
Userspace Application Tracing with Markers and Tracepoints

Jan Blunck Mathieu Desnoyers Pierre-Marc Fournier
SUSE Linux Products GmbH École Polytechnique de Montréal École Polytechnique de Montréal

jblunck@suse.de mathieu.desnoyers@polymtl.ca pierre-marc.fournier@polymtl.ca

Abstract

Today, multiple tracing infrastructures are available for the
Linux operating system. Most of them are focused on trac-
ing the execution of kernel code. In some cases it is helpful
to also have insight into the userspace application’s activity
to fully understand the system behavior. A solution that is
capable of tracing both userspace and kernel mode code is
therefore necessary.

A new userspace tracing solution based on the Linux Trace
Toolkit Next Generation (LTTng) [1] fills this gap and inte-
grates seamlessly into the existing LTTng analysis applica-
tions available today. This paper describes the architecture
of the LTTng Userspace Tracer and how it can be used in
applications.

1. Introduction

Today’s Linux distributions offer a wide range of tools for
tracing. Users and developers can choose between System-
Tap, OProfile, Ftrace or Ptrace just to name a few. How-
ever, none of these cover tracing of userspace applications
and the execution of kernel code in parallel.

The new LTTng userspace tracing framework tries to fill
this gap. It provides the sames instrumentation to userspace
applications that is available by the kernel components of
the LTTng framework. Through the use of tracepoints and
markers it is designed for low performance impact from
ground up.

The output data of the userspace tracer is generated in LT-
Tng format. It enables the trace viewer to merge the traces
from userspace with the data from the kernel tracers. There-
fore we have a full tracing solution that covers events from
the whole system.

1.1. Previous Work

Classic userspace tracing applications, for instance
strace, are often based on the ptrace() system call. The

system call provides a means by which a parent process may
observe and control the execution of child processes. Its pri-
mary focus is on breakpoint debugging, system call and sig-
nal tracing. Both system call and signal tracing is nowadays
obtainable at a much lower cost through kernel tracing.

Profiling oriented tools like OProfile are technically able to
trace kernel code as well as the running userspace appli-
cations. However, these tools do not do application spe-
cific traces. Another limitation of profiling is that it uses
sampling. Therefore it can detect general tendencies, but
it cannot help with detecting problems that occur in short
episodes.

IBM’s DProbes [2] is a low-level system debugging facility
that is able to support userspace, kernel mode and interrupt
mode probes. It uses technology that has already proven
itself on OS/2, namely kernel probes (kprobes), hard-
ware debug registers and hardware watchpoints (dr alloc
and kwatchpoints) and userspace probes (uprobes). The
userspace probes are RPN based. DProbes comes with its
own compiler that supports a C-like language to be used
for probe definition. The userspace probes are system-wide
global and therefore common to all instances of an object
module. A disadvantage of the DProbes userspace approach
is the performance impact due to the use of traps (INT3 on
Intel’s x86) for breakpoints and watchpoints.

DProbes does not seem to be available for recent versions
of the Linux operating system anymore. Some of its com-
ponents, like kprobes, have only been partially available up-
stream or are still being worked on.

SystemTap [3] has both statically and dynamically defined
probe points available for kernel mode tracing. Available
in an early prototype is support for non-symbolic probe
points that uses raw virtual addresses. The userspace pro-
cess is identified by process id or executable path name.
SystemTap makes use of KProbes internally. Hence, it is
a breakpoint-based approach.

Ftrace has a feature to generate an event from userspace
that shows up in the kernel trace. This is done by writing
a string to the trace marker file. The syscall-based ap-
proach has the same disadvantage as the breakpoint-based

1

approach, namely significant performance overhead.

2. Userspace Tracing Components

The LTTng Userspace Tracer (UST) consists of the follow-
ing components:

• C header files necessary to statically define tracepoints

• shared library that applications can link against or
preload

• tracing daemon that acts as a data sink

• control application to dynamically enable/disable tra-
cepoints

From an application programmer’s point of view, the major
component of the userspace tracer is the C header. It gets
included for static instrumentation of interesting points in
the application to trace.

The shared library includes the code to activate and arm
the markers. The trace functions are hooked up with the
markers and produce the LTTng formatted output and send
it to the tracer daemon.

The Userspace Tracer Library (libust) itself consists of the
following major components:

• userspace RCU (read-copy-update) library [5]

• userspace markers and tracepoints

• kernel compatibility headers [6]

• ltt-relay channels port

The userspace RCU library is necessary for quick read ac-
cess to shared resources like control variables. Multiple
papers have been written on this topic and the concept is
well understood [4]. The userspace RCU library is a re-
implementation of the kernel’s RCU source code. It is self-
contained and can be used in libraries without any modifi-
cation of the application [7].

The kernel compatibility headers are necessary to get the
markers and tracepoint code ported to userspace. The Linux
kernel is not compiled against the system’s standard startup
files and C library 1. Therefore, it comes with its own stan-
dard library code in form of C headers. The kernel header
files differ from the standard C library headers and can not

1See gcc’s -nostdinc option.

be used directly in userspace applications. Hence, the re-
quired kernel headers necessary for the marker and trace-
point code must be selectively ported to userspace. The
kernel compatibility headers have been implemented from
scratch and are released under LGPL (see also 3).

The tracer daemon acts as a trace data sink for the traced
application.

2.1 Userspace Markers and Tracepoints

Markers and tracepoints are lightweight code instrumenta-
tion mechanisms. Linux Kernel Markers, created as part of
the research on the LTTng, are now fully integrated in the
mainline Linux kernel. Userspace Markers as described in
this section are a port of the Linux Kernel Markers for use
in userspace applications.

The initial motivation to create a static instrumentation in-
frastructure for the Linux kernel based on markers is be-
cause the KProbe mechanism (as used by DProbes and Sys-
temTAP) adds a large performance overhead due to being
based on breakpoints. Comparing static instrumentation
with the KProbe-based instrumentation found in System-
TAP also provides a second motive to use static instrumen-
tation: its ability to follow more easily source code changes
in an open source project like the Linux kernel. Markers
can be placed at important locations in the code. These are
lightweight hooks that can pass an arbitrary number of pa-
rameters, described in a printk-like format string, to the at-
tached probe function.

A marker placed in code provides a hook to call a function
(probe) that can be provided at runtime. A marker can be
“on” (a probe is connected to it) or “off” (no probe is at-
tached). When a marker is “off” it has no effect, except
for adding a tiny time penalty (checking a condition for a
branch) and space penalty (adding a few bytes for the func-
tion call at the end of the instrumented function and adds
a data structure in a separate section). When a marker is
“on”, the function provided is called each time the marker
is executed, in the execution context of the caller. When the
function provided ends its execution, it returns to the caller
(continuing from the marker site).

This instrumentation mechanism enables the instrumenta-
tion of an application at the source-code level. Markers con-
sists essentially of a C preprocessing macro which adds, in
the instrumented function, a branch over a function call. By
doing so, neither the stack setup nor the function call are ex-
ecuted when the instrumentation is not enabled. At runtime,
each marker can be individually enabled, which makes the
branch execute both the stack setup and the function call.

2

Markers provide an API based on format strings, which
limits type verification to basic types, but allows to easily
add new markers to source code by modifying a single line.

After experimenting with the Linux Kernel Markers, two
downsides with this infrastructure have been noticed. First,
it only allows limited type-checking, which can be prob-
lematic if pointers must be dereferenced by the tracer code.
Second, it hides the instrumentation in the source code,
keeping no global registry of the instrumentation. It is there-
fore hard to impose name-space conventions and to keep
track of instrumentation modification without monitoring
the whole kernel tree.

Therefore, Tracepoints have been created to deal with this
problems. They are extensively based on the Linux Ker-
nel Markers code, with a couple of modifications to fill the
missing parts. The Tracepoints are now integrated in the
mainline Linux kernel and already used extensively.

The main difference between Tracepoints and Markers is
that tracepoints require an instrumentation declaration in a
global header. It allows type-aware verification of the tracer
probes (callbacks) connected on the instrumentation site by
declaring both the instrumentation call and the probe regis-
tration and unregistration function within the same declara-
tion macro, which is aware of the types expected. There-
fore, it ensures that both the caller and the callee types will
match.

It also provides the needed global instrumentation reg-
istry: all the global tracepoint declarations are kept in the
include/trace/ directory of the Linux kernel tree.

2.1.1 Marker Usage

A marker, added into C code, looks like:

trace_mark(subsystem_event, "myint %d
mystring %s", someint, somestring);

Where :

• subsystem event is an identifier unique to the event

– subsystem is the name of the subsystem.

– event is the name of the event to mark.

• “myint %d mystring %s” is the formatted string for the
serializer. “myint” and “mystring” are repectively the
field names associated with the first and second param-
eter.

• someint is an integer.

• somestring is a char pointer.

This generates the assembly shown in figure 1 and 2 in the
instrumented function. This infrastructure is voluntarily bi-
ased to minimize the performance overhead when tracing
is disabled. Therefore, the branch executing stack setup and
function call (figure 2) is marked as being unlikely using the
gcc builtin expect(). This gives a hint to the com-
piler to move the instructions executed only when tracing is
enabled outside of cache-hot function cache lines.

Connecting a function (probe) to a marker is done by
providing a probe (function to call) for the specific marker
through marker probe register(). Removing a
probe is done through marker probe unregister();
it will disarm the probe. Calling
marker synchronize unregister() is required
after unregistering a probe before its dynamic shared object
can be unloaded.

2.1.2 Tracepoint Usage

Two elements are required for tracepoints :

• A tracepoint definition, placed in a header file.

• The tracepoint statement, in C code.

In order to use tracepoints, you need to include
ust/tracepoint.h.

An example of tracepoint listing is shown in Figure 3 and 4.
In the example following definitions are used:

• subsys eventname is an identifier unique to the event

– subsys is the name of the subsystem.

– eventname is the name of the event to trace.

• TP PROTO(int firstarg, struct
task struct *p) is the prototype of the function
called by this tracepoint.

• TP ARGS(firstarg, p) are the names of the pa-
rameters, as found in the prototype.

The naming scheme subsys event is suggested here as
a convention intended to limit collisions. Tracepoint names
are global to the application: they are considered as being
the same whether they are in the core application or a dy-
namic loadable object.

Connecting a function (probe) to a trace-
point is done by providing a probe (func-
tion to call) for the specific tracepoint through
register trace subsys eventname().

3

10: 80 3d 00 00 00 00 00 cmpb $0x0,0x0(%rip)
17: 75 0e jne 27

Figure 1: Generated assembly in the instrumented function hot-path.

27: 31 f6 xor %esi,%esi
29: 48 c7 c7 00 00 00 00 mov $0x0,%rdi
30: 31 c0 xor %eax,%eax
32: ff 15 00 00 00 00 callq *0x0(%rip)
38: eb df jmp 19

Figure 2: Generated assembly in the instrumented function cold-path.

#include <ust/tracepoint.h>

DECLARE_TRACE(subsys_eventname,
TP_PROTO(int firstarg, struct task_struct *p),
TP_ARGS(firstarg, p));

Figure 3: Example for a tracepoint definition.

#include "trace/subsys.h"

DEFINE_TRACE(subsys_eventname);

void somefct(void)
{

...
trace_subsys_eventname(arg, task);
...

}

Figure 4: Example for a tracepoint statement.

4

Removing a probe is done through a call to
unregister trace subsys eventname().

tracepoint synchronize unregister() must
be called before the end of the dynamic shared object’s
destructor function to make sure there is no caller left
using the probe. This, and the rcu read lock() and
rcu read unlock() around the probe call, make sure
that probe removal and dynamic shared object unload are
safe.

The tracepoint mechanism supports inserting multiple in-
stances of the same tracepoint, but a single definition must
be made of a given tracepoint name over all the application
to make sure no type conflict will occur. Name mangling
of the tracepoints is done using the prototypes to make sure
typing is correct. Verification of probe type correctness is
done at the registration site by the compiler. Tracepoints
can be put in inline functions, inlined static functions, and
unrolled loops as well as regular functions.

2.2. Tracing Daemon

A daemon, ustd, collects the trace data as it is produced by
traced applications. When a marker is encountered, the trac-
ing library writes the resulting event in a buffer located in
a System V shared memory segment which is also mapped
in the address space of the daemon. This mapping occurs
when the tracing starts: the tracing library connects to the
daemon through a Unix socket, sending it the shared mem-
ory segment IDs. This approach enables the daemon to send
the data to disk or, eventually, to the network without copy-
ing it.

If the application ends suddenly, for example in the case
of a crash, the daemon detects it and is able to recover the
content of the buffers.

A daemon can be started globally for the system. It
then creates a named socket in a standard location, so
traced applications find it. Additionally or alternatively,
private daemons can be created for specific tracing ses-
sions. The named socket is then created in a custom lo-
cation and the tracing library is told its location via the
UST DAEMON SOCKET environment variable.

2.3. Trace Control

Trace control is done with a tool called ustctl. In oper-
ates on a list of PIDs, allowing to start and stop the tracing,
list the markers and enable or disable them. Markers can
be enabled or disabled dynamically, as the trace is being
recorded.

The communication with the traced process is done via a

named socket: each traced process creates a named socket
in a standard directory. The name given to the socket file is
the PID of the process. In order to disturb the traced process
as little as possible, these communications are handled by a
special thread in the traced process. This thread is created
only when needed.

Tracing on PID 11036 is started and stopped with the com-
mands:

$ ustctl --start-trace 11036

$ ustctl --stop-trace 11036

An example of marker listing is shown in Figure 5. Addi-
tionally can be enabled or disabled with the following com-
mands:

$ ustctl --enable-marker ust/request_start
11036

$ ustctl --disable-marker ust/request_start
11036

Sometimes, tracing is needed from the start of the program’s
main() function. In these cases, it is not acceptable to have
to run ustctl to start the tracing, because some events
will likely have already been lost. For this reason, it is pos-
sible to use environment variables to request that the tracing
be already started when the main() function starts.

The usttrace script automatically sets up the appropriate
environment variables, starts a private daemon for the trac-
ing session and starts the command specified on the com-
mand line. The trace is saved in /.usttrace/.

3. Userspace Challenges

The targeted licence for the LTTng Userspace Tracer is
LGPL. This is in order to allow the distribution of the li-
brary linked with non-GPL applications, including propri-
etary ones. Code ported from the Linux kernel and LT-
Tng has been rewritten when authorizations could not be
obtained to relicence the code. At the time of writing this
paper, from about 30 files that initially had licensing issues,
only one was remaining 2. A resolution is expected by the
end of 2009, otherwise the problematic parts of the file will
be rewritten.

Another challenge of userspace tracing is to use an appro-
priate buffering scheme. Currently, per-process buffers are
used. Therefore, there is one buffer per channel, per pro-
cess. This approach was the most straightforward when

2The file is relay.c, that contains the implementation of the buffering
mechanism. The licensing issues only apply to the API and not to the
LTTng-specific code.

5

$ ustctl --list-markers 11036
{PID: 11036, channel/marker: metadata/core_marker_format, state: 1, fmt: "channel %s name %s

format %s"}
{PID: 11036, channel/marker: metadata/core_marker_format, state: 1, fmt: "channel %s name %s

format %s"}
{PID: 11036, channel/marker: metadata/core_marker_id, state: 1, fmt: "channel %s name %s

event_id %hu int #1u%zu long #1u%zu pointer #1u%zu size_t #1u%zu alignment #1u%u"}
{PID: 11036, channel/marker: metadata/core_marker_id, state: 1, fmt: "channel %s name %s

event_id %hu int #1u%zu long #1u%zu pointer #1u%zu size_t #1u%zu alignment #1u%u"}
{PID: 11036, channel/marker: metadata/core_marker_format, state: 1, fmt: "channel %s name %s

format %s"}
{PID: 11036, channel/marker: metadata/core_marker_id, state: 1, fmt: "channel %s name %s

event_id %hu int #1u%zu long #1u%zu pointer #1u%zu size_t #1u%zu alignment #1u%u"}
{PID: 11036, channel/marker: ust/request_start, state: 0, fmt: "number1 %d number2 %d"}
{PID: 11036, channel/marker: ust/request_end, state: 0, fmt: "str %s"}
{PID: 11036, channel/marker: ust/tptest, state: 0, fmt: "myarg %d"}

Figure 5: Example of marker listing. One line represents one marker. The PID is followed by the channel and marker name
seperated by a slash. The state can be 0 (marker disabled) or 1 (marker enabled). The format string (fmt), describes the
arguments of the marker. Each argument name is followed by its printf()-like type specifier. The hash notation in the format
specifier is LTTng specific, and is used to specify the size of the integer arguments in the trace file.

porting from the kernel. However, it is not the most ef-
ficient. Indeed, the memory of a process may be shared
among several threads. If many threads running on different
cores are producing events in the same buffers, this induces
cacheline bouncing. Modifications to the library to reduce
this cacheline bouncing are in progress.

4. Summary and Future Work

With the LTTng Userspace Tracer there is a lightweight
userspace tracing solution available that can be used stan-
dalone but also integrates seamless into the existing LTTng
kernel tracer and its analysis applications available today.
The performance overhead introduced by the instrumen-
tation is negligible so that it even can be used in produc-
tion builds. Nevertheless, as the Userspace Tracer becomes
more mature, it is likely that new optimizations will result
in an even lower tracing overhead.

The current per-process buffers were a simple first step for a
port. However, this approach has an important limitation. It
induces cacheline bouncing on multi-threaded applications.
Using per-thread buffers would fix this problem.

In the kernel, the most optimized variant of the markers uses
immediate values, a technique that modifies an instruction
at the instrumentation point site when enabling or disabling
markers. This code modification consists in changing the
immediate value in a load immediate instruction. This in-
struction is immediately followed by a test of the register in
which the value was loaded. Depending on the result of the

test, the event is recorded or not. Work is also ongoing to
add support for static jump patching in gcc. Using a simi-
lar code modification scheme will therefore permit to mod-
ify a jump instruction, therefore saving branch prediction
buffers, instruction cache and a few cycles when executed.
Although this approach is faster than the current test of a
global variable, is much more architecture-dependant.

Work is currently in progress to enhance the daemon so it
can send traces over a network. This is particularly use-
ful on special purpose systems with little or no disk space
available.

References

[1] LTTng Project, http://www.lttng.org

[2] Dynamic Probes Project, http://dprobes.
sourceforge.net

[3] SystemTAP Manual Page, STAPPROBES(5)

[4] Paul McKenney, What is RCU, Fundamentally?, http://
lwn.net/Articles/262464/

[5] Mathieu Desnoyers and Paul E. McKenney, Userspace Read-
Copy-Update Library, http://ltt.polymtl.ca/
cgi-bin/gitweb.cgi?p=userspace-rcu.git

[6] Pierre-Marc Fournier and Jan Blunck, Kernel Compatibil-
ity Library, http://git.dorsal.polymtl.ca/?p=
libkcompat.git

6

[7] Mathieu Desnoyers, Userspace RCU Library : What
Linear Multiprocessor Scalability Means for Your Ap-
plication, Linux Plumbers Conference 2009, http:
//linuxplumbersconf.org/2009/slides/
Mathieu-Desnoyers-talk-lpc2009.pdf

7

