
30 | March 2014 | OPEN SOUrcE FOr YOU | www.OpenSourceForU.com

Turbocharged Tracing with LTTng

Tracing can be divided according to the functional aspect
(static or dynamic) or by its intended use (kernel or userspace
tracing–also known as tracing domains, in the case of
LTTng). Static tracing requires source code modification and
recompilation of the target binary/kernel, whereas in dynamic
tracing, you can insert a tracepoint directly into a running
process/kernel or in a binary residing on the disk.

Before we move further, let’s understand some jargon and
see what most of the tracing tools do. Tracing usually involves
adding a special tracepoint in the code. This tracepoint can look
like a simple function call, which can be inserted anywhere in the
code (in case of userspace applications) or be provided as part
of standard kernel tracing infrastructure (tracepoint ‘hooks' in
the Linux kernel). Each tracepoint hit is usually associated with
an event. The events are very low level and occur frequently.
Some examples are syscall entry/exit, scheduling calls, etc. For
userspace applications, these can be your own function calls.
In general, tracing involves storing associated data in a special
buffer whenever an event occurs. This data is obviously huge and
contains precise timestamps of the tracepoint hit, along with any
optional event-specific information (value of variables, registers,
etc). All this information can be stored in a specific format for
later retrieval and analysis.

Tracing tools
An important point to note is that not all available tracing tools

Tracing in the Linux world is part of the performance
analysis activities such as debugging, profiling or
even logging. Tracers are generally quicker and more

accurate than other tools used for performance analysis. But
why do we need them?

Tracing 101
Consider a soft real-time system in which the correctness
of the output is highly dependent on not just the accuracy,
but also on how long a program takes to execute in it. In
such a system, it’s not really feasible to use the traditional
debug approach of pausing the program and analysing it.
Even a small ptrace() call can add an unwanted delay to
the whole execution. Simultaneously, there could be a need
to gather huge amounts of data from the kernel as well
as your user space application at the same time. Is there
a way to gather all that without disrupting the program’s
execution?

Indeed, there is. The answer to all these questions is a
technique called tracing, which is more like system-wide
logging, but at a very low and fine grained level. Getting such
details is particularly helpful where intricate, time accurate
and well represented details of the system’s functioning
cannot be achieved by traditional debuggers like GDB or
KGDB. Neither can sampling-based profiling tools such as
Perf prove to be completely useful.

LTTng is the acronym for Linux Tracing Toolkit-
next generation. This highly speed tracing tool
helps in tracking down performance issues and
debugging problems across several concurrent
processes and threads. Read on to learn how to
install the tool and carry out a trace

Developers How To

DevelopersHow To

www.OpenSourceForU.com | OPEN SOUrcE FOr YOU | March 2014 | 31

follow a standard way of gathering data. They are all designed
differently. However, it is important to know that most of
the tools are now converging in terms of functionality (like
tracing, profiling, etc), and lots of features are beginning to
overlap with each other. Some well-known tools that provide
tracing or trace-like functionality are:
 � SystemTap: Uses a scripting technique somewhat similar

to Dtrace, with which you have to define your tracepoint
in a specific script. Conditions could be associated
with each tracepoint and written in a C-like SystemTap
script. The script is then compiled to a kernel module
before tracing starts. For dynamic tracing in the kernel,
SystemTap uses kprobes and for static tracing, the
TRACE_EVENT macro. In userspace, dynamic tracing is
provided by the uprobes kernel module and Dyninst (pure
user-space dynamic instrumentation).

 � Ftrace: This is quite a popular tool among kernel
developers and is part of the mainline kernel. Dynamic
traces are based on kprobes and the static ones use the
TRACE_EVENT macro. However, you can’t define
conditions, and only filtering of the traces can be done.
This is quite fast compared to other tools but is mainly
aimed at the kernel guys.

 � GDB: Surprise! In case you didn’t know, your friendly
neighbourhood debugger doubles up as a tracer too.
Userspace dynamic tracing can be used by the trace
command, which is a TRAP-based technique to collect
data. Use the ftrace command (not to be confused
with Ftrace described above) for very fast tracing but
remember that it can’t be used everywhere in the code.
Conditions for trace collection can be provided, which
are bytecode translated and executed at runtime. You can
also use KGTP for dynamic tracing, which makes the
kernel expose a GDB remote interface onto which any
GDB’s instance can get hooked, and use the available
trace commands.

 � Perf: This is also a popular Swiss-army knife kind of
analysis tool. Developers use this mainly to gather
hardware performance counter data or gather information
about bottlenecks in process execution. The tracing
features of Perf are similar to Ftrace, though Ftrace is
better in terms of performance.

 � Ktap: This is a very recent entry into the tracing arena.
It functions almost exactly like Dtrace as seen from its
bytecode-based dynamic tracing scripts, which are very
easy to implement. A lightweight VM is implemented in the
kernel itself for bytecode interpretation of tracepoint scripts.
It is not yet in the mainline kernel though.

LTTng
Linux Trace Toolkit next generation is a very fast and
extremely low-overhead kernel and userspace tracer. Low
overhead, in simple terms, means that even with a ‘non-
activated' tracepoint inserted in the code, it gives near-

zero impact on the overall execution of the target application.
This makes LTTng a bit different from the other tools and a
default choice for real time applications. Its tracing technique
implements a fast wait-free read-copy-update (RCU) buffer for
storing data from tracepoint execution.

In Figure 1, you can see that the LTTng session daemon acts
as a focal point for trace control. An instrumented application,
which contains the user’s desired tracepoints, automatically
registers itself to the session daemon just as its execution starts.
So is the case with the kernel too. This is useful for handling
simultaneous trace control for multiple trace sessions. From now
on, the session daemon will manage all the tracing activity. The
LTTng consumer daemon is responsible for handling the trace
data coming from the applications. It exports raw trace data
and builds a CTF to be written on the disk. The Common Trace
Format (CTF) is a compact binary format, which stores all the
trace data in a very well structured manner for further analysis by
certain trace viewers and converters such as Babeltrace (command
line), Linux Trace Toolkit Viewer (LTTV - graphical) or the
Eclipse Tracing and Monitoring Framework (TMF - graphical).
For example, you can view the exact time and the control flow
through the various calls in the kernel, graphically, in a timeline
using TMF, instead of wading through thousands of lines of trace
data manually, as in Babeltrace’s output. We’ll cover more about
using TMF efficiently later, when we discuss analysing traces
graphically to diagnose bottlenecks in the system.

The joys of tracing
Well, going further, let’s get our hands dirty with some tracing,
and see all the insights a trace analysis can give about our
kernel or application. The current stable release of LTTng is 2.3
Dominus Vobiscum.

Figure 1: A typical tracing process flow with LTTng

Developers How To

32 | March 2014 | OPEN SOUrcE FOr YOU | www.OpenSourceForU.com

as root, and the LTTng client to be run either by root itself or
by the user who should be part of the ‘tracing’ group.

$ sudo groupadd -r tracing

$ sudo usermod -aG tracing suchakra

We are almost set! Just reboot your machine and check if the
session daemon (lttng-sessiond) has started automatically and
if the LTTng kernel modules are in place or not.

$ lsmod | grep lttng_tracer

$ sudo service lttng-sessiond status

$ groups

foo tracing

Your first trace
Let’s start with some simple experiments by tracing a
1-second sleep at the kernel level. You can first check the
available kernel events:

$ lttng list -k

Kernel events:

 writeback_nothread (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

 writeback_queue (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

 writeback_exec (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

 writeback_start (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

 writeback_written (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

 writeback_wait (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

 writeback_pages_written (loglevel: TRACE_EMERG (0))

(type: tracepoint)

.

.

 sched_switch (loglevel: TRACE_EMERG (0)) (type:

tracepoint)

.

A long list of available kernel events is shown. Let’s
pick sched_switch for our quick experiment and proceed.
Make sure that lttng-session is running as the root before
proceeding:

#create a new tracing session

$ lttng create osfy

Session osfy created.

Traces will be written in /home/suchakra/lttng-traces/osfy-

20131227-220359

 Note: The LTTng releases starting from version 2.0
onwards are named after Québec’s micro-brewery beers!

System setup
I am using Fedora as an example; however, you can search for
similar packages on Ubuntu and proceed. First, update your
system and install the Development Tools package, which will
give you the kernel headers too. Considering that you have
configured sudo, give the following commands:

$ sudo yum update

$ sudo yum group install “Development tools”

Check if the kernel headers package is the same version as
your kernel:

$ rpm -qa | grep kernel-devel

kernel-devel-3.11.10-301.fc20.x86_64

$ uname -r

3.11.10-301.fc20.x86_64

Building the kernel modules
If all seems to be going well, start off with building and
installing the LTTng kernel modules for Fedora. If you are on
Ubuntu, skip this step as the lttng-modules package is already
available in the repos.

$ wget http://lttng.org/files/lttng-modules/lttng-modules-

2.3.4.tar.bz2

$ tar -xvf lttng-modules-2.3.4.tar.bz2

$ cd lttng-modules-2.3.4.tar.bz2

$ KERNELDIR=/usr/src/kernels/$(uname -r) make

$ sudo KERNELDIR=/usr/src/kernels/$(uname -r) make modules_

install

$ sudo depmod -a

$ sudo modprobe lttng-tracer

You can use lsmod | grep lttng to see if the lttng_tracer
module is loaded properly.

Installing LTTng packages
Install the packages for lttng-tools that provide the main
components and the tracing client. You would also need lttng-
ust for the userspace tracing library and its devel package,
which will contain the necessary headers and examples for
userspace tracepoints. Babeltrace, as described before, is a
simple command line CTF trace viewer and converter.

$ sudo yum install lttng-tools lttng-ust babeltrace lttng-ust-devel

Post-installation
For kernel tracing, we need the LTTng session daemon to be run

DevelopersHow To

www.OpenSourceForU.com | OPEN SOUrcE FOr YOU | March 2014 | 33

Just a cursory look at the above code can tell you that
each line is a single sched_switch event recorded from the
kernel. The timestamps are high precision as you can see
from two consecutive events. The one in parenthesis is
the‘delta', i.e., the time between the previous event and the
current one. The cpu_id tells the CPU for which the event
was scheduled and various other context information is
attached. All this is part of the CTF trace written.

After tracing is over, we can destroy the current tracing
session as follows:

$ lttng destroy

Going further, we can use nice GUI tools such as Eclipse
TMF for analysing the trace. Figure 2 shows what similar
information would look like in TMF. You can see the timeline
and control flow view, which is more intuitive. In the next
article we will go into the details about userspace tracing with
some real life examples and then move on to explore how to
analyse a trace with TMF. Happy tracing!

#enable the sched_switch event and

$ lttng enable-event -k sched_switch

kernel event sched_switch created in channel channel0

#start tracing

$ lttng start

#start sleeping

$ sleep 1

#stop tracing

$ lttng stop

Waiting for data availability.

Tracing stopped for session osfy

So all the sched_switch commands between the start and
stop of traces are traced, and the traces are written in /home/
suchakra/lttng-traces/osfy-20131227-220359. We can have a
quick look at them using Babeltrace. Alternatively, the lttng
view command calls babeltrace as the default viewer.

$ babeltrace /home/suchakra/lttng-traces/osfy-20131227-220359

This will list all the events with timing and other related
context information like prev_comm, next_comm, next_tid,
etc, per line. The problem is that there is an information
overload for the user. In fact, we can do the following:

$ lttng view | wc -l

14520

Observe that LTTng recorded a total of 14520 sched_
switch events in the short tracing duration, which is a lot to
understand in one go. To see the events of interest (those
related to the sleep command), take a look at the following
code snippet:

$ lttng view | grep sleep

[22:14:45.118927309] (+0.004878641) isengard.localdomain

sched_switch: { cpu_id = 3 }, { prev_comm = “swapper/3”,

prev_tid = 0, prev_prio = 20, prev_state = 0, next_comm =

“sleep”, next_tid = 11766, next_prio = 20 }

[22:14:45.119069564] (+0.000000194) isengard.localdomain

sched_switch: { cpu_id = 3 }, { prev_comm = “sleep”, prev_

tid = 11766, prev_prio = 20, prev_state = 64, next_comm =

“swapper/3”, next_tid = 0, next_prio = 20 }

[22:14:45.147798113] (+0.000301434) isengard.localdomain

sched_switch: { cpu_id = 1 }, { prev_comm = “sleep”, prev_

tid = 11801, prev_prio = 20, prev_state = 1, next_comm =

“swapper/1”, next_tid = 0, next_prio = 20 }

.

.

.

Figure 2: A sample trace observed in TMF

Thanks to Simon Marchi and Francis Giraldeau for reviewing this article and to
the ‘tracing folks' at EfficiOS, Ericsson and École Polytechnique de Montréal.

Acknowledgements

In the meantime, have a look at http://lttng.org/documentation and
http://www.youtube.com/user/lttng for more information. Note that the
videos are a bit old and some steps may vary.

Resources

By: Suchakrapani Sharma

The author is a PhD student at École Polytechnique de Montréal.
He is currently doing research on dynamic tracing tools, and has
varied interests—from performance analysis tools to embedded
Linux and UX/graphics design. For more details, visit
http://suchakra.wordpress.com

