmpi/tra
= 195 [sys_stat64+0x0/0x30], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.070677035 (/tmp/trac
#
Write on the socket

kernel_arch_syscall_entry: 5277.070696689 (/tmp/tra
=102 [sys_socketcall+0x0/0x2d0], ip = 0xb8046424 }

net_socket_call: 5277.070698950 (/tmp/trace-httpd/c

. _net_socket_sendmsg: 5277.070702810 (/tmp/trace-http
family =71, type = 1, protocol = 0, size =70 }

#
syslogd is awakened (syslog trace is omitted in t

kernel_sched_try_wakeup: 5277.070711591 (/tmp/trace
state =1}

kernel_sched_schedule: 5277.071041070 (/tmp/trace-h
3163, next_pid = 4566, prev_state = 1}

#

Back to xinitd

kernel_arch_syscall_exit: 5277.071047862 (/tmp/trac
#

Close the socket

Client's endpoint receives the FIN and returns an

. kernel_arch_syscall entry: 5277.071054615 (/tmp/tra
= 6 [sys_close+0x0/0x110], ip = 0xb8046424 }

fs_close: 5277.071056331 (/tmp/trace-httpd/cpu_0),

. net_dev_xmit: 5277.071078320 (/tmp/trace-httpd/cpu_
protocol =8}

112

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

pu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { call

d/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL {s

his source)

-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCAL

ttpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ACK

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd =6}

0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { skb = 0

DRDC Valcartier TR 2008-300

ALL { syscall_id

MODE {ret=0}

ALL { syscall_id

=9,a0=7}

ock = Oxda9afa00,

L { pid = 3163,

{ prev_pid =

MODE {ret=70}

ALL { syscall_id

xd96c90b4,

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343

kernel_softir entrxz 5277.071084062 (/tmp/trace-ht
[net_rx_action+0x070x240] }

net_dev_receive: 5277.071086768 (/tmp/trace-httpd/c
protocol =8}

kernel_timer_set: 5277.071104161 i/tmp/trace-httpd/
function = 0xc0333170, data = 3745084416 }

protocol =8}

kernel_timer_set: 5277.071113756 gtmp/trace-httpd/
function = O0xc0321ae0, data = 3225789568 }

net_dev_receive: 5277.071122082 (/tmp/trace-httpd/c
protocol =8}

kernel_softirrﬂyexit: 5277.071124317 (/tmpl/trace-htt
[net_rx_action+0x070x240] }

kernel_timer_set: 5277.071125747 é/tmp/trace-httpd/
function = 0xc03336b0, data = 3745083136 }

kernel_arch_syscall_exit: 5277.071140152 (/tmp/trac
#
xinetd listen on file descriptors

kernel_arch_syscall_entry: 5277.071157392 (/tmpl/tra
= 142 [sys_Select+0x0/0x1c0], ip = 0xb8046424 }

fs_select: 5277.071161262 (/tmp/trace-httpd/cpu_0),
fs_select: 5277.071163841 (/tmp/trace-httpd/cpu_0),
kernel_arch_syscall_exit: 5277.071166761 (/tmp/trac
#

Read on the pipe

. kernel_arch_syscall entry: 5277.071169693 (/tmpltra
= 54 [sys_ioctl+0x0/0xb0], ip = 0xb8046424 }

fs_ioctl: 5277.071171073 (/tmp/trace-httpd/cpu_0),

44.
3213234188}

DRDC Valcartier TR 2008-300

net_dev_xmit: 5277.071109261 (/tmp/trace-httpd/cpu_

tpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ {

pu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { skb

cpu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { exp

0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { skb = 0

cpu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { exp

pu_0), 4566, 4566, xinetd, , 1, 0x0, SOFTIRQ { skb

pd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSCALL {

cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL { exp

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd = 3, ti
4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd =5, ti

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

4566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, cmd

113

softirg_id = 3

= 0xd96c90b4,

ires = 1504670,

xd96add00,

ires = 1488920,

= 0xd96addoo,

softirg_id = 3

ires = 1486731,

MODE {ret=0}

ALL { syscall_id

meout =-1}
meout =-1}

MODE {ret=1}

ALL { syscall_id

= 21531, arg =

345.

346.

347.

348.

349.

350.

351.

352.

353.
}

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.
}

365.
114

= 3 [sys_read+0x0/!

= 6 [sys_close+0x0

kernel_arch_syscall_exit: 5277.071173801 (/tmp/trac

kernel_arch s&scall_entry: 5277.071175481 (/tmpltra
xa0], ip = 0xb8046424 }

fs_read: 5277.071176811 (/tmp/trace-httpd/cpu_0), 4
kernel_arch_syscall_exit: 5277.071184314 (/tmpl/trac
#

Get the status of the child process

kernel_arch_syscall entry: 5277.071187101 (/tmpl/tra

=7 [sys_waitpid+0x0/0x30], ip = 0xb8046424 }

kernel_process_wait: 5277.071189157 (/tmp/trace-htt

kernel_arch_syscall_exit: 5277.071204254 (/tmpl/trac

#
Close the file descriptor
This call fails (error EBADF ; Bad file number).

kernel_arch S}/scall entry: 5277.071207890 (/tmp/tra
0x110], ip = 0xb8046424 }

kernel_arch_syscall_exit: 5277.071209118 (/tmp/trac
#

A second waitpid().

It fails (error ECHILD ; No child process)

kernel_arch_syscall entry: 5277.071212901 (/tmpl/tra

=7 [sys_waitpid+0x0/0x30], ip = 0xb8046424 }

kernel_process_wait: 5277.071213687 (/tmp/trace-htt

kernel_arch_syscall_exit: 5277.071214958 (/tmp/trac

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC

566, 4566, xinetd, , 1, 0x0, SYSCALL { fd = 3, coun

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

pd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL {

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

The file was probably already closed.

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, Ox0, SYSC

pd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL {

e-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, USER_

DRDC Valcartier TR 2008-300

MODE {ret=0}

ALL { syscall_id

t=1}

MODE {ret=1}

ALL { syscall_id

pid=0}

MODE { ret = 4979

ALL { syscall_id

MODE {ret=-9}

ALL { syscall_id

pid=0}

MODE { ret = -10

366. # Finally xinetd is back waiting

367. _ 142k[esr)r)sel Szérlgté ﬁ:s S(():/%ll(l%?)t]rym&g; b08701426147226? (/tmpftra ce-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSC ALL { syscall_id
368. fs_select: 5277.071219082 (/tmp/trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd = 3, ti meout = -1}

369. fs_select: 5277.071220157 (/tmp/trace-httpd/cpu_0), 4566, 4566, xinetd, , 1, 0x0, SYSCALL {fd =5, ti meout = -1}

370. #

371. # End of the trace.

DRDC Valcartier TR 2008-300 115

This page intentionally left blank.

116 DRDC Valcartier TR 2008-300

Annex F Glossary

This glossary contains definitions of some sele¢teths from this document. It does not claim
to: 1) be complete or 2) reflect the work of aearchers in this domain.

Availability (survivability)

Avizienis et al. (2004) mentiorit is the readiness for correct servicdeumann (2000) adds:
availability implies that certain required resouscare available when and as needed. It can be
applied at many levels of abstraction, includingsteyns, subsystems, data entities, and
communication links. Prevention of denial of sesig an availability requirements, although it
also has a system-integrity component.

» Data availability: Preventing disruptions in timely access to diateluding sensor data in a
control system. Multiple versions of critical datad alternative sensors can help increase
data availability.

« Network availability : Detecting, preventing, and recovering from depfaservice attacks,
such as outages of network nodes and access desieesomagnetic interference on the
communications media.

« Real-time availability: (Including the system, data, and other resouréa®uring that real-
time processing can be done in a timely way, ptotg@gainst maliciously or accidentally
caused delays.

« System availability: Preventing system and communication outages,exrd temporary
unavailability of resources. Such outages may oelmalicious or accidental denials of
system service.

Correctness or functional correctness (survivabiliy)

Assuring that a flaw in the application or in thensputer operating system, or a human error in
system maintenance, cannot compromise the applic@tieumann, 2000).

Dependability (survivability)

Avizienis et al. (2004) propose two definitions fitgpendability.The first one stresses the need
for justification of trust: the ability to deliveservice that can justifiably be trusted. The second
one provides the criterion for deciding if the deevis dependable: the ability to avoid service
failures that are more frequent and more severa fthacceptableNeumann (2000) mentionks

the fault-tolerance community, dependability tetmlde a measure of how well the specified
fault-tolerance requirements are met, although récesage is generalizing that to other
requirements. It may be considered as the extemthich a given survivability requirement is
perceived to be satisfied, particularly by the ierpentation.

Error (survivability)

DRDC Valcartier TR 2008-300 117

When at least one (or more) external state of ystesn deviates from the correct service state
Avizienis (2004). The definition of an error is tpart of the total state of the system that may
lead to its subsequent service failure.

Failure (survivability)

see Service failure.

Fault (survivability)

The adjudged or hypothesized cause of an errcalled a fault(Avizienis, 2004). The following
definitions were extracted form the same paper.

118

Commission faultsPerforming wrong actions leads to commissiont&ul

Configuration faults: Wrong setting of parameters that can affect sidgunetworking,
storage, middleware, etc.

Deliberate faults Faults that are due to bad decisions, that itemuled actions that are
wrong and cause faults.

Development faultsincludes all faults classes occuring during dexshent.
Human-made faults Faults that result from human actions.

Interaction faults: Include all external faults. (...) a common faatwf interaction faults is
that, in order to be "successful," they usually essitate the prior presence of a
vulnerability, i.e. an internal fault that enablas external faults to harm the system

Intermittent faults:

Malicious faults. Introduced during either system development with objective to cause
harm to the system during its use, or directly dgrise.

Multiple faults: Multiple faults are two or more concurrent, owgbing, or sequential
single faults whose consequences, i.e., errorglagven time, that is, the errors due to these
faults are concurrently present in the system. @amation of multiple faults leads one to
distinguish 1) independent faults that are attrémlito different causes and 2) related faults,
that are attributed to a common cause. Relatedi$agnerally cause similar errors, i.e.,
errors that cannot be distinguished by whateveeckn mechanisms are being employed,
whereas independent faults usually cause distimot®

Natural faults: Natural fault are physical (hardware) faults thate caused by natural
phenomena without human participation.

Non-deliberate faults Faults that are due to mistakes, that is, unidisth actions of which
the developer, operator, maintainer, etc. is notisv

Non-malicious faults Introduced without malicious objectives.

Omission faults Refers to faults that result when no action isfgrened while action
should be performed.

Physical faults Includes all fault classes that affect hardware.

DRDC Valcartier TR 2008-300

« Single faults Single fault is a fault caused by one adversesjglay event or one harmful
human action.

Fault tolerance (survivability)

Preventing undesirable effects resulting from faitu of underlying hardware components,
subsystems, or indeed the entire syst@laumann, 2000)To avoid service failures in the
presence of faultg...) Fault tolerance [3Jyhich is aimed at failure avoidance, is carried @ig
error detection and system recovefy.) Fault tolerance applies to all classes of faulfs.)
several synonyms exist for fault tolerance: selfaiepself-healing, resilience(...) (Avizienis,
2004). (...)

« Error Detection Identifies the presence of an error.
» Concurrent detectionTakes place during normal service delivery.

« Preemptive detectianTakes place while normal service delivery is smsfed; checks the
system for latent errors and dormant faults.

* Recovery Transforms a system state that contains one geraoors and (possibly) faults
into a state without detected errors and withoufittathat can be activated again.}

« Error handling: Eliminates errors from the system state.

» Rollback Brings the system back to a saved state thateskigrior to error occurence;
saved state; checkpoint.

* Rollforward: State without detected errors is a new state.
» CompensationThe erroneous contains enough redundancy to enatobr to be masked.
« Fault handling: Prevents faults from being activated again.

« Diagnosis Identifies and records the cause(s) of errorfgs)terms of both location and
state.

» |Isolation: Performs physical or logical exclusion of the lfgucomponents from further
participation in service delivery, i.e. makes thalf dormant.

» Reconfiguration Either switches in space components or reasdigsiss among non-falled
components.

* Reinitialization: Checks, updates and records the new configurasiod updates system
tables and records.

loctl (Linux)

WikipediaWs (2008)in computing, an ioctl (pronouncedraskil/ or "i-o-control”) is part of
the user-to-kernel interface of a conventional a@pieg system. Short for "Input/output control”,
ioctls are typically employed to allow userspaceedo communicate with hardware devices or
kernel components.

Kernel (Linux)

DRDC Valcartier TR 2008-300 119

WikipediaWs (2008)in computer science, the kernel is the centralpament of most computer
operating systems (OS). Its responsibilities ineluthanaging the system's resources (the
communication between hardware and software compehfl] As a basic component of an
operating system, a kernel provides the lowestHlesstraction layer for the resources
(especially memory, processors and 1/O devices} #pplication software must control to
perform its function. It typically makes these lities available to application processes through
inter-process communication mechanisms and systdis1 These tasks are done differently by
different kernels, depending on their design anplémentation. While monolithic kernels will try
to achieve these goals by executing all the codéhénsame address space to increase the
performance of the system, microkernels run mogheif services in user space, aiming to
improve maintainability and modularity of the codeb.[2] A range of possibilities exists
between these two extremes.

Kernel-context and user-space (Linux)

WikipediaWsS (2008)A conventional operating system usually segregeaittsal memory into
kernel space and user space. Kernel space is Igtiieserved for running the kernel, kernel
extensions, and some device drivers. In most dpgraystems, kernel memory is never swapped
out to disk. In contrast, user space is the menaoea where all user mode applications work
and this memory can be swapped out when necesfhey.term userland is often used for
referring to operating system software that runsiger space. Each user space process normally
runs in its own virtual memory space, and, unlegdieitly requested, cannot access the memory
of other processes. This is the basis for memoogeption in today's mainstream operating
systems, and a building block for privilege separat Depending on the privileges, processes
can request the kernel to map part of another pgegememory space to its own, as is the case
for debuggers. Programs can also request sharedanenegions with other processes. Another
approach taken in experimental operating systemdpihave a single address space for all
software, and rely on the programming languageftual machine to make sure that arbitrary
memory cannot be accessed — applications simplyotaacquire any references to the objects
that they are not allowed to access.[l] This apmtvahas been implemented in JXOS,
Unununium as well as Microsoft's Singularity resdgaproject.

Multi-core CPU

WikipediaWs (2008)A multi-core CPU (or chip-level multiprocessor, CM&mbines two or
more independent cores into a single package coetpoka single integrated circuit (IC), called
a die, or more dies packaged together. A dual-gpoogessor contains two cores and a quad-core
processor contains four cores. A multi-core mica@ssor implements multiprocessing in a
single physical package. A processor with all cooes a single die is called a monolithic
processor. Cores in a multicore device may sha@ngle coherent cache at the highest on-
device cache level (e.g. L2 for the Intel Core 2jnay have separate caches (e.g. current AMD
dual-core processors). The processors also shaesdme interconnect to the rest of the system.
Each "core" independently implements optimizatisash as superscalar execution, pipelining,
and multithreading. A system with N cores is @ffectvhen it is presented with N or more
threads concurrently. The most commercially sigaift (or at least the most 'obvious') multi-
core processors are those used in computers (piiynfiom Intel & AMD) and game consoles
(e.g., the Cell processor in the PS3). In this egft"multi" typically means a relatively small
number of cores. However, the technology is widskd in other technology areas, especially

120 DRDC Valcartier TR 2008-300

those of embedded processors, such as networkgsmseand digital signal processors, and in
GPUs.

Multi-processing, multi-processors

WikipediaWs (2008)Multiprocessing is the use of two or more centralgessing units (CPUS)
within a single computer system. The term alsorsefe the ability of a system to support more
than one processor and/or the ability to allocatskis between them.[1] There are many
variations on this basic theme, and the definitidmultiprocessing can vary with context, mostly
as a function of how CPUs are defined (multipleesoon one die, multiple chips in one package,
multiple packages in one system unit, etc.). Mudtipssing sometimes refers to the execution of
multiple concurrent software processes in a sysasnopposed to a single process at any one
instant. However, the term multiprogramming is ma@propriate to describe this concept,
which is implemented mostly in software, whereadtipnocessing is more appropriate to
describe the use of multiple hardware CPUs. A systan be both multiprocessing and
multiprogramming, only one of the two, or neithétre two.

Multi-tasking

WikipediaWS (2008):In computing, multitasking is a method by whichltiple tasks, also
known as processes, share common processing resosich as a CPU. In the case of a
computer with a single CPU, only one task is saide running at any point in time, meaning
that the CPU is actively executing instructions tleat task. Multitasking solves the problem by
scheduling which task may be the one running atgiwgn time, and when another waiting task
gets a turn. The act of reassigning a CPU from tas& to another one is called a context switch.
When context switches occur frequently enoughlliigan of parallelism is achieved. Even on
computers with more than one CPU (called multipesoe machines), multitasking allows many
more tasks to be run than there are CPUs.

Netlink (Linux)

WikipediaWs (2008)Netlink is socket-like mechanism for IPC betweemedeand user space
processes, as well as between user-space procakses (like e.g., unix sockets) or mixture of
multiple user space and kernel space processesettawunlike INET sockets, it can't traverse
host boundaries, as it addresses processes by(thearently local) PIDs. It was designed and is
used to transfer miscellaneous networking inforpratbetween the Linux kernel space and user
space processes. Many networking utilities usanketb communicate with linux kernel from
user space, for example iproute2. Netlink considtsa standard socket-based interface for
userspace process and an internal kernel API fonddlemodules. It is designed to be a more
flexible successor to ioctl. Originally netlink gs&F_NETLINK socket family.

Non-uniform memory access (NUMA)

WikipediaWS (2008):Non-Uniform Memory Access or Non-Uniform Memory hitecture
(NUMA) is a computer memory design used in muldessors, where the memory access time
depends on the memory location relative to a premedJnder NUMA, a processor can access
its own local memory faster than non-local memdmgt is, memory local to another processor
or memory shared between processors. NUMA architestlogically follow in scaling from

DRDC Valcartier TR 2008-300 121

symmetric multiprocessing (SMP) architectures. Themmercial development came in work by
Burroughs, Convex Computer (later HP), SGI, Sequemnt Data General during the 1990s.
Techniques developed by these companies laterréelin a variety of Unix-like operating
systems, as well as to some degree in Windows NT.

Open Source or Free Open Source Software (FOSS)

WikipediaWs (2008)Open source is a set of principles and practicehow to write software,
the most important of which is that the source ct@penly available. The Open Source
Definition, which was created by Bruce Perens[1fi&ric Raymond and is currently maintained
by the Open Source Initiative, adds additional nieguto the term: one should not only get the
source code but also have the right to use itéflatter is denied the license is categorized as a
shared source license.

Foldoc (2008):A method and philosophy for software licensing ai®tribution designed to
encourage use and improvement of software writiendbunteers by ensuring that anyone can
copy the source code and modify it freely. The texpen source" is now more widely used than
the earlier term "free software" (promoted by theé Software Foundation) but has broadly the
same meaning - free of distribution restrictionst necessarily free of charge. There are various
open source licenses available. Programmers carosbl@n appropriate license to use when
distributing their programs. The Open Source Ititia promotes the Open Source Definition.

procfs (Linux)

WikipediaWs (2008)On many Unix-like computer systems, procfs, sloonpfocess file system,
consists of a pseudo file system (a file systenardigally generated at boot) used to access
process information from the kernel. The file gysis often mounted at the /proc directory.
Because /proc is not a real file system, it consuntestorage space and only a limited amount of
memory. The following operating environments suppoocfs: Solaris; BSD; Linux (which
extends it to non-process-related data); IBM AlXpdiating system) (which bases its
implementation on Linux to improve compatibilit®NX; Plan 9 from Bell Labs (where it
originated).

Process

WikipediaWs (2008)In computing, a process is an instance of a conmpartyram that is being
sequentially executed.[1] A computer program itéglfust a passive collection of instructions,
while a process is the actual execution of thos#tictions. Several processes may be associated
with the same program, for example opening up twmdews of the same program typically
means two processes are being executed. A singlguter processor executes only one
instruction at a time. To allow users to run sevgmnagrams at once, single-processor computer
systems can perform time-sharing - processes sWitlveen being executed and waiting to be
executed. In most cases this is done at a veryrdiésst giving an illusion that several processes
are executing at once. Using multiple processorbiex®s actual simultaneous execution of
multiple instructions from different processes, bate-sharing is still typically used to allow
more processes to run at once. For security reasoost modern operating systems prevent
direct inter-process communication, providing méeiaand limited functionality. However, a
process may split itself into multiple threads thatecute in parallel, running different

122 DRDC Valcartier TR 2008-300

instructions on much of the same resources and. delis is useful when, for example, it is
necessary to make it seem that multiple thingsinvitie same process are happening at once
(such as a spell check being performed in a womt@ssor while the user is typing), or if part of
the process needs to wait for something else tpdragsuch as a web browser waiting for a web
page to be retrieved).

Foldoc (2008):The sequence of states of an executing programrofegs consists of the
program code (which may be shared with other preesswhich are executing the same
program), private data, and the state of the preoesparticularly the values in its registers. It
may have other associated resources such as a sgaddentifier, open files, CPU time limits,
shared memory, child processes, and signal handl@ere process may, on some platforms,
consist of many threads. A multitasking operatiygfesm can run multiple processes concurrently
or in parallel, and allows a process to spawn "dhiprocesses.

Real time

WikipediaWs (2008)in computer science, real-time computing (RTChes study of hardware
and software systems which are subject to a "riead-tconstraint"—i.e., operational deadlines
from event to system response. By contrast, a ealktime system is one for which there is no
deadline, even if fast response or high performancdesired or even preferred. The needs of
real-time software are often addressed in the odnt# real-time operating systems, and
synchronous programming languages, which providenéworks on which to build real-time
application software. A real time system may be where its application can be considered
(within context) to be mission critica]...) Real-time computations can be said to have faifled i
they are not completed before their deadline, wilee& deadline is relative to an event. A real-
time deadline must be met, regardless of systech loa

Reliability (survivability)

The continuity of correct servig@vizienis, 2004).

Scalability (survivability)

Systems must be capable of adapting to a ranggafations, from local operation to widely
dispersed systems, from users to a considerablencmity of users, from a closed community to
an open-system environment. Where single approaatesot applicable, the parameterized
configuration should permit adaptation accordinghe specific requiremen{sleumann, 2000).
Security (survivability)

According to Avizienis et al. (2004ecurity is a composite of the attributes of caaritthlity,
integrity, and availability, requiring the concume existence of 1) availability for authorized
actions only, 2) confidentiality, and 3) integrit§th "improper" meaning "unauthorized.".
Neumann (2000) identifies two types of securitysteyn security and data security. He also
identifies some important forms of security: coefitiality, integrity, availability, authentication,

thrusted paths, prevention of misuse, tamperprgadimd anti-reverse-engineering techniques and
auditability and detection of misusgecurity must encompass dependable protection stgalin

DRDC Valcartier TR 2008-300 123

relevant concerns, including confidentiality, intiyg availability despite attempted
compromises, preventing denials of services, ptgmand detecting misuse, providing timely
responses to perceived threats, and reducing theemuences of unforeseen threats. It includes
both system security (e.g. protecting systems atwlanks against tampering and other misuses)
and information security (e.g. protecting data aptbgrams against tampering and other
misuses]Neuman, 2000).

Service failure (survivability)

A service failure, often abbreviated here to fadluis an event that occurs when the delivered
service deviates from correct service. A servidls fither because it does not comply with the
functional specification, or because this spectfma did not adequately describe the system
function (Avizienis, 2004).A service failure is a transition from correct sieev to incorrect
service. The same authors propose additional difirs:

« Content failures The content of the information delivered at teevice interface (i.e., the
service content)deviates from implementing theesy$tinction.

» Consistent failure The incorrect service is perceived identicallyadbysystem users.

» Development failure Development failure causes the development psoicebe terminated
before the system is accepted for use and pladedservice. There are two aspects of
development failures: 1. Budget failure. The alteckfunds are exhausted before the system
passes acceptance testing. 2. Schedule failure.pidjected delivery schedule slips to a
point in the future where the system would be telcyically obsolete or functionally
inadequate for the user’s needs.

 Erratic failure: When a service is delivered (not halted), budristic (e.g., babbling).

« Halt failure: Or simply halt, when the service ialted (the external state becomes constant,
i.e., system activity, if there is any, is no langerceptible to the users); a special case of
halt is silent failure, or simply silence, when service at all is delivered at the service
interface (e.g., N0 messages are sent in a diggibaystem).

* Inconsistent failure Some or all system users perceive differentlprirect service (some
users may actually perceive correct service); irgistent failures are usually called, after
[38], Byzantine failures.

e Timing failure: The time of arrival or the duration of the infoation delivered at the
service interface (i.e., the timing of service daly) deviates from implementing the system
function.

Service failure mode (survivability)

The deviation from correct service may assumerdifteforms that can be called "modes" and
ranked according to failure severifpvizienis, 2004).

Survivability (survivability)

The concept of survivability is an emergent propeltt is the ability of a system to satisfy and
continue to satisfy a number of critical requirertgeim the face of adverse conditions (intentional

124 DRDC Valcartier TR 2008-300

or not). (...) It denotes the ability of a computer-communicatsystem-based application to
continue satisfying certain critical requirementsd. requirements for security, reliability, real-
time responsiveness, and correctness) in face wérad conditions(...) It applies to national
infrastructures, computer-communication infrasturetls and to underlying computer systems
and communication systerfideumann, 2000). This author identifies 5 typeswvivability, they
are:

« Information survivability: the extent to which suitably correct and up-taedanformation
can be available whenever it is needed

« Computer-system survivabilitghe extent to which a computer system's abibity continue
to satisfy certain stated requirements in the fafcarbitrary adversities

» Network survivability the extent to which a computer network's abitign continue to
satisfy certain stated requirements in the facarbitrary adversities

« Application service survivabilitythe extent to which the services provided by atire
system application attain system survivability

« Enterprise survivability the extent to which an overall enterprise cantouore to satisfy
certain stated requirements in the face of arbjradversities.

sysfs (Linux)

WikipediaWS (2008):Sysfs is a virtual file system provided by Linus. 2Sysfs exports
information about devices and drivers from the kémevice model to userspace, and is also
used for configuration.

Threat (survivability)

The use of threats, for generically referring talfa, errors, and failures has a broader meaning
than its common use in security, where it esséytiatains it usual notion of potentiality. In our
terminology, it has both this potentiality aspeeig(, faults being not yet active, service failures
not having impaired dependability), and a realipatiaspect (e.g., active fault, error that is
present, service failure that occufgvizienis, 2004).

Total state of a system

The set of the following states: computation, comipation, stored information, interconnection,
and physical conditiofAvizienis, 2004).

Trust (survivability)

Trust is something you attribute to a system entitigether that entity is trustworthy or not
(Neumann, 2000}t can be defined as accepted dependéAeeienis, 2004).

Trusted paths (survivability)
In conventional systems, a user has no real asserdimat he or she is actually communicating

with the desired system (rather than masqueradefrojan horse system), and one system has
little assurance that it is actually communicatingh a second system of its choice (rather than a

DRDC Valcartier TR 2008-300 125

masquerader or accidental alternative). A commutiicapath whose teminations can be assured
without compromise is known as a trusted péth). Trusted paths must be persistent as well as
initially authenticated. Other risks include covehiannels and timing attacks related to trusted
paths.(Neuman, 2000).

Trustworthiness (survivability)

Trustworthiness is a measure of how extensivelyengnodule, system, network, or other entity
deserves to be trusted to satisfy its stated reguénts when confronted with arbitrary threats
(Neuman, 2000)A trustworthy entity deserves to be trusted. Fads #@wthor, the notion of
trustworthiness encompasses all aspects of sumlityadind its subtended requirements.

Vulnerability (survivability)

An internal fault that enables an external faulthtarm the systergAvizienis, 2004)

126 DRDC Valcartier TR 2008-300

Distribution list

Document No.: DRDC Valcartier TR 2008-300

PR RRPRRPRRPRRPRRLRRP®

=
N

RPRRPRPRRRRRREPRRERRERRRERRRERRRERRRR

22

34

LIST PART 1: Internal Distribution by Centre
Document library

Guy Turcotte
Jean-Claude St-Jacques
Robert Charpentier
Mario Couture

Frédéric Michaud
Frédéric Painchaud
Nawel Chefai

Philippe Charland

Martin Salois

TOTAL LIST PART 1

LIST PART 2: External Distribution by DRDKIM

Library and Archives Canada

Dr Julie Lefebvre, DRDC Ottawa, 3701 Carling AuenOttawa, Ontario, K1A 024
Chris McMillan, DRDC Ottawa, 305 Rideau Streetta@a, Ontario, K1A 0K2

Paul Béland, DRDC Ottawa, 305 Rideau Streetv2tt®ntario, K1A 0K2

LCol. J.M. Drapeau, CFNOC, NDHQ 101 Col By drtawa K1A 0K2

Paul Lamoureux, DRDC Ottawa, NDHQ 101 Col By@ittawa K1A 0K2
Dominique Toupin, Ericsson (see 1 below)

Dr. Michel Dagenais, Polytechnique de Mtl (sdebw)

Dr. Béchir Ktari, Université Laval (see 3 below)

Francois Chouinard, Ericsson (see 1 below)

Mathieu Desnoyers, Polytechnique de Mtl (seel@vije

Gabriel Matni, Polytechnique de Mtl (see 2 below)

Francgois Prenoveau, Polytechnique de Mtl (seel@\)

Francois Lajeuness-Robert, Université Laval (sergl. Ktari) (see 3 below)

Dr. Timothy C. Lethbridge, University of Ottawseg 4 below)

Dr Abdelwahab Hamou-Lhadj, Concordia Universggd 5 below)

Dr. Alex Navarre, NSERC (see 6 below)

Dr. Robert Roy, Polytechnique de Mtl (see 2 bglow

Dr. Marc Khouzam, Ericsson (see 1)

Pierre-Marc Fournier, Polytechnique de Mtl (sdw)

DRDKIM (PDF)

(1) Ericsson, 8400 Decarie Blvd., Town of Mont RhyQC, H4P 2N2

(2) Polyth. Montréal, Dpt. gen. inf./log., C.P.7#0 succ. Centre-Ville Montréal, QC, H3C 3A7
(3) Laval Univ., 2325 rue de I'Université, Québ@c, G1V 0A6

(4) Ottawa Univ., 75 Laurier Ave. E., Ottawa, OK1N 6N5

(5) Concordia Univ., Dpt. El. Comp. Eng., 1455Maisonneuve Blvd. W., Montreal, Qc, H3G 1M8
(6) NSERC, 350 Albert Street, Ottawa, ON, K1A 1H5

TOTAL LIST PART 2

TOTAL COPIES REQUIRED

DRDC Valcartier TR 2008-300 127

This page intentionally left blank.

128 DRDC Valcartier TR 2008-300

DOCUMENT CONTROL DATA
(Security classification of title, body of abstracid indexing annotation must be entered whentbeaé document is classified)

1. ORIGINATOR (The name and address of the organization prep#réxdocument. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepargd Gentre sponsoring a (Overall security classification of the document
contractor's report, or tasking agency, are enteredction 8.) including special warning terms if applicable.)
Defence R&D Canada — Valcartier UNCLASSIFIED
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada
3. TITLE (The complete document title as indicated on tie page. Its classification should be indicatedh®yappropriate abbreviation (S, C or U)
in parentheses after the title.)
Tracing, monitoring and analysis of distributed multi-core systems: Selected feasibility studies
4. AUTHORS (last name, followed by initials — ranks, titles;.enot to be used)
M. Couture, Prenoveau, F., Lajeunesse-Robert, F.
5. DATE OF PUBLICATION 6a. NO. OF PAGES 6b. NO. OF REFS
(Month and year of publication of document.) (Total containing information, (Total cited in document.)
including Annexes, Appendice$,
etc.)
April 2009 127 78
7. DESCRIPTIVE NOTES (The category of the document, e.g. technical tepachnical note or memorandum. If appropriatéeethe type of report,
e.g. interim, progress, summary, annual or finateGhe inclusive dates when a specific reportiegqa is covered.)
Technical Report
8. SPONSORING ACTIVITY (The name of the department project office or labaty sponsoring the research and developmentiude@ddress.)
Defence R&D Canada — Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada
9a. PROJECT OR GRANT NO. (If appropriate, the applicable research |9b. CONTRACT NO. (If appropriate, the applicable number under

and development project or grant number under wiiierdocument which the document was written.)
was written. Please specify whether project or gyan

15BZ

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be

number by which the document is identified by thiginating assigned this document either by the originatdryothe sponsor.)
activity. This number must be unique to this docome

DRDC Valcartier TR 2008-300

11.

DOCUMENT AVAILABILITY (Any limitations on further dissemination of theadiment, other than those imposed by security i€ilzetion.)

Unlimited

12.

DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcemethis document. This will normally correspond het
Document Availability (11). However, where furthgistribution (beyond the audience specified in ($I)ossible, a wider announcement
audience may be selected.))

Unlimited

13.

ABSTRACT (A brief and factual summary of the document. ltyraso appear elsewhere in the body of the docuitssit. It is highly desirable
that the abstract of classified documents be usitied. Each paragraph of the abstract shall begiman indication of the security classification
of the information in the paragraph (unless theudoent itself is unclassified) represented as G), (R), or (U). It is not necessary to include
here abstracts in both official languages unlesgetht is bilingual.)

Monitoring, tracing and analysis of software ex@mutare indispensable activities for
surveillance, protection and optimization of outioral computing infrastructures. Howevel
recent years, our ability to mitor and analyze software execution has beenussyidisrupte
by the emergence of multbre CPUs and the higher level of interconnectiiibgtwee
networked systems). These complex systems aredgligzing deployed in our command
control operatins. They operate at a much higher transaction aatk they fragment a
execute their computing and communication taskpairallel, leading to huge and extren
complex execution traces to analyze. Current aisatgghnology is thus overwhelmed by th
new computing capability of these systems.

Studies were conducted in 2008 in order to bettind the next R&D effort that will be
undertaken to address this problem. Among othagthithe studies examined the feasibility g
developing a feedback-directed diagnostic systesedan thé.TTngframework. Important
risks associated with critical technical aspectthisf R&D effort were identified and reduced.
This document describes the work that was doneslsaw results and recommendations
resulting from these feasibility studies.

Le suivi, le tracage et I'analyse de I'exécutiogitielle sont des activités indispensables pc
surveillance, la protection et I'optimisation dales cadre de notre infrastructure natiol
informatique. Néanmoinges derniéres années, notre capacité a suivrealisanI'exécutio
logicielle a été profondément affectée par I'émeogedes unités de calcul (CPU) multi cc
et le haut niveau d’interconnexion (entre les sys® mis en réseau). Ces systémes comple
sont déja déployés dans nos opérations de commamnderh contrble. Leur fonctionnem
implique des taux de transaction plus élevés ; -cefvagmentent et exécutent leurs tache
communication et de calcul en parallele, ce quultésen d'énormesraces d’exécutic
complexes & analyser. La technologie d'analyseelietiest donc dépassée par la nou
capacité de calcul de ces systémes.

Des études ont été réalisées en 2008 afin de rdi&inir les prochains efforts de R et D qui
seront déployés dans le but d’aborder ce probl&ameni celles-ci, la possibilité de développsd
un systéme de diagnostic baseé sur la rétroactiatilisant I'environnementTTnga été
étudiée. Les risques importants associés aux aspatiques de cet effort de R et D ont été
identifiés et réduits. Ce document énumeére et tiéctiavail réalisé ainsi que les résultats et
recommandations résultant de ces études de fatiéabil

14.

KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases ¢hatracterize a document and could be
helpful in cataloguing the document. They shouldélected so that no security classification isimeqgl. Identifiers, such as equipment model
designation, trade name, military project code nageegraphic location may also be included. If fdeskeywords should be selected from a
published thesaurus, e.g. Thesaurus of EngineariddScientific Terms (TEST) and that thesaurustified. If it is not possible to select
indexing terms which are Unclassified, the clasatfon of each should be indicated as with the jitl

Monitoring, tracing, analysis, formalism, execution trace, multi-core, distributed, information
system

Xe

—

