
«

Report W7701-101396/001/QCC

Department Consulting

Authors Jean-Philippe Luiggi, Julien Desfossez

Date December 22th 2010

Table of Contents
1. Statement of Work...4
2. Introduction...4
3. Network Security...6

3.1. Network Filtering: The Firewall..6
3.2. Network detection: NIDS..9
3.3. Network Monitoring..13
3.4. Network Reporting..15
3.5. Network Analysis..16
3.6. Network Audit...17

4. Software Security..19
4.1. Introduction to Application-Related Issues and Their Solutions...19
4.2. Application Firewall..19
4.3. Intrusion Detection: HIDS...21
4.4. Application Monitoring...22
4.5. Application Reporting..23
4.6. Application Analysis..24
4.7. Application Audit...28

5. Operating System Security..29
5.1. Hardening..29
5.2. Virtualization...32
5.3. Tracking Data..35
5.4. Encrypting Data...37
5.5. Using the System...38

6. Product Analysis..39
6.1. Introduction...39
6.2. List of Criteria to Consider:...40
6.3. Network firewall..43
6.4. Network detection..45
6.5. Network Monitoring..47
6.6. Network reporting..49
6.7. Network analysis...51
6.8. Network audit..53
6.9. Application firewall...55
6.10. Host intrusion detection system...57
6.11. Host monitoring...59
6.12. Application reporting...61
6.13. Analyze the security of applications..63
6.14. Application audit..66
6.15. Operating system security..68
6.16. Virtualization...70
6.17. Tracing the execution of programs..72

Révolution Linux Report W7701-101396/001/QCC 2 / 88

6.18. Encrypt the data...74
6.19. Managing the connection to the system ..76

7. Conclusion ..78
8. Appendix A - list of all products identified...80

Révolution Linux Report W7701-101396/001/QCC 3 / 88

1. Statement of Work

DRDC Valcartier must conduct a state-of-the art study and a comprehensive analysis of existing Linux-

based monitoring and security systems, which are utilized at runtime to monitor the software activity

and states (as well as static files) of its computing devices (and not of its network).

The result should be a comprehensive analysis of Linux-based monitoring and security systems.

2. Introduction

Information security concepts have become an essential component of our current usage of computing

technology.

An information system’s security can be viewed as a group of various elements that are more or less

resistant to external threats.

The multiplicity of software solutions available on the market combined with increasingly diverse

needs creates many security issues. To address these, a multi-level security (“MLS”) policy must be

implemented.

Although there are many different ways to achieve this, the defence in depth approach is one of the

most effective. More than a simple perimeter protection, this line of defence builds several levels of

security and isolates them from one another, quite similarly to the way ancient fortified castles were

built.

In order to conduct the requested study, we will base ourselves on this principle and focus our research

on the various parts of a Linux system, starting with the lower levels (network) and gradually working

our way up to the applications. We will then extrapolate this information to categorize the systems’

security tools based on the risks they address.

The following aspects of information system security will be studied:

• network and telecommunications security;

• application and data security;

• operating systems security;

Révolution Linux Report W7701-101396/001/QCC 4 / 88

• system access security.

The following diagram illustrates the chosen approach:

Security zones

Révolution Linux Report W7701-101396/001/QCC 5 / 88

3. Network Security

3.1. Network Filtering: The Firewall

Introduction

The firewall, which is often the first line of defence of a computing infrastructure, has significantly

evolved since its beginnings [W2-1].

Its function is to provide secure, controlled network connections between various parts of a network

(both external and internal) [W2-2].

There are different types of firewalls [W2-3] that act at different levels within the infrastructure [W1-

4], including:

• Network firewalls (stateless and statefull)

• Application firewalls

• Identity-based firewalls

The first generation of filter systems used basic criteria and simply filtered packets without keeping

track of their state (to this day they are still referred to as stateless firewalls). The concept consists of

taking each packet independently from the others and comparing to a list of preconfigured rules.

This method had its limitations as it did not offer the ability to precisely determine what needed to be

blocked. Therefore, the next step was to implement statefull firewalls, which successfully resolved

these issues.

One way to study state management concepts is to take a closer look at how the Transmission Control

Protocol (TCP) works. Unlike UDP, TCP handles actions related to connections, such as identifying

who created them, making sure each packet follows the previous one in sequence, and so forth.

This simple notion greatly simplifies the process, as it is easy to tell the system to grant access to all

incoming packets that are associated with the initiated connection. It is to be noted that the Netfilter

firewall used in Linux can keep track of states with UDP and ICMP.

Application firewalls were implemented for a very specific purpose: to filter packets based on their

contents (the data itself) rather than their container (the connection data).

Révolution Linux Report W7701-101396/001/QCC 6 / 88

The FTP protocol is a prime example of this. This protocol works (in active mode) by opening ports

dynamically and exchanging IP or TCP level information — addresses and network ports, respectively

— at the application level. To achieve this, the concept of “application” must be understood and each

application must be known in order to be managed by the security solution.

Another type of application-level firewall verifies if the contents of the packets complies with the

configured protocol. This is increasingly becoming important, as it is more and more common for

applications to use certain network ports for convenience purposes. Indeed, software clients connecting

to peer-to-peer networks are often configured to use TCP port 80 (normally dedicated to HTTP) in

order to bypass filtering rules that are too restrictive.

An identity-based firewall possesses two different functions. The first is to enable a connection based

on the person who is attempting to connect, rather than just based on the connection data. The second

consists of determining whether a user has the right to access a particular application.

The latter function is very useful as it provides the ability to decide that “John Doe can connect to the

Internet using Firefox, but not Chrome,” for example.

Port knocking is another restriction functionality based on firewall usage; this method may be used to

modify a firewall’s behaviour.

The advantage of port knocking is that it opens/closes ports dynamically and in real time. The method

consists of temporarily establishing connections to a set of specific network ports according to a

particular logic. The port knocking process runs in background mode and checks (for example) the

network connections that were attempted on the firewall. If a particular sequence is found, the server

memorizes the source IP address (the one which initiated the sequence) and changes the firewall’s rules

in order to open the corresponding network port (described in the configuration file) for this sequence.

An interesting thing to note is that only the machine that initiated the request can verify if the operation

was successful. If the identification process fails, no new port will be opened and no information will

be sent. In the same manner, the port can be closed using a connection sequence that differs from the

first one; its function will be to block access to the previously opened network port using the firewall.

Révolution Linux Report W7701-101396/001/QCC 7 / 88

The major advantage of this type of manipulation is the complexity it creates for an attacker; unless the

correct method is known to the attacker, he or she will have to test 655354 packets (65535³ for the three

port sequence, multiplied by 65535 attempts each time to discover the port that is possibly open).

History

Firewalls go back a long way (1987) and various RFCs exist on the subject (RFC 1636, etc.) [W2-2].

Most experts attribute authorship of this solution to Digital Equipment Corp (DEC); the corporation

produced their first implementation of this type of system towards the end of the 1980’s.

The solution was named gatekeeper.dec.com and was designed by Jeff Mogul, Brian Reid, and Paul

Vixie. DEC SEAL was the first commercial product of this sort, but authorship for the first statefull

firewall is attributable to Nir Zuk from Check Point, who created the technology towards the middle of

the 1990’s.

Tools

• Ebtables: http://ebtables.sourceforge.net/

• Netfilter: http://www.netfilter.org/

• NuFw: http://www.nufw.org/

• L7-filter: http://l7-filter.sourceforge.net/

• knockd: http://www.zeroflux.org/projects/knock

References

• [W2-1] The roots of the firewall:

http://www.avolio.com/pres/FirewallsHistory_files/v3_document.html

• [W2-2] Freed, N. (2000). Behavior of and requirements for internet firewalls. Retrieved

(2010, August 10) http://www.ietf.org/rfc/rfc2979.txt

• [W2-3] A History and Survey of Network Firewalls: http://www.cs.unm.edu/~treport/tr/02-

12/firewall.pdf

• [W2-4] - Overview of firewalls at the various ISO levels:

http://www.cs.unm.edu/~treport/tr/02-12/firewall.pdf

Révolution Linux Report W7701-101396/001/QCC 8 / 88

• [W2-5] Whitehouse W, Yamamoto M (2004) Knock Knock, Sandstorm Enterprises Yarden

J (2005) http://techrepublic.com.com/5100-1009-5798871.html

• [W2-6] Jeanquier S (2006) An Analysis of Port Knocking and Single Packet Authorization.

http://www.securethoughts.net/spa/An Analysis of Port Knocking and Single Packet

Authorization (Sebastien Jeanquier).pdf

3.2. Network detection: NIDS

Introduction

Blocking packets is not enough to ensure the legitimacy of the network traffic passing through the

equipment mentioned in the previous chapter.

Indeed, it is possible to conceal malevolent sequences even within legitimate traffic (on authorized and

validated ports).

Let’s take the HTTP (TCP/80) protocol as an example. Logically, connections to a web server will be

authorized by the firewall, but what about requests attempting to take advantage of cross-site scripting

security vulnerabilities?

The packets are legitimate at the network and even at the application level (they comply with the HTTP

protocol). However, they are not legitimate in terms of system security as they attempt to exploit an

application vulnerability. Clearly, an additional device must be implemented to complement the action

of the firewall.

This type of equipment is called an intrusion detection system (IDS). Here, the word intrusion is used

in a broad sense because a simple CSS type attack would be detected as an intrusion.

Network intrusion detection systems can be passive or reactive (IPS), software or hardware-based, and

they can either use a library of signatures or check for protocol irregularities.

Their function is to search for specific attack sequences by analyzing network traffic and verifying its

innocuousness. If a particular sequence is identified as potentially malicious (true or false), the device

sends an alert to the security administrator or, in the case of an IPS, blocks the packet in question.

Révolution Linux Report W7701-101396/001/QCC 9 / 88

There are several things to keep in mind when it comes to an IPS. First of all, it is important to

understand that packets will be blocked if the need arises, which means it is essential to eliminate as

many false positives (false alarms) as possible to avoid blocking legitimate requests.

When implementing an IPS, special consideration must also be given to its placement. The following

diagram illustrates the two main setup methods.

The Y connection is the easiest to set up, and if a physical failure (breakage) of the IPS occurs, it will

have very little impact on the overall operation of the solution. In this operating mode, the equipment

must interact with the firewall in order to block traffic. The IPS must therefore reconfigure the rules as

needed in order to minimize exposure to threats.

In the second scenario, the equipment cuts through the network and can directly block packets

considered to be malicious.

It is very important to make sure a physical failure would not compromise the integrity of the network

connection setup. For instance, a simple electrical power failure must not prevent packets from passing

Révolution Linux Report W7701-101396/001/QCC 10 / 88

through the system, as it is preferable to run the risk of letting malicious packets get through rather than

compromise the entire operation of the system because of a faulty connection.

Whether an IDS or IPS is used, both solutions will use one of the following methods to search for

security issues.

The first method is identical to the functionality performed by most antivirus systems and consists of

searching a database of signatures to find the binary patterns observed on the network. If a match is

found, an alert will be sent out or the packet will be blocked (in IPS mode).

One of the basic premises of a signature-based approach is that it will only be effective against known

threats; all unknown threats will pass through the system without any difficulty. This is an important

consideration that is often overlooked by administrators.

The other approach consists of searching for functional anomalies, including the following:

• Unusual network traffic (in terms of volume, type, date/time of occurrence, etc.)

• Inconsistent usage of computer resources compared to what is normally observed (CPU

load, number of processors, etc.)

In sum, normality is a key concept of this approach — identifying what is normal and what isn’t.

Thus, when using this type of technology, one must first and foremost identify what constitutes a

normal mode of operation in order to be alerted when activity outside of this scope is observed.

One of the benefits of this approach compared to a signature-based system is that attacks that have not

yet occurred can possibly be detected.

History

The work carried out by Mr. James P. Anderson in 1980 established the foundation of IDS. [W3-1]

In 1986, Dorothy E. Denning, assisted by Peter G. Neumann, published [W3-2] a work that formed the

basis for many of the systems we use today. The model described in their work used various types of

statistics to detect functional anomalies; its result was the IDES intrusion detection system offered by

SRI International, which ran on Sun’s workstations.

Révolution Linux Report W7701-101396/001/QCC 11 / 88

Towards the end of 1998, a product called Snort was conceived and has since become the most widely

used intrusion detection system, with nearly 300,000 registered users.

In 1999, the LBNL, in Berkeley (CA), released a new open-source tool named Bro [W3-3]. Although it

is not as widely known and used as Snort, the tool is worthy of mention, one of its strengths being its

dynamic protocol analysis functionality [W3-4], that is, its ability to perform precise protocol analysis

without regard to the number of the network port used.

More recently, The Open Information Security Foundation (OISF) [W3-5], an organization created

using funds from various institutions including the US Department of Homeland Security (DHS) [W3-

6], developed and released a tool called Suricata [W3-7], which offered several new and highly useful

Features (use of multiple processors, CUDA [W3-8]).

Tools

• Bro: Anomaly based, http://bro-ids.org

• Snort: Misuse based, http://www.snort.org

• Suricata: http://www.openinfosecfoundation.org/

References

• [W3-1] Anderson, James P., "Computer Security Threat Monitoring and Surveillance"

Washing, PA, James P. Anderson Co., 1980.

• [W3-2] Denning, Dorothy E. "An Intrusion Detection Model," Proceedings of the Seventh

IEEE Symposium on Security and Privacy, May 1986, pages 119–131

• [W3-3] “Bro: A System for Detecting Network Intruders in Real-Time” -

ftp://ftp.ee.lbl.gov/papers/bro-CN99.ps.gz

• [W3-4] Dynamic Application-Layer Protocol Analysis for Network Intrusion Detection -

http://www.icir.org/robin/papers/usenix06/

• [W3-5] OSIF - http://www.openinfosecfoundation.org/

• [W3-6] DHS - http://www.dhs.gov/index.shtm

• [W3-7] Suricata - http://www.openinfosecfoundation.org/index.php/download-suricata

Révolution Linux Report W7701-101396/001/QCC 12 / 88

• [W3-8] CUDA - http://www.nvidia.com/object/cuda_home_new.html

3.3. Network Monitoring

Introduction

When it comes to information systems monitoring, there are two different areas to consider:

• Computer systems security;

• Security as it relates to reliability

Let’s start by examining the latter. Reliability details the implementation of devices used to supervise

one or more elements of the IT infrastructure and alert the administrator in case of problems.

These problems include system overloads, server shutdowns, faulty network connections, security

issues, etc.

Today, a wide variety of solutions [W4-1] address the aforementioned issues at various levels.

Unfortunately, these are not the only things that can go wrong within an infrastructure. Some equally

damaging threats are much more insidious.

The standard way to monitor an infrastructure is to test its elements; if one of these does not respond or

if its response time is longer than usual, an alert must be sent out. The same goes for irregular network

traffic, which can be observed when a significant and constant load is measured on the TCP 443

(HTTPS) port. Although this may seem harmless at first, it can prove to be a major security issue.

Indeed, this behaviour is not typical of the protocol and may therefore indicate the presence of a

network tunnel. Another example is when new equipment is detected as being connected to the

network. In the worst-case scenario, a warning occurs; in the best-case scenario, no access whatsoever

is granted.

In either of the aforementioned situations, detecting these problems is no easy task; it requires

implementing various solutions and possessing the appropriate knowledge to manage them. An

effective strategy requires a combination of system and network skills, analytical skills, knowledge of

the field (types of attacks and tools), and so forth.

Révolution Linux Report W7701-101396/001/QCC 13 / 88

History

It is difficult to identify the first tool that was specifically designed to monitor behaviour since a simple

ping command can achieve this.

A document [W4-2] published in 1995 shows that many solutions already existed at that time.

Tools

• Arpwatch: http://ee.lbl.gov/

• Mon: https://mon.wiki.kernel.org/index.php/Main_Page

• Munin: http://munin-monitoring.org/

• Nagios: http://www.nagios.org/

• Opennms: http://www.opennms.org/

References

• [W4-1] http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

• [W4-2] http://www.slac.stanford.edu/~cottrell/tcom/survey3-results.html

3.4. Network Reporting

Introduction

Blocking or detecting network access is not enough in itself; to ensure accurate protection, it is

essential to have an effective tool that can display usage reports or alerts.

A software solution whose main purpose is to display information in a simple and effective way will

greatly simplify the task of the system administrator, who must deal with the proliferation of various

data coming from many different sources.

Whether the activity consists of reading the connection logs of a server or firewall or the alerts sent by

an intrusion detection system, it is essential to extract the essence of what comes in to ensure alerts are

sent out if required — and as soon as possible.

Révolution Linux Report W7701-101396/001/QCC 14 / 88

Different types of software solutions exist for this purpose, and the method used to display data also

varies. Display modes include spreadsheets, excerpts from connection logs, graphs, fixed or animated

images, etc.

All solutions must offer the most exhaustive view possible.

History

There are no specific dates to mention here because recent operating systems offer the ability to log out

what goes on in the system.

Even a simple syslog and its related connection logs can constitute a reliable source of data.

Tools

• Lire: http://www.logreport.org/

• Webfwlog: http://devel.webfwlog.net/index.php

3.5. Network Analysis

Introduction

Reading a network usage report is often enough to suspect or realize that something is wrong. One can

then decide to perform a complementary analysis and implement the relevant methods to achieve this.

Not only does this approach require the proper tools, but it is also important to plan ahead in

implementing them. In this case, the strategy consists of capturing network packets in a short term

perspective.

Indeed, the proliferation of high-speed architectures [W5-1] has made it difficult to capture all frames

and also store and analyze them effectively (without any loss) unless advanced technologies are used

[W5-2], [W5-3].

Therefore, the contents of this section will be limited to short-term solutions; long-term solutions will

be discussed in the following chapter.

In Linux, this process is almost always based on the use of the PCAP programming interface and its

associated library, LIBPCAP [W5-4].

Révolution Linux Report W7701-101396/001/QCC 15 / 88

This library is frequently used by many open source software programs destined to analyze traffic,

including protocol analyzers, network supervision tools, intrusion detection tools, etc.

Although a lot of products can be used from the command line, many solutions also have a graphical

interface, both for implementation and presentation purposes.

History

PCAP is the de facto standard, but other similar tools exist. An example is Snoop for the Solaris

operating system, which has a different file format compared to PCAP and was defined in RFC 1761

(February 1995).

Tools

• Ngrep: http://ngrep.sourceforge.net/

• Tcpdump: http://www.tcpdump.org/

• Wireshark: http://www.wireshark.org/

References

• [W5-1] http://en.wikipedia.org/wiki/10-Gigabit_Ethernet

• [W5-2] http://www.ntop.org/TNAPI_HwFiltering.html

• [W5-3] http://www.ntop.org/PF_RING.html

• [W5-4] http://www.tcpdump.org/

3.6. Network Audit

Introduction

This section is the continuation of the previous one and will focus on the network audit. Although a

network audit can be performed using the tools mentioned in the previous section, this approach would

have its limitations.

Révolution Linux Report W7701-101396/001/QCC 16 / 88

The reason is that the work involved here is very time consuming. The analysis performed as part of a

network audit can span several days (or weeks). The actions are nearly identical to those of a network

analysis, but their scope is different. The tasks of a network analysis often involve the packet level; an

audit generally uses a more general approach in order to gain a global view of what is going on.

This process demands a whole different logic and the implemented solutions will therefore differ from

or complement the tools of the network analysis.

The Netflow protocol [W6-1] is an example of a frequently used solution in this context. Developed by

Cisco for its network routers and switches, the protocol is now supported by a variety of platforms,

including Linux.

This solution has become the de facto standard to perform network audits. Indeed, it is very easy to

implement Netflow probes that will analyze the activity occurring on the equipment and report it to a

collector, which will provide a precise visual picture of what is going on.

History

NetFlow is a network protocol developed by Enterasys Networks (formerly known as Cabletron) and

Cisco Systems to collect IP traffic data. Although it was initially a proprietary solution, NetFlow is now

supported by many other network and software systems.

The industry greatly apprehended the possibilities the technology had to offer [W6-2].

Netflow was described in RFC 3954 and has since been amended by the IPFIX protocol, which has

become one of the industry’s standards. IPFIX is described in RFC 5101, RFC 5102, etc.

Tools

• Argus: http://www.qosient.com/argus/

• Flow-tools: http://www.splintered.net/sw/flow-tools &

• http://code.google.com/p/flow-tools/

• Nfdump: http://nfdump.sourceforge.net/

• Nmap: http://www.insecure.org

• Flowviewer/FlowTracker/FlowGrapher: http://ensight.eos.nasa.gov/FlowViewer

Révolution Linux Report W7701-101396/001/QCC 17 / 88

References

• [W6-1] Cisco netflow, definitions:

http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html

• [W6-2] Cisco Netflow, a defacto standard:

http://www.qosient.com/argus/argusnetflow.shtml

4. Software Security

4.1. Introduction to Application-Related Issues and Their Solutions

Over time, network defence solutions have become more powerful and reliable. As a result, piracy

threats have carried over to the application level.

The reasons for this are simple and intuitive: although it is easy enough to define a network architecture

with the appropriate filters, controlling what happens at the application level is much more complex.

This is because applications are created by developers from everywhere in the world, who use different

languages and operating systems (note that secure coding practices will not be discussed here).

4.2. Application Firewall

Introduction

An application firewall is a sort of “software lock” that controls an application or service’s access,

input, and output.

Its function consists of monitoring and, when necessary, blocking applications according to established

operating rules. Firewalls can have one of two different approaches: a network-based approach or a

host-based approach.

In a network-based approach, the device is used as a network firewall but acts at the application level.

A network firewall operates at Layer 7 of the OSI model [W7-1] and therefore has the ability to inspect

the contents of network traffic, block certain requests and/or viruses and even prevent client software

vulnerabilities from being exploited.

Examples of these solutions include proxy servers, which in most cases are designed for web services.

Révolution Linux Report W7701-101396/001/QCC 18 / 88

In a host-based approach, the software monitors an application’s operations with greater precision. It

examines the data passed through system calls instead of or in addition to the network stack and

decides whether to send an alert or block a request, if applicable.

It is to be noted that a system firewall will only protect the workstation on which it is installed; it is

useless to the neighbouring machines.

Application-level filters are certainly beneficial when it comes to monitoring activity because they

understand the semantics of the applications used. In other words, they understand the language and/or

protocol associated with these actions, allowing for easy detection of anomalies.

For various reasons, it is not infrequent for applications to be on network port addresses they normally

shouldn’t use. A regular network firewall cannot take any action against this. A software firewall, on

the other hand, is precisely designed to verify whether the data it receives matches the established rules.

It is to be noted that other elements besides HTTP can be filtered here, including database access.

History

In June of 1991 [W7-2], Digital Equipment Corporation (DEC) offered the first commercial product of

this kind, called DEC SEAL. Another product named Firewall Toolkit (FWTK) was released in

October of 1993 [W7-3].

Tools

• Squid: http://www.squid-cache.org

• Delegate: http://www.delegate.org

• mod_security: http://www.modsecurity.org/

• GreenSQL: http://www.greensql.net

References

• [W7-1] OSI Model: http://en.wikipedia.org/wiki/OSI_model

• [W7-2] History of the firewall:

http://www.cisco.com/web/about/ac123/ac147/ac174/ac200/about_cisco_ipj_archive_article091

86a00800c85ae.html

Révolution Linux Report W7701-101396/001/QCC 19 / 88

• [W7-3] FWTK: http://www.fwtk.org

4.3. Intrusion Detection: HIDS

Introduction

Host-based intrusion detection systems (commonly referred to as HIDS) are, as their name implies,

placed on servers and/or workstations and dedicated to monitoring a piece of hardware or an operating

system.

Easy to deploy and available on many operating systems, HIDS are an essential complement to their

network-based counterparts.

This type of software operates as a system service (or “daemon”in Unix terminology) and analyzes

various types of data, including connection logs, files, directories, etc.

The system’s functional architecture is often based on a client-server model.

A system is installed on each machine and monitors the information coming from the hardware or

operating system. These systems then report to another system, which analyzes the situation according

to the rules defined by the administrator.

Various aspects can be monitored, including the machine’s activity, current processes, utilization of

system resources or changes brought to the file system.

Indeed, it is possible to record the state of a directory or of its contents and to send out an alert if a

change occurs, for example, if an element is added or modified.

The monitoring process is the following: a library of signatures is built, which contains the

cryptographic fingerprints of the files destined to be monitored. These signatures are then compared to

the data recorded over time. If a discrepancy occurs (regarding the file, its date, its access privileges,

etc.), an alert is sent out.

User behaviour is by no means ignored by these security measures; indeed, anomalies pertaining to

system usage can easily be detected by scanning the connection logs. The monitoring module will

detect when people log on at unusual hours, use particular commands, etc.

Révolution Linux Report W7701-101396/001/QCC 20 / 88

This type of tool is useful for monitoring everything system-related and is a solution of choice to

complement network intrusion detection tools.

History

Intrusion detection systems were first developed in the 1990’s. Haystack Labs’ Stalker products were

the first of these solutions to appear on the market; these were later licensed to Sun [W8-1].

Tools

• Ossec: http://www.ossec.net/

• AIDE: http://sourceforge.net/projects/aide/

• Tripwire: http://www.tripwire.com/

• Sec: http://simple-evcorr.sourceforge.net/

• Prelude-ids: http://www.prelude-technologies.com/fr/bienvenue/index.html

References

• [W8-1] Haystack Labs Licenses Its Active Security Technology To Sun

http://www.cs.indiana.edu/~kinzler/pubs/webstalker.html

4.4. Application Monitoring

Introduction

Most companies and system administrators would agree that application monitoring is indispensable

[W9-1]. In a Unix environment, the system load and CPU usage are usually taken into account, but

often overlooked is the proper operation of applications.

A mistake that is often made, for example, is to consider a messaging system functional based on the

fact that a service is listening on network port SMTP (TCP/25). Thus, application monitoring is often

necessary.

Révolution Linux Report W7701-101396/001/QCC 21 / 88

This type of security has an impact on all levels of the application system [W9-2], starting with the

operating system at the very bottom. In a previous chapter, we studied host-based intrusion detection

systems. It is essential to make sure these systems function properly and to have the ability to know

when a service has been stopped or never started in the first place, otherwise our security model is

impaired.

This is not the only problem system administrators must deal with. Data volume is another issue that

can be misleading if it is too intrusive.

Managing large volumes of data coming from multiple sources increases the risk of obtaining too much

information. Although this may not be an issue in many situations, it must be considered in the context

of information security.

This means that various data sources must be taken into account and that their essence must be

extracted, otherwise something important could be missed.

Possible means to address this include (partial list) data correlation tools and application test tools.

History

Since the very beginnings of the Unix operating system, tools have been developed to test its operation.

For example, a simple shell script can be used to monitor a messaging system by sending an email and

making sure it gets delivered to the mailbox.

Tools

• Nagios: http://www.nagios.org/

• Splunk: http://www.splunk.com/

• Ossim: http://www.alienvault.com/

References

• [W9-1] IBM -

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_polozoff/polozoff.ht

ml

• [W9-2] Application monitoring:

http://adminschoice.com/application-monitoring

Révolution Linux Report W7701-101396/001/QCC 22 / 88

4.5. Application Reporting

Introduction

Having security tools is essential, however, it is equally important to have an overall view of the data

they retrieve.

The system administrator must be aware of what goes on within the system, which includes knowing

when packets are blocked by the firewall, when users attempt to connect to secure resources and even

keeping track of data unrelated to security (web server traffic).

This phase differs from the previous one in that it focuses on presenting information. This is done by

creating dashboards that offer an overall view of the current situation.

These dashboards can exist in different forms:

• Spreadsheets

• Excerpts from connection logs

• Graphs

• Etc.

Whatever format is used, the goal here is to provide the most comprehensive view possible of what is

going on within the system. A simple syslog [W10-1] file issued by the eponymous daemon is one of

the many tools that can be used to achieve this.

History

It is difficult to map out the exact chronology of this type of technology as log systems have existed

since the very beginnings of the Unix operating system.

Tools

• Lire: http://www.logreport.org/

References

• [W10-1] Syslog - http://en.wikipedia.org/wiki/Syslog

Révolution Linux Report W7701-101396/001/QCC 23 / 88

4.6. Application Analysis

Introduction

The purpose of an application security test is to evaluate an application’s security level. Application

tests can be performed on web-based applications or on rich applications (for example, applications

using a heavy client-server model).

The test is normally divided into two parts:

Black-box testing: done without accessing the source code, without any identifiers or any technical

information on the software.

Gray box testing: a user account is required to verify the application’s security from the perspective of

a legitimate user having access to the application.

Different methods can be used depending on whether the subject of the audit is a web application or a

traditional desktop application.

In the former case, the test will focus on verifying technical vulnerabilities such as:

• XSS type vulnerabilities [W11-1],

• SQL injections [W11-2],

• CSRF vulnerabilities [W11-3],

• Remote/local file includes[W11-4],

• Attacks targeting sessions and cookies [W11-5],

• Vulnerabilities specific to certain technologies,

• Management of ViewState parameters of the .NET language [W11-6].

In the second case, vulnerabilities pertaining to the audited application will be tested:

• Heap overflow [W11-7],

• Stack overflow [W11-8],

• Format string [W11-9],

Révolution Linux Report W7701-101396/001/QCC 24 / 88

• Race condition [W11-10],

• etc.

Searching for bugs is another type of verification performed here. These can include “logical” bugs,

that is, those that occur due to an error in the design of the algorithm, as well as bugs associated with

authentication and access privilege management (ex. a user who can access certain data he/she

normally shouldn’t have access to, based on his/her privileges).

Now that we have defined the concept of software analysis, let’s take a look at how it’s done. A

software analysis can either be performed via the software (fuzzing [W11-11] is an example of this) or

by more conventional means, such as auditing the source code (which will be described in the

following chapter).

Fuzzing is a software testing technique that consists of providing (random) data to the inputs of a

program. If the program fails (by crashing or generating an error), this usually proves that defects are

present and must be corrected.

Examples of a program’s inputs:

• the network

• peripheral devices (keyboard, mouse, etc.)

• environment variables

• files

• resource limitations (memory, CPU, etc.)

• etc.

One of the particular aspects of fuzzing is that the tests are very simple to write; no knowledge of the

system’s operation is required. Finding vulnerabilities is therefore easy, which is why fuzzing is

commonly used for this purpose.

Given the wide variety of fuzzers available [W11-12], one can very realistically conceive that hackers

will take advantage of the possibilities offered by these tools.

Révolution Linux Report W7701-101396/001/QCC 25 / 88

History

The first publication mentioning fuzzing dates back to December 12th, 1990: An Empirical Study of

the Reliability of UNIX Utilities [W11-13], written by Barton P. Miller, Louis Fredriksen, and Bryan

So.

Note: During tests, 25 to 33% of utility programs from any version of Unix failed.

Tools

• Nessus: http://www.nessus.org/

• Metasploit: http://www.metasploit.com/

• Openvas : http://www.openvas.org/

• Spike: http://www.immunitysec.com/resources-freesoftware.shtml

• Webscarab: http://www.owasp.org/index.php/OWASP_WebScarab_NG_Project

• Fusil: http://bitbucket.org/haypo/fusil/wiki/Home

References

• [W11-1] XSS - http://en.wikipedia.org/wiki/Cross-site_scripting

• [W11-2] SQL injections - http://en.wikipedia.org/wiki/SQL_injection

• [W11-3] CSRF - http://www.cgisecurity.com/csrf-faq.html

• [W11-4] Remote file inclusion - http://en.wikipedia.org/wiki/Remote_file_inclusion

• [W11-5] Cookie - http://en.wikipedia.org/wiki/HTTP_cookie &

http://www.imperva.com/resources/glossary/cookie_poisoning.html

• [W11-6] View state - http://msdn.microsoft.com/en-us/library/ms972976.aspx

• [W11-7] Heap overflow - http://en.wikipedia.org/wiki/Heap_overflow

• [W11-8] Stack overflow - http://en.wikipedia.org/wiki/Stack_overflow

• [W11-9] Format string - http://en.wikipedia.org/wiki/Format_string_attack

Révolution Linux Report W7701-101396/001/QCC 26 / 88

• [W11-10] Race conditions - http://www.sans.edu/resources/securitylab/race_cndtns.php

• [W11-11] Fuzzing attacks - http://www.owasp.org/index.php/Fuzzing

• [W11-12] List of fuzzers - http://www.infosecinstitute.com/blog/2005/12/fuzzers-ultimate-

list.html

• [W11-13] History of fuzzing - http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

4.7. Application Audit

Introduction

White-box testing is another category of application tests. Unlike black-box testing, white-box testing

is done in a cooperative manner. Performed with the consent of the application’s creator, these tests

focus on analyzing the way the application is made (its code and construction).

A source code audit [W12-1] also constitutes a comprehensive analysis of an application’s code. The

audit is done by combining tools that will automate the process and allow for mass data treatment.

These tests also rely on the skills of the IT experts who audit the code.

These tests are based on a source code audit, which can be carried out in one of two ways:

Manual analysis: in this case, the audit is performed by a single person. The main problem with this

approach is the limited capacity of work one human being can achieve per day (in terms of auditing

code lines).

Static code analysis: uses formal methods based on the source code to evaluate an application’s

behaviour without actually executing it. The testing process is initiated using an automated tool; the

results it yields are then verified and qualified by an IT expert.

Notes:

White-box testing can cover a wider scope of vulnerabilities than black-box testing.

An abundance of tools currently exist to analyze the various types of source code (languages).

Révolution Linux Report W7701-101396/001/QCC 27 / 88

History

It is difficult to trace the exact historical references of these practices as programmers have always

carefully verified the quality of code. More recently, an open source BSD type operating system [W12-

2] experienced a significant lag compared to Linux because its entire system libraries had to be re-

written [W12-3] to ensure their security. This issue is not only related to BSD operating systems; Linux

distributions can also be affected [W12-4].

Tools

• Lint: http://docs.sun.com/source/806-3567/lint.html

• Splint: http://splint.org/

• Valgrind : http://valgrind.org/

References

• [W12-1] Audit code - http://en.wikipedia.org/wiki/Code_audit

• [W12-4] OpenBSD – http://www.openbsd.org

• [W12-1] BSD code - http://www.freebsdworld.gr/freebsd/bsd-family-tree.html

• [W12-1] Debian audit FAQ - http://www.debian.org/security/audit/faq

5. Operating System Security

5.1. Hardening

Introduction

Hardening is a process that aims to secure the operating system. In an ideal scenario, the content

installed on the system is reduced to an absolute essential minimum. The premise of this approach is

that the less objects are installed, the smaller the vulnerability surface will be.

The process will affect software, software libraries, and tools as well as users and access privileges that

are configured for the various parts of the system.

Software, libraries, and tools were studied previously; we will now take a look at user privileges and

access control.

Révolution Linux Report W7701-101396/001/QCC 28 / 88

Unix offers a set of basic user privileges (Read/Write/Execute) for the owner of a file and the group to

which this user belongs. This user-based approach can lead to problems if the legitimacy of the actions

performed — either at the user or administrator level — is not supervised.

For example, an operating system cannot easily differentiate a malware [W13-1] from a user attempting

to access a resource. A malware can easily assume the digital identity of a legitimate person and

attempt to usurp its actions.

Another known issue in the Unix environment is the omnipotence of the root user, towards whom all of

the system’s privileges are directed. Most system tasks can only be performed by the root user,

therefore all of this user’s actions must be carefully scrutinized.

It is a known fact that the system administrator can access each element of a system, however this can

create problems when piracy occurs. In order to avoid these risks, kernels now make it possible to

configure user privileges using rules called capabilities [W13-2].

Capabilities can differentiate access levels, but they fall short when it comes to determining the exact

nature of objects that are targeted. Therefore, they cannot offer any kind of access granularity.

AppArmor, RSBAC, and SELinux are just a few of the solutions that can be used to increase the

security of a system.

Developed by Novell, AppArmor [W13-3] offers the ability to attach a security profile to each program

in order to restrict its access privileges; this type of access control is referred to as MAC [W13-4].

AppArmor proactively protects the operating system and applications against various threats (including

zero days). The use of profiles offers the ability to precisely define who has access to what and, most

importantly, to set access levels.

Alike AppArmor, RSBAC offers enhanced access control compared to the basic Unix security settings.

RSBAC also offers various security models. Its capabilities include:

• Kernel user management (no more /etc/passwd)

• Network control support

Révolution Linux Report W7701-101396/001/QCC 29 / 88

• Symlink redirection (symlinks can redirect to another location by role, by uid, by security level

or by remote address)

• Secure delete (mandatory secure deletion per file, directory or whole filesystem)

• Hides processes easily using a kernel option

Lastly, SELinux is a tool that uses an approach similar to that of AppArmor, though it functions

differently.

SELinux identifies system objects using their inode rather than their path name and separates the

application from the access policy and its definition.

This approach has its advantages when compared to AppArmor. With AppArmor, a restricted file can

become accessible when a hard link is created to it, but SELinux would prevent this type of access. On

the other hand, in SELinux, data that is inaccessible may become accessible when applications update

the file by replacing it with a new version, while AppArmor would continue to deny access to the data.

History

The practice of hardening an operating system to meet specific needs was apprehended early on by

various institutions, including the National Security Agency (NSA) [W13-5] in the U.S.

In 1992 and 1993, the NSA worked with the Secure Computing Corporation (SCC) [W13-6] to develop

two prototypes called DTMach and DTOS [W13-7]. The NSA continued this work in collaboration

with the University of Utah and these efforts led to the development of the Flask security architecture;

its name was changed to SELinux once it was integrated to the Linux kernel. Several other major

contributors took part in the project, including NAI Labs and MITRE.

Tools

• AppArmor: http://www.novell.com/linux/security/apparmor/

• Grsecurity: http://grsecurity.net/

• RSBAC: http://www.rsbac.org/

• SELinux: http://www.nsa.gov/research/selinux/index.shtml

• MAC: http://en.wikipedia.org/wiki/Mandatory_access_control

Révolution Linux Report W7701-101396/001/QCC 30 / 88

• DTOS: http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html

• FLASK: http://www.cs.utah.edu/flux/fluke/html/flask.html

References

• [W13-1] Malwares - http://en.wikipedia.org/wiki/Malware

• [W13-2] Capabilities - http://linux.die.net/man/7/capabilities

• [W13-3] Novell - http://www.novell.com/home/

• [W13-4] MAC - http://en.wikipedia.org/wiki/Mandatory_access_control

• [W13-5] NSA - http://www.nsa.gov/

• [W13-6] SCC - http://en.wikipedia.org/wiki/Secure_Computing

• [W13-7] DTOS - http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html

5.2. Virtualization

Introduction

Virtualization encompasses various methods that add an extra layer of security by allowing several

versions of an operating system to run in parallel.

How does this enhance the security of a system? First of all, the kernel is often modified in order to

allow several software versions to run at the same time. Thus, when a threat is attempted, this strategy

will either block it or yield different results from one version to another.

This approach also involves isolating one server from another; as a result, different instances of a

service (ex. a web server) can run in parallel on the same physical server, which reduces the surface

exposed to a global system compromise incident in the event that one of the virtual machines presents a

vulnerability.

Let's take a look at the security of virtual machines.

Révolution Linux Report W7701-101396/001/QCC 31 / 88

Virtual machines are becoming more and more popular mainly because of the benefits they provide in

terms of management and ease of use. There are different kinds of virtualization technologies; the four

main implementations are:

• full virtualization using dedicated processor instructions.

• para-virtualization, where the guest OS is designed to run on a virtualized architecture.

• full emulation, where each instruction is interpreted by the physical host.

• context-based virtualization, where only the processes are isolated; the guest OS possesses the

same kernel, memory, and devices as the host.

Full virtualization is the most common approach; leading products such as VMware [W14-1], Xen

[W14-2], VirtualBox[W14-3], and KVM [W14-4] make use of the virtualization extensions added by

Intel and AMD in their recent processors, VT-x [W14-5] and AMD-V [W14-6], respectively.

Using these extensions, a host can let a guest execute all of its unprivileged code natively; in this mode,

the processor is completely dedicated to the guest for a period of time. As soon as the guest needs to

execute a privileged instruction (such as accessing a privileged register or a device), the control is

given back to the host, which completes the execution and sends the result back to the guest. This

method offers good performance, especially when combined with para-virtualized drivers and hardware

dedicated to virtualization. Para-virtualization is one of the approaches that can be used with Xen

[W14-3]; here a Linux kernel is provided and is dedicated to running over another Linux kernel. This

approach offers great performance because the guest knows exactly how to execute the privileged

instructions in the best possible way.

Full emulation technologies such as Qemu [W14-9] are mainly used for test and development purposes.

They are rarely used in production environments because of their performance. Indeed, each instruction

needs to be interpreted by the host OS.

Révolution Linux Report W7701-101396/001/QCC 32 / 88

The context-based method approaches virtualization in a different way. A context is a set of processes

running on the host OS with restricted capabilities. The processes running inside a guest can only

interact with each other. They run inside a chroot and are usually assigned a dedicated virtual network

interface. On top of that, the host OS can restrict the contexts with quotas on CPU, disk, and memory

usage.

The main technologies in this area are Linux-Vserver [W14-10], OpenVZ [W14-7], and LXC [W14-8].

Given that all the resources are shared and the processes are normal Linux processes, the performance

of these “guests” is relatively similar to that of the host [FIXME: ref Fernando's Thesis ?].

Security

The problem associated with virtual machines is the inherent risk of a VM compromising the host or

another VM located on the same physical host. When using the full virtualization technology, the

hypervisor is designed to give the guest OS a complete native environment. The guest does not need to

know it is running in a virtual machine: it is running its own kernel, has a complete dedicated memory

address space and sees the devices as its own.

The first step for an attacker would be to identify the hypervisor. As we saw in the introduction, a

variety of software solutions provide the same technologies. There are a lot of methods to determine if

a machine is running on bare metal or on a hypervisor. Some methods are obvious, such as checking

the CPU model name (which is "QEMU CPU" by default in KVM and Qemu) or looking at device

names that are commonly emulated (for example, Intel ICH AC'97 or a SoundBlaster 16 sound card

commonly emulated in VirtualBox and VMware). Also, when KVM runs with para-virtualized drivers,

it can export special CPU flags, which could be used to identify the virtualization technology.

Advanced techniques based on timing can be used to determine if a machine is running on a

hypervisor, but these cannot precisely determine which hypervisor is used. Johanna Rutkowska also

introduced the Red Pill technique [W14-12] to detect the presence of a virtual machine monitor based

on the way interrupts are handled inside a machine.

Révolution Linux Report W7701-101396/001/QCC 33 / 88

There are a few known techniques that can be used to compromise a virtual machine environment but

most of them are outdated. The Bluepill rootkit [W14-11] is a project to create an invisible malware

based on the hypervisor technology. The proof of concept was presented at Black Hat in 2006; although

it is designed for Windows Vista, the concept could be used with any other OS. The project has since

been abandoned and the source code does not seem available anywhere.

Given the robustness of today’s virtualization technologies, most of the attacks targeting virtual

machine environments attempt to take advantage of configuration problems. One common vector is the

network; since all VMs share the same physical network card, an attacker can use this vector to bypass

the firewall’s rules.

History

System virtualization appeared in the 1960’s as a means to partition IBM’s mainframe computers and

thus streamline hardware usage. Nowadays, computers based on Intel’s x86 technology face the same

optimization and flexibility limitations as their ancestors from the sixties.

In 1990, VMware designed a virtualization technology that is still being used on the vast majority of

computers today.

Tools

• secvisor: http://www.cylab.cmu.edu/partners/success-stories/SecVisor.html

• sHype:http://www.research.ibm.com/secure_systems_department/projects/hypervisor/

• sVirt: http://vidéoprojecteur/page/SVirt

• KvmSec: A Security Extension for Linux Kernel Virtual Machines

References

• [W14-1] VMware: http://www.vmware.com

• [W14-2] VirtualBox: http://www.virtualbox.org

• [W14-3] Xen: http://www.xen.org

• [W14-4] KVM: http://linux-kvm.org

• [W14-5] Intel VT-x: http://www.intel.com/technology/virtualization/

Révolution Linux Report W7701-101396/001/QCC 34 / 88

• [W14-6] AMD AMD-V: http://www.amd.com/us-en/0,,3715_15781_15785,00.html

• [W14-7] OpenVZ: http://openvz.org

• [W14-8] LXC: http://lxc.sourceforge.net/

• [W14-9] Qemu: http://www.qemu.org

• [W14-10] Linux-Vserver: http://linux-vserver.org

• [W14-11] Blue Pill: http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html

• [W14-12] Red Pill: http://invisiblethings.org/papers/redpill.html

5.3. Tracking Data

Introduction

Tracking data consists of monitoring any given program’s activity and can be performed at the

application level (ex: a web server) or at the system level (ex: the Linux kernel).

Tracking data is a common means of resolving various issues. Among other things, it can be used for

debugging purposes [W15-1] or to monitor a particular behaviour within a program.

Tracking is basically following a program’s operations every step of the way, similarly to recording all

of its actions and verifying them, but at a very low level (near the system).

The software input data used to monitor what goes on can originate from the operating system’s kernel

(input/output of system calls, network activity, etc.) or from the applications. Although the output data

can be provided in various formats, it is common to use software specifically designed for this purpose

in order to maximize processing performance and data readability.

It is imperative to make sure that these activities do not interfere with the proper operation of the

system. This means the tracking Features must not be enabled on a continuous basis (i.e. during the

normal operation of the system). Even if these tools are optimized, using them on a continuous basis

during production, for example, can considerably cripple the system’s operation.

Révolution Linux Report W7701-101396/001/QCC 35 / 88

History

The original version of the strace utility was written by Paul Kranenburg for the SunOS operating

system. It was inspired by the trace tool used for the same OS. The Linux version of this tool was

created at the beginning of the 1990’s. Systemtap and LTTng date back to 2005.

Tools

• strace: http://en.wikipedia.org/wiki/Strace

• gdb: http://www.gnu.org/software/gdb/

• ftrace, kprobe, ltrace, strace: included in Linux distributions

• LTTng: http://lttng.org/

• perf: https://perf.wiki.kernel.org/index.php/Main_Page

• systemtap: http://sourceware.org/systemtap/

References

• [W15-1] http://en.wikipedia.org/wiki/Debugging

5.4. Encrypting Data

Introduction

Data encryption is a method used to make a document unreadable to anyone who does not possess the

key to invert it (the reverse process is called decryption).

On an information system, encryption is used to prevent data from being lost or compromised.

This means that a user who has the ability to access the physical media (hardware) does not necessarily

have access to the logical media (the data).

When applied to computers, encryption can be performed at two levels:

• Filesystem level encryption [W16-1]

• Full-disk encryption [W16-2]

Révolution Linux Report W7701-101396/001/QCC 36 / 88

The first method consists of encrypting each of the files and/or directories found on the storage device

individually; this phase is performed by the file system itself.

Note that this task only protects the data itself. Everything related to the directory structure, the names,

sizes, and access/modification dates is untouched. This can be an issue in some cases; although it is

impossible to read a drive’s contents, a user can still know what is stored on the drive.

The second method consists of encrypting the drive in its entirety, which solves the aforementioned

problem. One of the advantages of this method is its “all-or-nothing” approach; indeed, everything

stored on the drive will be protected from unauthorized access, including the swap space.

It is also possible to combine both approaches, i.e. encrypting the entire disk and using filesystem

encryption for certain parts of the system. A thing to keep in mind is that once an encrypted disk is

decrypted, anyone can access the data. Therefore, the combined approach can be useful to restrict

access to certain data (ex. when encrypting directories with different authorization levels).

History

The first version of the TrueCrypt software dates back to 2004. Over the years, many new versions of

the software were developed with significant enhancements; Linux support became available as of

2006. Version 6.0a received a First-Level Security Certificate (Certificat de Sécurité de Premier

Niveau, or CSPN) from the French Network and Information Security Agency (FNISA) [W16-3].

Tools

• Truecrypt: http://www.truecrypt.org/

• dm-crypt: http://www.saout.de/misc/dm-crypt/

• dmcrypt/LUKS: http://code.google.com/p/cryptsetup/

• EcryptFS: https://launchpad.net/ecryptfs

References

• [W16-1] http://en.wikipedia.org/wiki/On-the-fly_encryption

• [W16-2] http://en.wikipedia.org/wiki/Encrypting_File_System

• [W16-3] http://www.ssi.gouv.fr/site_rubrique54_certificat_cspn_2008_03.html

Révolution Linux Report W7701-101396/001/QCC 37 / 88

5.5. Using the System

Introduction

There are many different ways to connect to an information system. One of the most common methods

is the login/password combination, but this approach obviously has its shortcomings.

• If the password is chosen by the user, there is no guarantee as to its complexity, which therefore

makes it vulnerable to brute force attacks.

• Even if a password seems complex, its likeliness of being uncovered will increase over time,

thereby decreasing its strength.

• The risk of having someone listen on network/keyboard activity is significant; this applies to

both clear and encrypted data.

To address these issues, researchers developed a new approach architected around challenge-response

concepts [W17-1]. The idea is to use a password for a single session.

An important consideration here is that the password is no longer chosen by the user, but rather a

particular method is used to generate a list of passwords.

This approach virtually eliminates all of the aforementioned issues because:

• A password will only be used once,

• Passwords will be determined by the computer,

• The password changes constantly and therefore cannot be uncovered by brute force.

• It is also impossible to listen on the password, as it is not reusable.

• This concept is commonly referred to as the one-time password (OTP)[W17-2].

This is another reason why we recommend the port-knocking technique studied in chapter 2 [W17-3]:

it provides selective access to a machine via the network.

History

The OTP concept was developed by Bellcore (now known as Telcordia).

Révolution Linux Report W7701-101396/001/QCC 38 / 88

Tools

• opie-server: this software is included in Linux distributions

• knockd: http://www.zeroflux.org/projects/knock

References

• [W17-1] Challenge Response - http://en.wikipedia.org/wiki/Challenge-response_authentication

• [W17-2] OTP - http://en.wikipedia.org/wiki/One-time_password

• [W17-3] Port Knocking - http://techrepublic.com.com/5100-1009-5798871.html

6. Product Analysis

6.1. Introduction

Before describing the products we believe deserve consideration, here is a list of criteria to provide an

objective view of the requested recommendations.

The original list described in document/contract W7701-101396/001/QCC will be provided, with some

additional criteria we consider relevant.

6.2. List of Criteria to Consider:

 1. Available Features

 a) Main Features of the technology described

 b) Its strengths

 2. Types of threats addressed (cyber, design flaws, other)

 a) The risks it prevents

 b) The type of protection it offers

 3. Scalability of the technology (how can it be evolved)

 a) Its upgradability

 b) At what cost?

Révolution Linux Report W7701-101396/001/QCC 39 / 88

 c) How can it be upgraded?

 4. Theories, techniques, paradigms, and approaches of the technology (e.g. signature-based,

anomaly-based, other types of approaches and paradigms).

 a) Operating principle

 b) Techniques used

 5. Type of monitoring, protection

 a) What type of monitoring is used?

 b) How is the protection designed?

 6. Purpose/occurrence of monitoring activities

 a) What is monitored?

 b) When?

 7. Type, form, size, (etc.) of generated raw data

 a) Description of output data

 b) Format of output data (text/binary)

 8. Overview of how it works (the main features), known flaws, limitations, problems

 a) How does the technology work?

 b) Known limitations

 c) Known shortcomings

 9. Requirements, required systems (hardware, software) to run each technology

 a) Hardware required to run the technology

 b) System required to run the technology

 10. Data fusion methods, analysis methods, rules, other methods used to process and transform

raw data

 a) Data aggregation

Révolution Linux Report W7701-101396/001/QCC 40 / 88

 b) Can the data be correlated?

 11. Can traces of attacks be kept for further analysis? In what form? When? How?

 a) How is the data maintained?

 12. What type(s) of action(s) can be taken? In what circumstances? Using what components?

 a) Can the technology take any action? If so, which parts of it perform the actions?

 13. What knowledge bases (or other types of data) are needed/provided? When and how should

they be updated (how do they work)?

 a) Is it necessary to use a data source?

 14. What programming language/script is involved?

 a) Programming language used:

 15. Ease of use and installation (for the user and administrator)

 a) User-friendliness

 16. Quality of the documentation

 a) Quality of the documentation

Révolution Linux Report W7701-101396/001/QCC 41 / 88

6.3. Network firewall

Description of technology Monitor and block network access
Name of technology : Netfilter L7-filter Nufw
Main features : Support Ipv4/Ipv6/Statefull Work at level 7 (OSI) Able to set rules/applications/users
Features : packet filtering framework identify packets based

on application layer
data.

 ID-based firewalling

Scalability : High High High
Installation of component : Easy Medium Easy
Remote's usage : Via SSH Via SSH Yes
Impact of technology
(kernel space) :

Yes Yes Yes

Impact of technology (user
space) :

No No Yes

Object of surveillance Network packets Network packets Network packets
How surveillance is
conducted

Checking rules Checking rules Checking rules + user access

Type of data scanned Network packets Network packets Network packets
Type of analysis on the data
scanned

Network headers Network headers +
application data

Network headers + user access

Rules of surveillance User defined User defined User defined
Actions of the technology Block packets Block packets Block packets
Impact on performances Small Medium Medium
Constraints : utilization,
administration

Knowledge of networks concepts +
operating system

Knowledge of
networks concepts /
application data +
operating system

Knowledge of networks concepts + operating
system + identifying users

Major limitations :
functionality, efficiency,
effectiveness, system
coverage

No applications filtering Not available in
recent kernel

Price for a significant number of clients behind
the tool

Improvements Adding application filtering Inserted into the
current kernel branch

N/A

Révolution Linux Report W7701-101396/001/QCC 42 / 88

Usage in virtualization yes yes N/A
Configuration options Able to use patch-o-matic addons depending the kernel

System recovery
Recovery techniques console access console access console access
Impact on performances none none none

System reports
Type of reports syslog or binary logs syslog or binary logs syslog or binary logs
Classification of attacks N/A N/A N/A
Manage alarms N/A N/A N/A
Notifications Syslog Syslog Syslog

Interoperability
Can exchange with other
systems

Yes Yes Yes

easy use with other systems Yes Yes No
Is an API available Yes Yes Yes

Comparative analysis
Important aspects Easy to use Application filtering User filtering
Weakness Lots of options Not synced with

current kernel
High cost for windows

Strengths Lots of options Able to classify
applications

Filtering not only done on IP headers

Advantages Included with Linux The only one tool Easy to manage
Inconvenient Command line usage Need an appropriate

kernel
Lot of work depending the number of users

Constraints Deep knowledge of options Not all protocols are
recognized

Deep knowledge of user/applications

Remarks N/A Need to be improved N/A

Révolution Linux Report W7701-101396/001/QCC 43 / 88

6.4. Network detection

Description of technologies Detecting security problems at network level

Name of technology : Snort Suricata
Main features : network intrusion prevention and detection system network intrusion prevention and detection

system
Features :
Scalability : High Medium
Installation of component : Easy Medium
Remote's usage : Via SSH Via SSH
Impact of technology (kernel space) : None None
Impact of technology (user space) : Yes Yes
Object of surveillance Network Network
How surveillance is conducted Analysis of network flow Analysis of network flow
Type of data scanned Network flow Network flow
Type of analysis on the data scanned signature, protocol and anomaly-based inspection signature, protocol and anomaly-based

inspection
Rules of surveillance Match rules Match rules
Actions of the technology use rulesets to identify problems and attacks in

incoming traffic
use rulesets to identify problems and attacks
in incoming traffic

Impact on performances Depending of hardware Depending of hardware
Constraints : utilization,
administration

Network positioning Network positioning

Major limitations : functionality,
efficiency, effectiveness, system
coverage

Need to have an updated ruleset Need to have an updated ruleset

Improvements Able to use GPU Able to use sn
Usage in virtualization Yes Yes
Configuration options Use IPS functionality, PF_Ring Use IPS functionality, PF_Ring

System recovery

Recovery techniques N/A N/A

Révolution Linux Report W7701-101396/001/QCC 44 / 88

Impact on performances N/A N/A

System reports

Type of reports Log file Log file
Classification of attacks Yes Yes
Manage alarms Yes Yes
Notifications Syslog/Email Syslog/Email

Révolution Linux Report W7701-101396/001/QCC 45 / 88

6.5. Network Monitoring

Description of technologies Monitor the network

Name of technology : Nagios Munin

Main features : Checking availability Graphing data

Features : Check services Graph all sort of data

Scalability : High High

Installation of component : Easy Easy

Remote's usage : Yes Yes

Impact of technology (kernel space) : N/A N/A

Impact of technology (user space) : Small Small

Object of surveillance Services and system Systems

How surveillance is conducted Services and systems probes System probes

Type of data scanned Network port/system data System probes

Type of analysis on the data scanned Check for availability N/A

Rules of surveillance Check for availability depending on criterias Data source breaching its defined limits

Actions of the technology

Impact on performances High with lots of device to manage Small

Constraints : utilization, administration N/A N/A

Major limitations : functionality, efficiency,
effectiveness, system coverage

No serious limitations No serious limitations

Improvements

Usage in virtualization Yes Yes

Configuration options N/A N/A

Révolution Linux Report W7701-101396/001/QCC 46 / 88

System recovery

Recovery techniques Restore Restore

Impact on performances N/A N/A

System reports

Type of reports Email/Web Email/Web

Classification of attacks N/A N/A

Manage alarms Yes Yes

Notifications Yes Yes

Révolution Linux Report W7701-101396/001/QCC 47 / 88

6.6. Network reporting

Name of technology : Lire
Main features : versatile log analysis software
Features : transform raw data in network/computer system log files into valuable

information for you
Scalability : High
Installation of component : Easy
Remote's usage : Via external web server
Impact of technology (kernel space) : None
Impact of technology (user space) : Yes
Object of surveillance Log files
How surveillance is conducted N/A
Type of data scanned Log files
Type of analysis on the data scanned N/A
Rules of surveillance N/A
Actions of the technology Reporting
Impact on performances Small
Constraints : utilization, administration Use specific data log
Major limitations : functionality, efficiency, effectiveness,
system coverage

N/A

Improvements Add more plugins
Usage in virtualization Yes
Configuration options N/A

System recovery

Recovery techniques N/A
Impact on performances N/A

System reports

Type of reports N/A

Révolution Linux Report W7701-101396/001/QCC 48 / 88

Classification of attacks N/A
Manage alarms N/A
Notifications N/A

Révolution Linux Report W7701-101396/001/QCC 49 / 88

6.7. Network analysis

Description of technologies Analyze the network

Name of technology : Tcpdump Wireshark

Main features : Network analysis Network analysis + graphic interface (GUI)

Features : Dissect network flow Dissect network flow and present them via
plugins

Scalability : High High

Installation of component : Packaged in most distributions Packaged in most distributions

Remote's usage : Via SSH Via display remote

Impact of technology (kernel space) : Depends on traffic Depends on traffic

Impact of technology (user space) : Medium Medium

Object of surveillance Network data Network data

How surveillance is conducted Network analysis Network analysis

Type of data scanned Data flows Data flows

Type of analysis on the data scanned Depends on user request Depends on user request

Rules of surveillance Depends on user request Depends on user request

Actions of the technology Present data Present data

Impact on performances Small Medium to High

Constraints : utilization, administration Need to know command line parameters
and TCP/IP headers

Need to know TCP/IP headers

Major limitations : functionality,
efficiency, effectiveness, system coverage

Difficult to use depending on number of
parameters + Need to know TCP/IP

Need to know TCP/IP

Improvements N/A Plugins

Révolution Linux Report W7701-101396/001/QCC 50 / 88

Usage in virtualization Yes Yes

Configuration options N/A N/A

System recovery

Recovery techniques N/A N/A

Impact on performances N/A N/A

System reports

Type of reports Binary log Depending on analyzed traffic

Classification of attacks N/A N/A

Manage alarms N/A N/A

Notifications N/A N/A

Révolution Linux Report W7701-101396/001/QCC 51 / 88

6.8. Network audit

Description of technologies Audit the network

Name of technology : Argus Flow-tools Flowviewer suite

Main features : Analyzing Packet Files and
network streams

Tool set for working
with NetFlow data.

Tool set for working
with NetFlow data.

Features : Conduct deep analysis of data Make analysis on
netflow flux

make analysis on
netflow flux and
display it

Scalability : High High Medium-High

Installation of component : Packaged inside Linux
distributions

Packaged inside
Linux distributions

Easy

Remote's usage : Via SSH Via SSH Yes – via web
external web
interface

Impact of technology (kernel space) : N/A N/A N/A

Impact of technology (user space) : Medium Low Medium – depending
on analysis

Object of surveillance Network streams Netflow streams Netflow streams

How surveillance is conducted User defined User defined User defined

Type of data scanned Streams of octets Netflow packets Netflow packets

Type of analysis on the data scanned User defined User defined User defined

Rules of surveillance User defined User defined User defined

Actions of the technology Reporting Reporting Reporting

Impact on performances Low Low Low

Révolution Linux Report W7701-101396/001/QCC 52 / 88

Constraints : utilization, administration Defining the things to check Defining the things
to check

Defining the things
to check

Major limitations : functionality, efficiency,
effectiveness, system coverage

If used in Network auditing, need
to install the tool on each host. If
used in Netflow mode, need to
install Netflow probes

Need to install
Netflow probes

Need to install both
Flow-tools and
netflow probes

Improvements

Usage in virtualization Yes Yes Yes

Configuration options N/A N/A N/A

System recovery

Recovery techniques N/A N/A N/A

Impact on performances N/A N/A N/A

System reports

Type of reports N/A N/A N/A

Classification of attacks N/A N/A N/A

Manage alarms N/A N/A N/A

Notifications N/A N/A N/A

Révolution Linux Report W7701-101396/001/QCC 53 / 88

6.9. Application firewall

Description of technologies Block unattended access to applications

Name of technology : mod_security GreenSQL

Main features : provide protection from a range of attacks against
web applications

Protection against SQL injections, CSS
and CSRF attacks

Features : Provide protection from a range of attacks against
web applications and allows for HTTP traffic
monitoring, logging and real-time analysis.

The logic is based on evaluation of SQL
commands using a risk scoring matrix.
Moreover it can block known db
administrative commands (DROP,
CREATE, etc.)

Scalability : High High

Installation of component : Easy Easy

Remote's usage : N/A N/A

Impact of technology (kernel space) : N/A N/A

Impact of technology (user space) : Low Low

Object of surveillance HTTP requests HTTP requests

How surveillance is conducted Analyze request Analyze request

Type of data scanned HTTP requests HTTP requests

Type of analysis on the data scanned Match specific rules Match commands

Rules of surveillance User or product defined evaluation of Sql commands

Actions of the technology Block requests Block requests

Impact on performances Low Low

Constraints : utilization, administration Need of good ruleset Need of good ruleset

Révolution Linux Report W7701-101396/001/QCC 54 / 88

Major limitations : functionality,
efficiency, effectiveness, system
coverage

As it's a rule's based product, we need to have them
accurate

The scoring Matrix needs to be accurate

Improvements Need to be improved over time Need to be improved over time

Usage in virtualization Yes Yes

Configuration options N/A N/A

System recovery

Recovery techniques Restore Restore

Impact on performances N/A N/A

System reports

Type of reports Type of attacks Type of attacks

Classification of attacks Yes Yes

Manage alarms Yes – console available Yes

Notifications Yes Yes

Révolution Linux Report W7701-101396/001/QCC 55 / 88

6.10. Host intrusion detection system

Description of technologies Detect security problems on hosts

Name of technology : Ossec Prelude-ids Sec

Main features : OSSEC is an Open Source Host-
based Intrusion Detection System.
It performs log analysis, file
integrity checking, policy
monitoring, rootkit detection,
real-time alerting and active
response.

Prelude is a Universal
"Security Information
Management" (SIM)
system. Prelude
collects, normalizes,
sorts, aggregates,
correlates and reports
all security-related
events

SEC is an open
source and platform
independent event
correlation tool. It
can be employed as
an event correlator
for any application
that is able to write its
output events to a file
stream.

Features : Analysis, Checks, the standard in
open-source HIDS

Powerfull correlation
engine

Scalability : High High High

Installation of component : Easy Medium Easy

Remote's usage : N/A N/A N/A

Impact of technology (kernel space) : N/A N/A N/A

Impact of technology (user space) : Memory usage Memory usage Memory usage

Object of surveillance System process/directory/log System wide System log

How surveillance is conducted Rules based Rules based Rules based

Type of data scanned Log, process, directory System data Log

Type of analysis on the data scanned Match rules Match rules Match rules

Révolution Linux Report W7701-101396/001/QCC 56 / 88

Rules of surveillance Program/User defined Program/User
defined

User defined

Actions of the technology Alerts and actions Alerts and actions Alerts and actions

Impact on performances Low Low Low

Constraints : utilization, administration No packaging, install from
sources

Some complexity of
the product

Deep knowledge of
regular expressions

Major limitations : functionality, efficiency,
effectiveness, system coverage

N/A Investment in time Monitoring of system
log only

Improvements Need to follow product's
development

Need to follow
product's
development

N/A

Usage in virtualization Yes Yes Yes

Configuration options Yes Yes N/A

System recovery

Recovery techniques Backup/Restore Backup/Restore Backup/Restore

Impact on performances N/A N/A N/A

System reports

Type of reports

Classification of attacks Yes Yes Yes

Manage alarms Yes Yes Yes

Révolution Linux Report W7701-101396/001/QCC 57 / 88

Notifications Yes Yes Yes

6.11. Host monitoring

Description of technologies Monitoring at various level the applications

Name of technology : Nagios Splunk Ossim

Main features : By using defined plugins, able to monitor
everything

Data centralization Complete, includes
lots of programs

Features : Can check everything Centralize data Provide a full view of
the systems

Scalability : Yes Yes Yes

Installation of component : Easy Easy Easy

Remote's usage : yes Yes Yes

Impact of technology (kernel space) : N/A N/A N/A

Impact of technology (user space) : Need to be tuned if a lot of hosts ans services
are monitored

Memory used Memory used

Object of surveillance Services / system Data log System / network /
Log

How surveillance is conducted Using plugins Using rules Using rules

Type of data scanned Service, programs, data Data Service, programs,
data

Type of analysis on the data scanned Match rules Match rules Match rules

Rules of surveillance User defined User defined User defined

Actions of the technology Alert Alert and correlate Alert and correlate

Impact on performances Possibly high High High

Révolution Linux Report W7701-101396/001/QCC 58 / 88

Constraints : utilization, administration Need to configure both all the client and the
server

Need to configure all
the clients for
feeding Splunk with
data

Deep knowledge of
the system

Major limitations : functionality, efficiency,
effectiveness, system coverage

Number of system and services monitored Deep knowledge of
the system

Improvements N/A N/A N/A

Usage in virtualization Yes Yes Yes

Configuration options N/A N/A N/A

System recovery

Recovery techniques Backup Restore Backup Restore Backup Restore

Impact on performances

System reports

Type of reports Visual/Mails Visual/Mails Visual/Mails

Classification of attacks N/A Yes Yes

Manage alarms Yes Yes Yes

Notifications Yes Yes Yes

Révolution Linux Report W7701-101396/001/QCC 59 / 88

6.12. Application reporting

Description of technologies Reports what's going with the applications running

Name of technology : Lire

Main features : Able to understand a lot of technologies

Features : Read systems log and makes report about them

Scalability : Yes

Installation of component : Easy

Remote's usage : Yes

Impact of technology (kernel space) : None

Impact of technology (user space) : N/A

Object of surveillance Log files

How surveillance is conducted Read log files

Type of data scanned Present the log with a specific format

Type of analysis on the data scanned N/A

Rules of surveillance Depending on log

Actions of the technology Parse log and reports on them

Impact on performances Depending on the size of the log files

Constraints : utilization, administration We need to import into the software the log file

Major limitations : functionality, efficiency,
effectiveness, system coverage

Use log files the software can handle

Improvements N/A

Usage in virtualization Yes

Configuration options N/A

Révolution Linux Report W7701-101396/001/QCC 60 / 88

System recovery

Recovery techniques Backup and restore

Impact on performances N/A

System reports

Type of reports Web pages

Classification of attacks N/A

Manage alarms N/A

Notifications N/A

Révolution Linux Report W7701-101396/001/QCC 61 / 88

6.13. Analyze the security of applications

Description of technologies Analyze the security of applications

Name of technology : Nessus Metasploit Fusil

Main features : The Nessus® vulnerability
scanner is the world-leader in
active scanners,

Metasploit provides useful
information and tools for
penetration testers, security
researchers, and IDS signature
developers.

Fusil the fuzzer is a Python
library used to write fuzzing
programs.

Features : high-speed discovery,
configuration auditing, asset
profiling, sensitive data
discovery and vulnerability
analysis of your security
posture.

This project was created to
provide information on exploit
techniques and to create a
functional knowledge base for
exploit developers and security
professionals. The tools and
information on this site are
provided for legal security
research and testing purposes

It helps to start process with a
prepared environment, start
network client or server, and
create mangled files. Fusil has
many probes to detect program
crash: watch process exit code,
process stdout/syslog for text
patterns, session duration, cpu
usage, etc.

Scalability : Yes Yes Yes

Installation of component : Easy Easy Easy

Remote's usage : Yes Yes Yes

Impact of technology (kernel space) : N/A N/A N/A

Impact of technology (user space) : First load of plugins is time
consuming

N/A N/A

Object of surveillance Vulnerability analysis Network, program Program problems

How surveillance is conducted Probe the target Probe the target Probe the target

Révolution Linux Report W7701-101396/001/QCC 62 / 88

Type of data scanned network services and
applications

Network services and
apllications

Applications

Type of analysis on the data scanned Check for vulnerabilities Check for vulnerabilities Check for vulnerabilities

Rules of surveillance User defined User defined User defined

Actions of the technology Check for errors Check for errors Check for errors

Impact on performances N/A N/A N/A

Constraints : utilization, administration Need to carefully choose target
(some tests are dangerous)

Need to carefully choose target
(some tests are dangerous)

Need to carefully choose target
(some tests are dangerous)

Major limitations : functionality,
efficiency, effectiveness, system
coverage

Need to keep synchonisation
with product's updates
(plugins)

Need to keep synchonisation
with product's updates
(exploits)

Need to carefully choose target

Improvements N/A N/A N/A

Usage in virtualization Yes Yes Yes

Configuration options N/A N/A N/A

System recovery

Recovery techniques Backup restore Backup restore Backup restore

Impact on performances Medium Medium Low

System reports

Type of reports Web Web Console

Classification of attacks Yes Yes N/A

Manage alarms Yes Yes N/A

Révolution Linux Report W7701-101396/001/QCC 63 / 88

Notifications Yes Yes Yes

Révolution Linux Report W7701-101396/001/QCC 64 / 88

6.14. Application audit

Description of technologies Source code audit

Name of technology : Splint Valgrind

Main features : Splint is a tool for statically checking C
programs for security vulnerabilities and coding
mistakes.

Valgrind is an instrumentation framework
for building dynamic analysis tools.

Features : Splint can perform stronger checking than can
be done by any standard lint.

There are Valgrind tools that can
automatically detect many memory
management and threading bugs, and
profile your programs in detail.

Scalability : Yes Yes

Installation of component : Easy Yeasy

Remote's usage : N/A N/A

Impact of technology (kernel space) : N/A N/A

Impact of technology (user space) : Light Light

Object of surveillance N/A N/A

How surveillance is conducted N/A N/A

Type of data scanned Source code audit Source code

Type of analysis on the data scanned Splint does checks including unused
declarations, type inconsistencies, use before
definition, unreachable code, ignored return
values, execution paths with no return, likely
infinite loops, and fall through cases.

Rules of surveillance Errors in source code Errors in source code

Actions of the technology Report problems Report problems

Révolution Linux Report W7701-101396/001/QCC 65 / 88

Impact on performances N/A N/A

Constraints : utilization, administration Language is 'C' Languages are 'C' and C++

Major limitations : functionality, efficiency,
effectiveness, system coverage

Only one language Only 2 languages

Improvements N/A N/A

Usage in virtualization N/A N/A

Configuration options N/A N/A

System recovery

Recovery techniques Backup and restore Backup and restore

Impact on performances N/A N/A

System reports

Type of reports Problems detected Problems detected

Classification of attacks N/A N/A

Manage alarms N/A N/A

Notifications Yes Yes

Révolution Linux Report W7701-101396/001/QCC 66 / 88

6.15. Operating system security

Description of technologies Hardening of the Linux kernel. Add security profiles for the programs used.

Name of technology : Apparmor Selinux

Main features : Allow the system administrator to associate
with each program a security profile that
restricts the capabilities of that program

provides a mechanism for supporting
access control security policies

Features : Proactively protects the operating system and
applications from external or internal threats,
even zero-day attacks, by enforcing good
behavior and preventing even unknown
application flaws from being exploited.

- Clean separation of policy from
enforcement
- Controls over file systems, directories,
files, and open file descriptors
- Controls over sockets, messages, and
network interfaces
- Controls over use of "capabilities"

Scalability : Yes Yes

Installation of component : Easy Easy

Remote's usage : N/A N/A

Impact of technology (kernel space) : Yes Yes

Impact of technology (user space) : Yes Yes

Object of surveillance Operating system Operating system

How surveillance is conducted Monitoring operating systrem Monitoring operating system

Type of data scanned N/A N/A

Type of analysis on the data scanned N/A N/A

Rules of surveillance Depending on administrator Depending on administrator

Actions of the technology Block/Allow access Block/Allow access

Impact on performances Yes Yes

Révolution Linux Report W7701-101396/001/QCC 67 / 88

Constraints : utilization, administration Need a fine tuning Need a fine tuning

Major limitations : functionality, efficiency,
effectiveness, system coverage

N/A N/A

Improvements N/A N/A

Usage in virtualization Yes Yes

Configuration options N/A N/A

System recovery

Recovery techniques N/A N/A

Impact on performances N/A N/A

System reports

Type of reports N/A N/A

Classification of attacks N/A N/A

Manage alarms N/A N/A

Notifications Yes Yes

Révolution Linux Report W7701-101396/001/QCC 68 / 88

6.16. Virtualization

Description of technologies Operating system virtualization

Name of technology : OpenVZ KVM

Main features : Provide contextualization for Linux full virtualization solution for Linux

Features : OpenVZ creates multiple secure, isolated
containers (otherwise known as VEs or VPSs)
on a single physical server enabling better
server utilization and ensuring that applications
do not conflict.

Using KVM, one can run multiple virtual
machines running unmodified Linux or
Windows images.

Scalability : Yes Yes

Installation of component : Depend on distribution Depend on distribution

Remote's usage : N/A N/A

Impact of technology (kernel space) : Yes Yes

Impact of technology (user space) : N/A N/A

Object of surveillance N/A N/A

How surveillance is conducted N/A N/A

Type of data scanned N/A N/A

Type of analysis on the data scanned N/A N/A

Rules of surveillance Separation of process Separation of operating system

Actions of the technology Isolate process Isolate operating system

Impact on performances Low Medium

Constraints : utilization, administration Depend on distribution, need to have a kernel
matching the patch used

Depend on distribution

Révolution Linux Report W7701-101396/001/QCC 69 / 88

Major limitations : functionality, efficiency,
effectiveness, system coverage

Only Linux operating system may be used Need a good physical server (depending on
the number of operating system used).

Improvements N/A N/A

Usage in virtualization N/A N/A

Configuration options N/A N/A

System recovery

Recovery techniques N/A N/A

Impact on performances N/A N/A

System reports

Type of reports N/A N/A

Classification of attacks N/A N/A

Manage alarms N/A N/A

Notifications N/A N/A

Révolution Linux Report W7701-101396/001/QCC 70 / 88

6.17. Tracing the execution of programs

Description of technologies Follow the action of the various process

Name of technology : LTTNg Strace SystemTap

Main features : Its helps tracking down
performance issues and
debugging problems
involving multiple concurrent
processes and threads

Monitor the system calls used
by a program and all the
signals it receives

SystemTap provides
infrastructure to simplify the
gathering of information
about a running Linux kernel

Features : Monitor operating system
operations

using strace may reveal that
the program is attempting to
access a file which does not
exist or cannot be read.

Systemtap assists in
identifying the underlying
cause of a performance or
functional problem

Scalability : Yes Yes Yes

Installation of component : Easy Easy Easy

Remote's usage : N/A N/A N/A

Impact of technology (kernel space) : Yes N/A Yes

Impact of technology (user space) : Yes Yes Yes

Object of surveillance Monitor operating system
operations

Process Depend on scripts used

How surveillance is conducted Follow traces Monitor system calls User defined (script)

Type of data scanned Operating system operations Systems call User defined (script)

Type of analysis on the data scanned Actions done by the system Actions done User defined (script)

Rules of surveillance N/A N/A User defined (script)

Actions of the technology Trace data Monitor access Depend on scripts used

Impact on performances Medium – High Low Medium – High

Révolution Linux Report W7701-101396/001/QCC 71 / 88

Constraints : utilization, administration Installation and analyse N/A Need to develop scripts

Major limitations : functionality, efficiency,
effectiveness, system coverage

May be hard to understand May be hard to understand Scripts must be carefully
designed

Improvements N/A N/A N/A

Usage in virtualization Yes Yes Yes

Configuration options N/A N/A N/A

System recovery

Recovery techniques N/A N/A N/A

Impact on performances N/A N/A N/A

System reports

Type of reports Traces Actions done Actions done

Classification of attacks N/A N/A N/A

Manage alarms N/A N/A N/A

Notifications N/A N/A N/A

Révolution Linux Report W7701-101396/001/QCC 72 / 88

6.18. Encrypt the data

Description of technologies Encryption of the data in order to deny reading by intruders

Name of technology : TrueCrypt

Main features : - Creates a virtual encrypted disk within a file and mounts it as a real disk.
- Encrypts an entire partition or storage device such as USB flash drive or hard drive.
- Encrypts a partition or drive where Windows is installed (pre-boot authentication).
- Encryption is automatic, real-time (on-the-fly) and transparent.
-Provides plausible deniability

Features : Secure encryption of data

Scalability : Yes

Installation of component : Easy

Remote's usage : N/A

Impact of technology (kernel space) : N/A

Impact of technology (user space) : Low

Object of surveillance Data

How surveillance is conducted Encryption

Type of data scanned N/A

Type of analysis on the data scanned N/A

Rules of surveillance N/A

Scalability : Secure encryption

Impact on performances Low

Constraints : utilization, administration Depend on utilization

Major limitations : functionality, efficiency,
effectiveness, system coverage

N/A

Révolution Linux Report W7701-101396/001/QCC 73 / 88

Improvements N/A

Usage in virtualization Yes

Configuration options N/A

System recovery

Recovery techniques N/A

Impact on performances N/A

System reports

Type of reports N/A

Classification of attacks N/A

Manage alarms N/A

Notifications N/A

Révolution Linux Report W7701-101396/001/QCC 74 / 88

6.19. Managing the connection to the system

Description of technologies Managing the connection to the system

Name of technology : Knockd Opie-server

Main features : knockd is a port-knock server. It listens to all
traffic on an ethernet (or PPP) interface,
looking for special "knock" sequences of
port-hits

OPIE is a free implementation of the S/KEY.

Features : Depending of the « knock », it open network
access

The idea is that each password is only usable
once so it doesn’t matter if anyone grabs it as
it’ll be useless when they try to use it.

Scalability : Yes Yes

Installation of component : Easy Easy

Remote's usage : Yes Yes

Impact of technology (kernel space) : N/A N/A

Impact of technology (user space) : Yes Yes

Object of surveillance Network ports Password

How surveillance is conducted Monitor network access Monitor password used

Type of data scanned Network datagrams Password

Type of analysis on the data scanned Must match rules Use differents passwords

Rules of surveillance Used defined User defined

Actions of the technology Open network ports Allow access

Impact on performances N/A N/A

Constraints : utilization, administration Use a network client Need to generate list of password

Révolution Linux Report W7701-101396/001/QCC 75 / 88

Major limitations : functionality, efficiency,
effectiveness, system coverage

Need to fully design firewall N/A

Improvements N/A N/A

Usage in virtualization Yes Yes

Configuration options N/A N/A

System recovery

Recovery techniques N/A N/A

Impact on performances N/A N/A

System reports

Type of reports N/A N/A

Classification of attacks N/A N/A

Manage alarms N/A N/A

Notifications Yes (system log) Yes (system log)

Révolution Linux Report W7701-101396/001/QCC 76 / 88

7. Conclusion

In this study, we tried to remain as objective as possible while describing the technological solutions

that can protect the various points of a computer system. The approach used to present data has the

advantage to reveal a logical split between different parts and at the same time to propose a

comprehensive approach.

If one were to build a solution based on some of the elements proposed, here is that we would use

(level by level):

• Network Firewalls: “Netfilter” because it is the basic tool provided with Linux and has proved

its worth;

• Intrusion Detection: “Snort” without hesitation and taking out a subscription in order to be as

proactive as possible;

• Network Monitoring: “Nagios” and “Munin” as they both play a different but complementary

role;

• Network and application reporting: “Lire” as it can handle many formats;

• Network analysis: “Tcpdump” and “Wireshark” again because the two meet different needs;

• Network Audit: either “Argus” or "Flow-tools", both are valuable in order to present what is

happening on the network. Even if it is quite possible to work from the command line with the

latter, it will be more effective to take "FlowView" which will present the data via a web server;

• Application Firewall: “Mod_security” and “Greensql” are complementary in their handling of

the issue of web security;

• Intrusion detection system: The tool “OSSEC” is now the most widely open source tool used in

that role;

• Application monitoring: “Nagios” and “Splunk” (possibly “OSSIM”). The first excels in

monitoring systems and services. The second is a tool to centralize log files. The third is it just a

great tool but its functional richness is matched only by its complexity to master;

• Application analysis: “Nessus” and “Metasploit” to look for flaws in software systems;

Révolution Linux Report W7701-101396/001/QCC 77 / 88

• Hardened operating system: Either “AppArmor” or “SELinux”, both solutions are valuable

supplements to add an additional layer of protection;

• Virtualization: “OpenVZ” or “KVM” depending on the type or virtualization needed. The first

one is a only a Linux container, and the second one can virtualize different operating systems;

• Data Encryption: “TrueCrypt” because it is currently the most successful.

• Remote Usage: Using a “OTP” to open network ports selectively and have unique passwords.

Révolution Linux Report W7701-101396/001/QCC 78 / 88

8. Appendix A - list of all products identified

Acronyms:

Scope Usage Goal

loc – locale
org – organisation
net – network

foren – forensics
oper – operations
R & D – Research and development

remov – removal
forec – forecasting
prev – previsional
mon – monitoring
dis – display
detec – detection
harden – hardening

Scope Usage Goal Notes URL Type of
project

loc foren forec distributions Linux (Ubuntu) open

loc foren forec Wireshark is the world's foremost network protocol analyzer, and is the de facto (and often de
jure) standard across many industries and educational institutions.

http://www.wireshark.org/ open

org oper foren With Splunk you can search, report, monitor and analyze real-time streaming and historical IT
data generated by all your IT systems from one place.

http://www.splunk.com/ cots

loc R&D foren Ngrep is a pcap-aware tool that will allow you to specify extended regular expressions to match
against data part of packets on the network.

ngrep.sourceforge.net open

loc R&D foren tcpdump is a common packet analyzer that runs under the command line. It allows the user to
intercept and display TCP/IP and other packets being transmitted or received over a network to
which the computer is attached

www.tcpdump.org open

org R&D forec SEC is an open source and platform independent event correlation tool simple-
evcorr.sourceforge.net/

open

org oper mon ntop is a network traffic probe that shows the network usage www.ntop.org open

loc oper remov Clam AntiVirus is an open source (GPL) anti-virus toolkit for UNIX, designed especially for e-
mail scanning on mail gateways.

www.clamav.net open

loc foren forec chkrootkit is a tool to locally check for signs of a rootkit. http://www.chkrootkit.org/ open

Révolution Linux Report W7701-101396/001/QCC 79 / 88

net foren forec Argus is a Real Time Flow Monitor that is designed to perform comprehensive data network
traffic auditing.

http://www.qosient.com open

net foren forec p0f is a versatile passive OS fingerprinting and masquerade detection utility, to be used for
evidence or information gathering on servers, firewalls, IDSes, and honeypots

http://freshmeat.net/projects/p
0f/

open

loc oper mon Arpwatch keeps track for ethernet/ip address pairings. It syslogs activity and reports certain
changes via email

ftp://ftp.ee.lbl.gov/arpwatch.tar
.gz

open

net oper forec "mon" is a tool for monitoring the availability of services, and sending alerts on prescribed
events.

https://mon.wiki.kernel.org open

net oper dis NfSen is a graphical web based front end for the nfdump netflow tools. nfsen.sourceforge.net open

loc R&D foren Rootkit scanner is scanning tool to ensure you for about 99.9%* you're clean of nasty tools.
This tool scans for rootkits, backdoors and local exploits

http://www.rootkit.nl/projects/r
ootkit_hunter.html

open

net R&D prev dsniff is a collection of tools for network auditing and penetration testing monkey.org/~dugsong/dsniff open

net R&D forec Flow-tools is a software package for collecting and processing NetFlow data www.splintered.net/sw/flow-
tools/

open

net R&D forec a collection of netflow tools developed by the CERT/NetSA (Network Situational Awareness)
Team to facilitate security analysis.

tools.netsa.cert.org/silk/ open

app oper prev GreenSQL is an Open Source database firewall used to protect databases from SQL injection
attacks.

http://www.greensql.net/ open

app oper prev ModSecurity is a web application firewall that can work either embedded or as a reverse proxy.
It provides protection from a range of attacks against web applications and allows for HTTP
traffic monitoring, logging and real-time analysis.

http://www.modsecurity.org/ open

net oper prev packet filtering framework inside the Linux 2.4.x and 2.6.x kernel series. http://www.netfilter.org/ open

net oper prev NuFW is an application which adds identity-basedfiltering to Netfilter http://www.nufw.org/ open

net R&D prev The ebtables program is a filtering tool for a Linux-based bridging firewall. It enables
transparent filtering of network traffic passing through a Linux bridge.

http://ebtables.sourceforge.ne
t/

open

loc oper prev AppArmor is a Mandatory Access Control (MAC) system which is a kernel (LSM) enhancement
to confine programs to a limited set of resources

distributions Linux (Ubuntu) open

loc oper forec Fail2ban scans log files like /var/log/pwdfail or /var/log/apache/error_log and bans IP that
makes too many password failures. It updates firewall rules to reject the IP address.

www.fail2ban.org/ open

loc oper prev Security-Enhanced Linux (SELinux) is a Linux feature that provides a mechanism for supporting
access control security policies, including U.S. Department of Defense style mandatory access
controls, through the use of Linux Security Modules (LSM) in the Linux kernel.

http://www.nsa.gov/research/s
elinux/

open

org oper prev Puppet is an open source data center automation and configuration management framework.
Puppet provides system administrators with a simplified platform that allows for consistent,
transparent, and flexible systems management.

www.puppetlabs.com/ open

org oper prev Cfengine is an automation framework for system administration or IT Management. http://www.cfengine.org/ 50/50

Révolution Linux Report W7701-101396/001/QCC 80 / 88

org oper prev Bcfg2 helps system administrators produce a consistent, reproducible, and verifiable
description of their environment, and offers visualization and reporting tools to aid in day-to-day
administrative tasks

http://trac.mcs.anl.gov/project
s/bcfg2

open

loc oper forec AIDE (Advanced Intrusion Detection Environment) creates a database for checking the integrity
of the files.

http://www.cs.tut.fi/~rammer/ai
de.html

open

loc oper foren OSSEC is an Open Source Host-based Intrusion Detection System. It performs log analysis, file
integrity checking, policy monitoring, rootkit detection, real-time alerting and active response.

http://www.ossec.net/ open

loc oper forec Tripwire® Enterprise provides IT configuration control by combining real-time change detection,
comprehensive configuration auditing, continuous compliance assessment, and rapid
configuration remediation in a single product suite.

http://www.tripwire.com/ cots

loc oper forec Tripwire® Log Center delivers next-generation log and security event management without the
complexity of traditional SIEM systems. The result is continuous compliance and non-stop
security that reduces the breach-to-detection gap from the industry average of months, to
minutes.

http://www.tripwire.com/ cots

net R&D forec Honeyd is a small daemon that creates virtual hosts on a network. The hosts can be configured
to run arbitrary services, and their personality can be adapted so that they appear to be running
certain operating systems. Honeyd improves cyber security by providing mechanisms for threat
detection and assessment. It also deters adversaries by hiding real systems in the middle of
virtual systems.

http://www.honeyd.org/ open

net R&D forec Nepenthes is a versatile tool to collect malware. It acts passively by emulating known
vulnerabilities and downloading malware trying to exploit these vulnerabilities.

http://nepenthes.carnivore.it/ open

net oper detec Snort® is an open source network intrusion prevention and detection system (IDS/IPS)
developed by Sourcefire. Combining the benefits of signature, protocol and anomaly-based
inspection, Snort is the most widely deployed IDS/IPS technology worldwide.

http://www.snort.org 50/50

net R&D forec Bro is an open-source, Unix-based Network Intrusion Detection System (NIDS) that passively
monitors network traffic and looks for suspicious activity.

http://www-ids.org open

net R&D forec The Suricata Engine is an Open Source Next Generation Intrusion Detection and Prevention
Engine. This engine is not intended to just replace or emulate the existing tools in the industry,
but will bring new ideas and technologies to the field.

http://www.openinfosecfounda
tion.org/

open

app oper forec PHPIDS (PHP-Intrusion Detection System) is a simple to use, well structured, fast and state-of-
the-art security layer for your PHP based web application.

http://php-ids.org/ open

net oper forec New -> suricata

org oper prev BASE is the Basic Analysis and Security Engine. It is based on the code from the Analysis
Console for Intrusion Databases (ACID) project. This application provides a web front-end to
query and analyze the alerts coming from a SNORT IDS system.

http://base.secureideas.net/ open

Révolution Linux Report W7701-101396/001/QCC 81 / 88

org oper prev Sguil (pronounced sgweel) is built by network security analysts for network security analysts.
Sguil's main component is an intuitive GUI that provides access to realtime events, session
data, and raw packet captures. Sguil facilitates the practice of Network Security Monitoring and
event driven analysis.

http://sguil.sourceforge.net/ open

org oper forec OSSIM stands for Open Source Security Information Management. Its goal is to provide a
comprehensive compilation of tools which, when working together, grant network/security
administrators with a detailed view over each and every aspect of his or her networks, hosts,
physical access devices, server, etc.

http://www.alienvault.com/co
mmunity.php?section=Home

open

loc foren prev John the Ripper is a fast password cracker. Its primary purpose is to detect weak Unix
passwords.

http://www.openwall.com/john
/

open

loc, net R&D prev Metasploit provides useful information and tools for penetration testers, security researchers,
and IDS signature developers.

http://www.metasploit.com/ open

net foren forec Ettercap is a suite for man in the middle attacks on LAN. It features sniffing of live connections,
content filtering on the fly and many other interesting tricks.It supports active and passive
dissection of many protocols (even ciphered ones) and includes many feature for network and
host analysis.

http://ettercap.sourceforge.net
/

open

net,
app

oper forec The Nessus® vulnerability scanner is the world-leader in active scanners, featuring high-speed
discovery, configuration auditing, asset profiling, sensitive data discovery and vulnerability
analysis of your security posture.

http://www.nessus.org/nessus
/

50/50

net,
app

oper forec The Open Vulnerability Assessment System (OpenVAS) is a framework of several services and
tools offering a comprehensive and powerful vulnerability scanning and vulnerability
management solution.

http://www.openvas.org/ open

net foren forec EtherApe is a graphical network monitor for Unix modeled after etherman. Featuring link layer,
ip and TCP modes, it displays network activity graphically. Hosts and links change in size with
traffic.

http://etherape.sourceforge.ne
t/

open

loc R&D foren Hydra is a parallized login cracker which supports numerous protocols to attack. New
modules.Number one of the biggest security holes are passwords, as every password security
study shows.

http://freeworld.thc.org/thc-
hydra/

open

net oper forec Kismet is an 802.11 layer2 wireless network detector, sniffer, and intrusion detection system. http://www.kismetwireless.net/ open

loc R&D forec strace is a useful diagnostic, instructional, and debugging tool. System administrators,
diagnosticians and trouble-shooters will find it invaluable for solving problems with programs for
which the source is not readily available since they do not need to be recompiled in order to
trace them

distributions Linux (Ubuntu) open

loc R&D forec ftrace is a small utility that uses the frysk engine to trace systemcalls in a similar manner to
strace.

distributions Linux (Ubuntu) open

loc R&D forec GDB, the GNU Project debugger, allows you to see what is going on `inside' another program
while it executes -- or what another program was doing at the moment it crashed.

http://www.gnu.org/software/g
db/

open

Révolution Linux Report W7701-101396/001/QCC 82 / 88

loc R&D forec Kprobes enables you to dynamically break into any kernel routine and collect debugging and
performance information non-disruptively. You can trap at almost any kernel code address,
specifying a handler routine to be invoked when the breakpoint is hit.

distributions Linux (Ubuntu) open

loc R&D forec ltrace is a program that simply runs the specified command until it exits. It intercepts and
records the dynamic library calls which are called by the executed process and the signals
which are received by that process. It can also intercept and print the system calls executed by
the program.

distributions Linux (Ubuntu) open

loc R&D forec The LTTng project aims at providing highly efficient tracing tools for Linux. Its tracers help
tracking down performance issues and debugging problems involving multiple concurrent
processes and threads. Tracing across multiple systems is also possible.

http://lttng.org/ open

loc R&D forec The Linux Performance Counter subsystem provides rich abstractions over these hardware
capabilities. It provides per task, per CPU and per-workload counters, counter groups, and it
provides sampling capabilities on top of those - and more.

https://perf.wiki.kernel.org/ind
ex.php/Main_Page

open

loc oper forec auditd is the userspace component to the Linux Auditing System. It's responsible for writing
audit records to the disk, it is used to see who changed a file in Linux (example).

http://people.redhat.com/sgru
bb/audit/

open

loc oper prev The Samhain host-based intrusion detection system (HIDS) provides file integrity checking and
log file monitoring/analysis, as well as rootkit detection, port monitoring, detection of rogue
SUID executables, and hidden processes.

http://la-samhna.de/samhain/ open

loc oper prev Security Analyst Network Connection Profiler http://www.metre.net/sancp.ht
ml

open

org oper prev Prelude is a Universal "Security Information Management" (SIM) system. Prelude collects,
normalizes, sorts, aggregates, correlates and reports all security-related events independently
of the product brand or license giving rise to such events; Prelude is "agentless". As well as
being capable of recovering any type of log (system logs, syslog, flat files, etc.), Prelude
benefits from a native support with a number of systems dedicated to enriching information
even further (snort, samhain, ossec, auditd, etc.).

http://www.prelude-
technologies.com/fr/bienvenu
e/index.html

50/50

loc oper detec psad is a collection of three lightweight system daemons (two main daemons and one helper
daemon) that run on Linux machines and analyze iptables log messages to detect port scans
and other suspicious traffic. A typical deployment is to run psad on the iptables firewall where it
has the fastest access to log data.

http://cipherdyne.org/psad/ open

loc oper forec a collection of performance monitoring tools for Linux. These include sar, sadf, mpstat, iostat,
pidstat and sa tools

http://sebastien.godard.pages
perso-orange.fr/

open

org oper prev Logcheck is a simple utility which is designed to allow a system administrator to view the
logfiles which are produced upon hosts under their control.

http://logcheck.org/ open

org oper prev Logwatch is a customizable log analysis system. Logwatch parses through your system's logs
and creates a report analyzing areas that you specify. Logwatch is easy to use and will work
right out of the package on most systems.

http://sourceforge.net/projects
/logwatch/files/

open

org oper prev Swatch is designed to watch system logs for particular strings and can react on them. Due to
this swatch is able to protect SSHD from a brute force attack.

distributions Linux (Ubuntu) open

Révolution Linux Report W7701-101396/001/QCC 83 / 88

loc R&D harde
n

(LIDS) is a patch to the Linux kernel and associated administrative tools that enhances the
kernel's security by implementing Mandatory Access Control (MAC). When LIDS is in effect,
chosen file access, all system network administration operations, any capability use, raw
device, memory, and I/O access can be made impossible even for root.

http://www.lids.org/ open

loc R&D harde
n

Systrace is a computer security utility which limits an application's access to the system by
enforcing access policies for system calls. This can mitigate the effects of buffer overflows and
other security vulnerabilities.

http://www.citi.umich.edu/u/pr
ovos/systrace/

open

org oper prev EJBCA is an enterprise class PKI Certificate Authority built on J2EE technology. It is a robust,
high performance, platform independent, flexible, and component based CA to be used stand-
alone or integrated in other J2EE applications.

http://ejbca.sourceforge.net/ open

loc R&D forec DTrace is a comprehensive dynamic tracing framework created by Sun Microsystems for
troubleshooting kernel and application problems on production systems in real time.

open

loc R&D forec SystemTap provides free software (GPL) infrastructure to simplify the gathering of information
about the running Linux system. This assists diagnosis of a performance or functional problem.
SystemTap eliminates the need for the developer to go through the tedious and disruptive
instrument, recompile, install, and reboot sequence that may be otherwise required to collect
data.
SystemTap provides a simple command line interface and scripting language for writing
instrumentation for a live running kernel. We are publishing samples, as well as enlarging the
internal "tapset" script library to aid reuse and abstraction.

http://sourceware.org/systemt
ap/

open

loc R&D forec Ronin is a Ruby platform for exploit development and security research. Ronin allows for the
rapid development and distribution of code, exploits or payloads over many common Source-
Code-Management (SCM) systems.

http://ronin-ruby.github.com/ open

loc R&D forec "Utilizes tools such as OpenVAS, Metasploit, nmap, nikto, smbclient, nbtscan, traceroute,
Microsoft Baseline Security Analyzer, and other open source tools to gather as much
information about a single host or an entire network (limited to a subnet) as possible. PDF
reports are generated and scan archives can be sent in an email at the end of the scan to an IT
manager or whomever.

http://code.google.com/p/od-
autoassess/

open

loc oper prev As any good system administrator knows, there's a lot more to keep track of in an active
network than just webservers. Lire is hands down the most versatile log analysis software
available today. Lire not only keeps you informed about your HTTP, FTP, and mail traffic, it also
reports on your firewalls, your print servers, and your DNS activity. The ever growing list of Lire-
supported services clearly outstrips any other software, in large part thanks to the numerous
volunteers who have pioneered many new services and features. Lire is a total solution for your
log analysis needs.

http://www.logreport.org/ open

org oper prev Logsurfer is a program for monitoring system logs in real-time, and reporting on the occurrence
of events. It is similar to the well-known swatch program on which it is based, but offers a
number of advanced features which swatch does not support.

http://www.crypt.gen.nz/logsur
fer/

open

Révolution Linux Report W7701-101396/001/QCC 84 / 88

org R&D forec LogHound is a tool that was designed for finding frequent patterns from event log data sets with
the help of a breadth-first frequent itemset mining algorithm. LogHound can be employed for
mining frequent line patterns from raw event logs

http://ristov.users.sourceforge.
net/loghound/

open

org R&D forec SLCT is a tool that was designed to find clusters in logfile(s), so that each cluster corresponds
to a certain line pattern that occurs frequently enough.

http://ristov.users.sourceforge.
net/slct/

open

org R&D forec Logpp is a tool for preprocessing event logs and feeding relevant information to other programs
for storing or in-depth analysis. During its work, logpp reads lines appended to input files (like
tail(1) in -f mode), matches the lines with patterns (e.g., regular expressions), converts
matching lines according to given templates, and writes the results to given destinations. Logpp
supports multi-line matching and several types of output destinations like regular files, FIFOs,
external programs, and the system logger. Therefore, logpp can act as a filter in front of the
more complex event log analysis system and increase the system's performance by weeding
out irrelevant log data;

http://logpp.sourceforge.net/ open

org foren forec a log file parser that produces a body file used to create timelines (for forensic investigations).
Log2timeline takes a log file (or a directory) and parses it to produce a body file that can be
imported into other tools for timeline analysis.

http://log2timeline.net open

loc oper forec LogZilla is a frontend for viewing syslog-ng messages logged to MySQL in realtime. It features
customized searches based on device, priority, date, time, and message as well as
reporting/graphing of event data.

http://nms.gdd.net/index.php/
LogZilla

open

org oper forec LogAnalyzer is a web interface to syslog and other network event data. It provides easy
browsing, analysis of realtime network events and reporting services.

http://loganalyzer.adiscon.co
m/

open

loc oper prev GnuPG allows to encrypt and sign your data and communication, features a versatile key
managment system as well as access modules for all kind of public key directories.

http://www.gnupg.org/ open

loc R&D forec Tcpreplay gives you the ability to use previously captured traffic in libpcap format to test a
variety of network devices. It allows you to classify traffic as client or server, rewrite Layer 2, 3
and 4 headers and finally replay the traffic back onto the network and through other devices
such as switches, routers, firewalls, NIDS and IPS's. Tcpreplay supports both single and dual
NIC modes for testing both sniffing and inline devices.

http://tcpreplay.synfin.net/ open

org oper forec Cacti is a complete network graphing solution designed to harness the power of RRDTool's
data storage and graphing functionality. Cacti provides a fast poller, advanced graph templating,
multiple data acquisition methods

http://www.cacti.net/ open

org oper forec FlowScan analyzes and reports on Internet Protocol (IP) flow data exported by routers.
Consisting of Perl scripts and modules, FlowScan binds together (1) a flow collection engine (a
patched version of cflowd), (2) a high performance database (Round Robin Database - RRD),
and (3) a visualization tool (RRDtool). FlowScan produces graph images that provide a
continuous, near real-time view of the network border traffic.

http://www.caida.org/tools/utili
ties/flowscan/pub/

open

loc R&D forec Ourmon is a statistically oriented open-source network monitoring and anomaly detection
system.

http://ourmon.sourceforge.net/ open

loc R&D forec IPAudit monitors network activity on a network by host, protocol and port. http://ipaudit.sourceforge.net/ open

Révolution Linux Report W7701-101396/001/QCC 85 / 88

loc R&D forec IPAudit listens to a network device in promiscuous mode, and records every connection
between two ip addresses. A unique connection is determined by the ip addresses of the two
machines, the protocol used between them, and the port numbers (if they are communicating
via udp or tcp).

http://thnetos.wordpress.com/
nsm-console/

open

loc R&D forec Tstat is a passive sniffer able to provide several insight on the traffic patterns at both the the
network and transport levels.

http://tstat.tlc.polito.it/index.sht
ml

open

org oper mon RANCID monitors a router's (or more generally a device's) configuration, including software and
hardware (cards, serial numbers, etc) and uses CVS (Concurrent Version System) or
Subversion to maintain history of changes. It sens an email when difference is noted

http://www.shrubbery.net/ranci
d/

open

loc oper prev FreeIPA is an integrated security information management solution combining Linux (Fedora),
Fedora Directory Server, MIT Kerberos, NTP, DNS, Dogtag (Certificate System). It consists of a
web interface and command-line administration tools.

http://freeipa.org/page/About open

loc oper forec Webfwlog is a flexible web-based firewall log analyzer and reporting tool. It supports standard
system logs for linux, FreeBSD, OpenBSD, NetBSD, Solaris, Irix, OS X, etc. as well as
Windows XP®. Supported log file formats are netfilter, ipfilter, ipfw, ipchains and Windows XP®.
Webfwlog also supports logs saved in a database using the ULOGD target of the linux netfilter
project.

http://devel.webfwlog.net/inde
x.php

loc R&D forec Kojoney is a low level interaction honeypot that emulates an SSH server http://kojoney.sourceforge.net/

org R&D forec SCAP is a line of standards managed by NIST (http://scap.nist.gov/). It was created to provide a
standardized approach to maintaining the security of enterprise systems, such as automatically
verifying the presence of patches, checking system security configuration settings, and
examining systems for signs of compromise.

http://www.open-
scap.org/page/Main_Page

loc oper prev The Shibboleth System is a standards based, open source software package for web single
sign-on across or within organizational boundaries. It allows sites to make informed
authorization decisions for individual access of protected online resources in a privacy-
preserving manner.

http://shibboleth.internet2.edu
/

loc oper prev Squid is a caching proxy for the Web supporting HTTP, HTTPS, FTP, and more. It reduces
bandwidth and improves response times by caching and reusing frequently-requested web
pages

http://www.squid-cache.org/

loc oper prev DeleGate is a multi-purpose proxy server for multiple application protocols running on multiple
platforms

http://www.delegate.org

loc R&D forec Aanval is the industry's most comprehensive Snort & Syslog intrusion detection and correlation
console designed specifically to scale from small single sensor installations to global enterprise
deployments.

http://www.aanval.com/flex/#o
p=main

Révolution Linux Report W7701-101396/001/QCC 86 / 88

loc oper forec TrueCrypt is a software system for establishing and maintaining an on-the-fly-encrypted volume
(data storage device). On-the-fly encryption means that data is automatically encrypted or
decrypted right before it is loaded or saved, without any user intervention. No data stored on an
encrypted volume can be read (decrypted) without using the correct password/keyfile(s) or
correct encryption keys. Entire file system is encrypted (e.g., file names, folder names, contents
of every file, free space, meta data, etc).

http://www.truecrypt.org/

loc oper forec EncFS provides an encrypted filesystem in user-space. It runs without any special permissions
and uses the FUSE library and Linux kernel module to provide the filesystem interface. You can
find links to source and binary releases below. EncFS is open source software, licensed under
the GPL.

http://www.arg0.net/encfs

org oper forec As with most encrypted filesystems, Encfs is meant to provide security against off-line attacks;
ie your notebook or backups fall into the wrong hands, etc. The way Encfs works is different
from the “loopback” encrypted filesystem support built into the Linux kernel because it works on
files at a time, not an entire block device. This is a big advantage in some ways, but does not
come without a cost.

http://snorby.org/

loc oper forec grsecurity is an innovative approach to security utilizing a multi-layered detection, prevention,
and containment model.

http://grsecurity.net/

loc oper forec RSBAC is a flexible, powerful and fast (low overhead) open source access control framework
for current Linux kernels, which has been in stable production use since January 2000 (version
1.0.9a). All development is independent of governments and big companies, and no existing
access control code has been reused.

http://www.rsbac.org/

loc oper forec Practically, it allows full fine grained control over objects (files, processes, users, devices, etc.),
memory execution prevention (PaX, NX), real time integrated virus detection, and much more.

http://fossology.org/

org oper forec Vsam (Vulnerability, Scanning, Analysis and Management) is a open source virtual appliance
developed and distributed in an effort to bring to the security community a tool to provide full
management capabilities to Nessus scan data. Based on the great work of the Inprotect project,
Vsam extends the ability of Inprotect by bringing the power of virtualization to this highly
functional project. Distributed as a "black box" appliance, no knowledge of Lunix or any
underlying software is required. Once downloaded and setup in a VMware environement, Vsam
can be ready to use in minutes.

http://vsam.sourceforge.net/

net oper prev L7-filter is a packet classifier for Linux. Unlike most other classifiers, it doesn't just look at
simple values such as port numbers. Instead, it does regular expression matching on the
application layer data to determine what protocols are being used.

http://l7-filter.sourceforge.net/

loc oper forec Afick is a security tool, very close from the well known tripwire. It allows to monitor the changes
on your files systems, and so can detect intrusions.

http://afick.sourceforge.net/

org oper prev The Snare Server, from InterSect Alliance, is a proprietary Log Monitoring solution that builds
on the open source Snare agents to provide a central audit event collection, analysis, reporting
and archival system.

http://www.intersectalliance.co
m/snareserver/index.html

Révolution Linux Report W7701-101396/001/QCC 87 / 88

net oper prev knockd is a port-knock server. It listens to all traffic on an ethernet (or PPP) interface, looking
for special "knock" sequences of port-hits. A client makes these port-hits by sending a TCP (or
UDP) packet to a port on the server. This port need not be open -- since knockd listens at the
link-layer level, it sees all traffic even if it's destined for a closed port. When the server detects a
specific sequence of port-hits, it runs a command defined in its configuration file. This can be
used to open up holes in a firewall for quick access.

http://www.zeroflux.org/project
s/knock

org oper prev SecVisor, a tiny hypervisor designed to ensure that only approved kernel code is executable.
SecVisor provides lifetime kernel protection regardless of the scale of an attack and the extent
to which system control is compromised.

http://www.cylab.cmu.edu/part
ners/success-
stories/SecVisor.html

org oper prev sHype is a hypervisor security architecture – it provides a strong isolation, mediated sharing
and communication between Virtual Machines. It controls resource control and accurate
accounting guarantees.

http://www.research.ibm.com/
secure_systems_department/
projects/hypervisor/

org oper forec Linux-VServer provides virtualization for GNU/Linux systems. This is accomplished by kernel
level isolation. It allows to run multiple virtual units at once. Those units are sufficiently isolated
to guarantee the required security, but utilize available resources efficiently, as they run on the
same kernel.

http://linux-
vserver.org/Welcome_to_Linu
x-VServer.org

org oper forec OpenVZ is container-based virtualization for Linux. OpenVZ creates multiple secure, isolated
containers (otherwise known as VEs or VPSs) on a single physical server enabling better
server utilization and ensuring that applications do not conflict. Each container performs and
executes exactly like a stand-alone server; a container can be rebooted independently and
have root access, users, IP addresses, memory, processes, files, applications, system libraries
and configuration files

http://wiki.openvz.org/Main_P
age

org oper forec Sourcefire’s Razorback Framework features an open source, distributed detection system,
robust API set and a fully extensible database and data management system. It has been
specifically designed with the needs of high-level incident response and detection teams.
Razorback enables you to perform advanced processing of data and detection of events by
fetching data as it traverses the network and even fetch data from a server. It is able to perform
advanced event correlation since this framework works in a distributed fashion. You can
consider it as the open source Snort NIDS front-end.

http://nuggetfarm.sourceforge.
net/

org oper prev OPIE is a free implementation of the S/KEY (one time password) specifications (RFC 1760 and
RFC 2289). The idea is that each password is only usable once so it doesn’t matter if anyone
grabs it as it’ll be useless when they try to use it.

Révolution Linux Report W7701-101396/001/QCC 88 / 88

Category WWW site Event Type Data Type

Network
Filtering

Ebtables http://ebtables.sourceforge.net/ informationnel Syslog + user defined software
(nflog + ulog targets)

Netfilter http://www.netfilter.org/ informationnel Syslog + user defined software
(nflog + ulog targets)

NuFw http://www.nufw.org/ informationnel Syslog + user defined software
(nflog + ulog targets)

L7-filter http://l7-filter.sourceforge.net/ informationnel Syslog + user defined software
(nflog + ulog targets)

knockd http://www.zeroflux.org/projects/knock informationnel Syslog + user defined text
logfile

Network
detection

Bro http://bro-ids.org alertes text + database
Snort http://www.snort.org alertes text + database

Suricata http://www.openinfosecfoundation.org/ alertes Syslog + text

Network
Monitoring

Arpwatch http://ee.lbl.gov/ alertes text
Mon http://mon.wiki.kernel.org/index.php/Main_Page informationnel Email, Alphanumeric

paging/messaging
Windows pop-up messages,

Instant messaging

Munin http://munin-monitoring.org/ informationnel Email, syslog, external scripts
Nagios http://www.nagios.org/ informationnel Email, , external scripts

Opennms http://www.opennms.org/ informationnel

Network
Reporting

Lire http://www.logreport.org/ informationnel text
Webfwlog http://devel.webfwlog.net/index.php informationnel text

Network
Analysis

Ngrep http://ngrep.sourceforge.net/ informationnel network data
Tcpdump http://www.tcpdump.org/ informationnel network data
Wireshark http://www.wireshark.org/ informationnel network data

Network Audit

Argus http://www.qosient.com/argus/ Informationnel + alertes network informations
Flow-tools http://www.splintered.net/sw/flow-tools & Informationnel + alertes network informations

Nfdump http://nfdump.sourceforge.net/ informationnel network informations
Nmap http://www.insecure.org informationnel network informations

Flowviewer -
FlowTracker
FlowGrapher

http://ensight.eos.nasa.gov/FlowViewer Informationnel + alertes network informations

Application

Firewall

Squid http://www.squid-cache.org Informationnel + alertes text logfile
Delegate http://www.delegate.org Informationnel + alertes text logfile

mod_security http://www.modsecurity.org/ alertes text logfile
GreenSQL http://www.greensql.net alertes text logfile

Intrusion

Detection: HIDS

Ossec http://www.ossec.net/ alertes text logfile
AIDE http://sourceforge.net/projects/aide/ alertes text logfile

Tripwire http://www.tripwire.com/ alertes text logfile
Sec http://simple-evcorr.sourceforge.net/ alertes text logfile

Prelude-ids http://www.prelude-technologies.com/fr/bienvenue
/index.html

alertes text logfile

Application
Monitoring

Nagios http://www.nagios.org/ Informationnel + alertes text logfile + visual alerts
Splunk http://www.splunk.com/ Informationnel Text
Ossim http://www.alienvault.com/ Informationnel + alertes Text + visual alerts

Application
Reporting

Lire: http://www.logreport.org/ Informationnel text logfile

Application
Analysis

Nessus http://www.nessus.org/ Informationnel + alertes text logfile + visual alerts
Metasploit http://www.metasploit.com/ Informationnel + alertes text logfile + visual alerts
Openvas http://www.openvas.org/ Informationnel + alertes text logfile + visual alerts

Spike http://www.immunitysec.com/resources-
freesoftware.shtml

Informationnel + alertes text

Webscarab http://www.owasp.org/index.php
/OWASP_WebScarab_NG_Project

Informationnel + alertes text

Fusil http://bitbucket.org/haypo/fusil/wiki/Home Informationnel text

Application
Audit

Lint http://docs.sun.com/source/806-3567/lint.html Informationnel + alertes text

Splint http://splint.org/ Informationnel + alertes text
Valgrind http://valgrind.org/ Informationnel + alertes text

Hardening
AppArmor http://www.novell.com/linux/security/apparmor/ alertes text
Grsecurity http://grsecurity.net/ alertes text

RSBAC http://www.rsbac.org/ alertes text
SELinux http://www.nsa.gov/research/selinux/index.shtml alertes text

MAC http://en.wikipedia.org/wiki/Mandatory_access_control alertes text
DTOS http://www.cs.utah.edu/flux/fluke/html/dtos

/HTML/dtos.html
alertes text

FLASK http://www.cs.utah.edu/flux/fluke/html/flask.html alertes text

Virtualization
secvisor http://www.cylab.cmu.edu/partners/success-stories

/SecVisor.html
Informationnel text

sHype http://www.research.ibm.com
/secure_systems_department/projects/hypervisor/

Informationnel text

sVirt http://vidéoprojecteur/page/SVirt Informationnel text
KvmSec note : A Security Extension for Linux Kernel Virtual

Machines
Informationnel text

Tracking Data

strace http://en.wikipedia.org/wiki/Strace Informationnel text
gdb http://www.gnu.org/software/gdb/ Informationnel text

ftrace, kprobe,
ltrace, strace

Note : included in Linux distributions Informationnel text

LTTng http://lttng.org/ Informationnel text
perf http://perf.wiki.kernel.org/index.php/Main_Page Informationnel text

systemtap http://sourceware.org/systemtap/ Informationnel text

	1. Statement of Work
	2. Introduction
	3. Network Security
	3.1. Network Filtering: The Firewall
	Introduction
	History
	Tools
	References

	3.2. Network detection: NIDS
	Introduction
	History
	Tools
	References

	3.3. Network Monitoring
	Introduction
	History
	Tools
	References

	3.4. Network Reporting
	Introduction
	History
	Tools

	3.5. Network Analysis
	Introduction
	History
	Tools
	References

	3.6. Network Audit
	Introduction
	History
	Tools
	References

	4. Software Security
	4.1. Introduction to Application-Related Issues and Their Solutions
	4.2. Application Firewall
	Introduction
	History
	Tools
	References

	4.3. Intrusion Detection: HIDS
	Introduction
	History
	Tools
	References

	4.4. Application Monitoring
	Introduction
	History
	Tools
	References

	4.5. Application Reporting
	Introduction
	History
	Tools
	References

	4.6. Application Analysis
	Introduction
	History
	Tools
	References

	4.7. Application Audit
	Introduction
	History
	Tools
	References

	5. Operating System Security
	5.1. Hardening
	Introduction
	History
	Tools
	References

	5.2. Virtualization
	Introduction
	Security
	History
	Tools
	References

	5.3. Tracking Data
	Introduction
	History
	Tools
	References

	5.4. Encrypting Data
	Introduction
	History
	Tools
	References

	5.5. Using the System
	Introduction
	History
	Tools
	References

	6. Product Analysis
	6.1. Introduction
	6.2. List of Criteria to Consider:
	6.3. Network firewall
	6.4. Network detection
	6.5. Network Monitoring
	6.6. Network reporting
	6.7. Network analysis
	6.8. Network audit
	6.9. Application firewall
	6.10. Host intrusion detection system
	6.11. Host monitoring
	6.12. Application reporting
	6.13. Analyze the security of applications
	6.14. Application audit
	6.15. Operating system security
	6.16. Virtualization
	6.17. Tracing the execution of programs
	6.18. Encrypt the data
	6.19. Managing the connection to the system

	7. Conclusion
	8. Appendix A - list of all products identified

