Towards Pragmatic Pre-
processing of logs

Welyl Shang
https://ece.uwaterloo.ca/~wshang/

IIIIIIIIIIII

24 WATERLOO

Academio Industry
o M.Sc., Ph.D., Post-Doc g gerformonce Engineer
, Sept. 2008 - July. 2015 ept. 2010-Aug. 2014
Ql,eu en’s Black8erry

Associate Prof.
\/Concordla Concordia University Research Chair

Aug. 2015 - June 2023

S UNIVERSITY OF Associate Prof.
ER
% WATERLOO July 2023 - Present

Logs are the most common
data to be used in AlOps

what is the typical data to be analyzed in AlOps

Gin AlOps (Artificial Intelligence for IT Operations), the typical data analyzed includes a wide

variety of IT operational data, usually coming from multiple sources. Here's a breakdown:

1. Logs

- Application logs
- Server logs

- Database logs

- Security logs

- Event logs

- Network device logs (routers, firewalls, switches)

Logs are one of the only
resources of Information

S s
e A SR
e o o i
e e e
et Chovtet] R ey S
o™ oD o DI G 2000 : o
" a S e
= i
u e Y
5 e peie)
pr 2
i o
s
T o1
Lo 8
-
\

r

“The Bone of the System Mﬁosoft- h
[ICSE SEIP 201¢] esearc

Log Pr ,
System Apps ocessing

-— ?

oeé :;IIOW tO J \
ake L
loggin How to -

Regtatem IOQS

Repo

ask 185 W M’“Mﬂﬂ
,;‘m;ﬁmwm.w
T 50 ot
= ot
et ety .m\.;“\»m‘m»w'n .
o S P o
srae o U Wwﬂmrgmﬁ
o e “Q?,y.g-m"f’ et
el e ety e
,ea\‘;v\wwzmwd\ﬁﬂm = el e o
,wnmwm\wwm oo S o
wwvmmmw e
e u = ,\wv;.:jmv;:l:m“
-— E ,w;w».mw% k ,dvﬁ"*"*‘wm\;»gm S
"o ﬁﬂnwaww\wa S e
< g e el

L phee 4
b v ol
R e
E Y RS
S e Thos o o P

General flow of log analysis

/¢)
_ e) @
==uz - EWMMW
i Timestamp partition i i : Anomaly detection diagnosis ”
Log ———id1 Feature Model i I')l I @ Onlme ”
partition ——— extraction training ‘ deployment

———id2 Others
Parsed logs Failure prediction
g |dentifier partition —/

kModeIs Log mining tasks)

[He et al. CSUR21]

A Survey on Automated Log Analysis for Reliability
Engineering

SHILIN HE, Microsoft Research
PINJIA HE, Department of Computer Science, ETH Zurich
ZHUANGBIN CHEN, TIANYI YANG, YUXIN 5U, and MICHAEL R. LYU, Department of

Computer Science and Engineering, The Chinese University of Hong Kong

Logs are semi-structured text generated by logging statements in software source code. In recent decades,
software logs have become imperative in the reliability assurance mechanism of many software systems because
they are often the only data available that record software runtime information. As modern software is evolving
into a large scale, the volume of logs has increased rapidly. To enable effective and efficient usage of modern
software logs in reliability engineering, a number of studies have been conducted on automated log analysis.
This survey presents a detailed overview of automated log analysis research, including how to automate
and assist the writing of logging statements, how to compress logs, how to parse logs into structured event
templates, and how to employ logs to detect anomalies, predict failures, and facilitate diagnosis. Additionally,
we survey work that releases open-source toolkits and datasets. Based on the discussion of the recent advances,
we present several promising future directions toward real-world and next-generation automated log analysis.

CCS Concepts: - Software and its engineering — Software maintenance tools; Software creation and
management.

Very successful

research area

Why?

Log processing

System apps Wy
issues =

How to “regix
analyze
Iogs Repor

v

oduce at run-time

Limited
generalized
toolsets in

. /4
-

l’ ;

>

General flow of log analysis

->

|

At

At 2
Timestamp partition

partition i
Parsed logs o Id‘?
Identifier partition
J
|

Pre-processing of logs

@ LoGPAl

Ba

] ® |

Failure
Anomaly detection diagnosis ’ .l

Feature :'i_ﬂ_l Model i I')l I @ Onfme
extraction training ‘ Others deployment
Failure prediction
Models Log mining tasks / [He et al. CSUR21]

)

|

Most of the research is here

Loghub: A Large Collection of System Log
Datasets for Al-driven Log Analytics

Jieming Zhu*, Shilin He*, Pinjia He'™, Jinyang Liu, Michael R. Lyu?

School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK Shenzhen), China
iDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, China
jiemingzhu@ieee.org slhe@link.cuhk.edu.hk hepinjia@cuhk.edu.cn {jyliu, lyu} @cse.cuhk.edu.hk

@ LoGPnAl

Tools and Benchmarks for Automated Log Parsing

Jieming ZhuY, Shilin He', Jinyang Liu?, Pinjia He®, Qi Xiel, Zibin Zheng!, Michael R. Lyu!

YHuawei Noah's Ark Lab, Shenzhen, China
TDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
tSchool of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
iDepartment of Computer Science, ETH Zurich, Switzerland
ISchool of Computer Science and Technology, Southwest Minzu University, Chengdu, China

jmzhu@ieee.org, slhe®@cse.cuhk.eduhk, linjy@logpai.com, pinjiahe® gmail.com
gi.xie.swun®@gmail.com, zhzibin@mail. sysweducn, lyu@cse.cuhk.eduhk

Log
Parsing

logInfo("Found block $blockld locally")

‘ Generate

17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally

‘ Contain

Timestamp: 17/06/09 20:11:11; Level: INFO
Logger: storage.BlockManager

Static template: Found block <*> |ocally
Dynamic variable(s): rdd 42 20

10

Log parsing does not seem to
be a big issue on papers

104 — —_ —_ T = E

Would you directly deploy any
of these parsers in production?

0.2

0.0

AEL LenMa Spell Drain Logram Brain

Fig. 9. Boxplot of word-level parsing accuracy on 16 benchmark datasets.

[Yu et al TSC 2023] H

The data isway too pretty

2015-10-18 18:01:47,978 INFO [main]
org.apache.hadoop.mapreduce.v2Z.app.MRAppMaster:
Created MRAppMasterforapplication

appattempt 1445144423722 _0020_000001

081109 203615 148 INFO
dfs.DataNode$PacketResponder:
PacketResponder 1 for block

blk 38865049064 139660 terminating

- 1117838570 2005.06.03 R02-M 1-NO-
C:J12-U11 2005-06-03-15.42.50.67587 2
R02-M1-N0O-C:J12-U11 RAS KERNEL INFO
instruction cache parity error corrected

12

The ugly truth of logs Iin real life

Anything can be
INn there!

The ugly truth of logs Iin real life

{ Error: Request failed with status code 500
at createError (...)

at settle (...)

[Symbol (isCorked)]: false,
[Symbol(outHeadersKey)]: [Object] },
data:
3,
isAxiosError: true,

toJSON: [Function] }

/home/travis/.nvm/versions/node/v6.4.0/1ib
L—T markdown-spellcheck@® .11.9

}—— async@1.5.2

-1 chalke1.1.3

‘ L unique-concat@9.2.?2

L native-promise-only@@.8.1

GORACE=""

GOROOT="/home/travis/.gimme/versions/gol1.8.linux.amd64"
GOTOOLDIR="/home/travis/.gimme/versions/gol.8.linux.amd64/pkg/tool/linux_amd64"

14

The ugly truth of logsin real life

GORACE=""
GOROOT="/home/travis/.gimme/versions/gol.8.1linux.amd64"

GOTOOLDIR="/home/travis/.gimme/versions/gol.8.linux.amd64/pkg/tool/linux_amd64"

GORACE=$%
_ » GOROOT=%
After parsing | GOTOOLDIR=$

|s this correct? Is this useful?

15

The ugly truth of logs in real life

{ Error: Request failed with status code 5@@
at createError (...)

at settle (...)

[Bymbol (isCorked)]: false,
[Symbol (outHeadersKey)]: [Object] 3},
data:

1

isAxiosError: true,

toJSON: [Function] }

How about this?

We need a second thought on
how to pre-process these logs

GORACE=""

GOROOT="/home/travis/.gimme/versions/go1.8. linux.amd64"

GOTOOLDIR="/home/travis/.gimme/versions/gol.8.linux.amd64/pkg/tool/linux_amd64"

Log Parsing

rror: Request failed with status code 500

loglnfo("Found block $blockid locally")

‘ Generate

17/06/09 20:11:11 INFO storage.BlockManage

at createError (...)

at settle (...)

r: Found block rdd_42_20 loc
[Symbol (isCorked)]: false,
.v Contain

[Symbol (outHeadersKey)]: [Object] 1},
Timestamp: 17/06/09 20:11:11; Level: INFO

data:
Logger: storage.BlockManager
Static template: Found block <*> locally e b
Dynamic variable(s): rdd_42_20

isAxiosError: true,

toJSON: [Function] }

17

What are the other structures
of logse

We manually studied some

“unconve

ntional” logs

Packer v1.0.2

Your version of Packer is out of date! The latest version

is 1.1.2. You can update by downloading from www.packer.io

Simple

[-] - mock defined in beforeall is counted independently -> Expected $true but gc

at Verify-True

at <ScriptBloch

e Of lines!

+acl

=1 Maybe logs should be pre-
1 processed by chunks instead

+arabic +file_in_path +mouse_sgr

+autocmd +find_in_path -mouse_sysmouse

+tag_binary TabUIar

+tag_old_static

[(DefiniteUnitId (DefUnitId {unDefUnitId = UnitId

(DefUnitId {unDefUnitId = UnitId
"file-embed-0.0.11-5eblK12yNd7K74FblwfEQk"}),DefaultRenaming)]

"base-4.8.2.0-0d6d1084fbc041elcdedd228e80e264d"}),DefaultRenaming),(DefiniteUnitl

Recursive

19

What are the formatsof data in
each chunk?

Code Diff

Paragraph Stack trace

it How do we handle these In
the context of AlIOps?

Va

Tree like YAML like

The first attempt would be

automatical

y idenftitying these

chunks and their formats

Name | F1 Precision Recall ROC AUC
Code | 0.56 0.83 0.42 0.98
Results Diff Hunk | 0 0 0 1
Items | 0.87 0.91 0.83 0.98
based :
on an AHA good start, but there Is
based | hig rooms of
solution. & roe T _l_ x =
||’Y?FF%F zk,ﬁ@ n 0 0 0.99
®‘SfAML Like ﬂ.§ 0.95 0.9 1
End of Line ‘ 0.88 0.84 0.93 0.97

21

s that all for log parsinge

Non-functional attributesare
detrimental to the successof
adoption in industry

@

Accuracy Performance Stability

\ J \ J
| |

Most of the research is here Practitioners care about these too!

() 88

23

Logram: A fast and scalable
parser

Raw log
(Unstructured)

r=——g == ——----= -===1
1

'F oundiblodirdd_42_2Gilocdly
'F ound blockirdd_42_22/locdlly |
\Found block!rad_42_23locdlly!
'Found blogkirdd 42_24iocd]y.!

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

N\

Each dynamic token has a lower number
of appearance.
Token "rdd_42_207 appears only once.

We use the number of appearances to
distinguish static and dynamic tokens.

[Dai et al. TSE]

24

Logram: A fast and scalable

parser

"~ Logram=—e—Drain

~ Spel AEL

o

[
-~ 27
@ = 7
D
E o©
= o
Pe) [Ey]
=
= o
S5 w7
=

IPLoh —#= Lenma Windows

Je+05

2e+(h

03 10 10.0

Size (MB)

Throughpul (¥ log messages per second)

1e+(5
100.0 500.0

8

12 16

Number of Cores

20

Basic idea: using the count of n-grams to parse.

[Dai et al. TSE]

25

PILAR A parserthatisparameter

[Dai et al. ICSE]

Insensitive

Almost 0 in many
cases

L |
=
=
PILAR

Accuracy gaps with varying parameter on the same datasets

Basic idea: using probability of token to parse.

27

Preprocessing of logsisnot just parsing

€ (] R |

a At 2 Failure
Timestamp partition a Anomaly detection dlagn05|s h
i Model E —F|+ITI Onime ”
iti j training ‘ deployment

Failure prediction ~ Others

Parsed logs

Identifier partition

Models Log mining tasks / l

Y |
e : FI\ Most of the research is here (He et al. CSUR21]

Partition logs is extremely
important to the AlOps tasks

Only 21% of logging statements
contain IDs.

()

B #logsw/ ID [#logswiolD

hadoop
hive

hbase
lucene
tomcat
activemg

pig

1109 235951 4525 INFO JOB_CREATE job_1
31110 000117 3300 INFO JOB_CREATE job_2
’) 000136 2800 ERROR while processing data IOException: no such file

maven
pivot
empire-db
mina
creadur-rat

0 5000 10000 15000 20000

. J

Most relationship between logs are lost at runtime. This makes log
analysis difficult.
[Zhao et al. SANER] 29

We leverage node dominations to
create relationship between logs.

Node A dominates node B means that: fo get to B, one
must go througt |

info
‘processing data for {}"
split.getlD()

Dominates
frace

"done processing {}"
split

error

"exception while
processing”

g

30

Here Is an example of how the IDs are
propagated:

}
} catch (IOException e
LOG.error("Except
throw e;
b}
}

Thanks to all my collaborators

Testin m
g Software g

testing
ERICSSON . SE for Al
s "‘, a * . AlOps
. " w wMobile ppps §&EA Al Performancse
Mobeewave ENVIRONMENTAL
Management Solutions
System
Source
. alit *2BlackBerry.
ASML source coce mQU i - fyLO anaviics
a8 . performance = &7 J Y
ve ERICSSON

Mobeewave

(’ 3 ERA Performance

EEEA Exception EUVIEBNMENTAL. cnolyTics

i Management Solutions

“Handling

Make better
*2zBlackBerry.logging

Sera. pugs Development

General flow of log analysis

At1

At2
Timestamp partition

Failure

i Anomaly detection

|

=
y

%

Log
partition
Parsed logs

i ; diagnosis "
> g)
id1 Feature H Model . D-)E (eoe) Oniine ‘
extraction ; i V| yaining | [.° ¢ v | deployment
id 2 g . * Failure prediction ~ Others ploy

Identifier partition
[He et al. CSUR21]

Models Log mining tasks

;| J

Y |

Pre-processing of logs Most of the research is here

@ LoGPAI

Welyl Shang

“unconventional” logs

Packer v1.0.2 Simple

Your version of Packer is out of date! The latest version

is 1.1.2. You can update by downloading from www.packer.ic

[-1 - mock defined in beforeall is counted independently -> Expected Strue but ge |
at verify-1.1h

- Maybe logs should be pre-

at <ScriptBlocl

-~ processed by chunks instead

w | OF lines!

+acl
+arabic +file_in_path +mouse_sgr +tag_binary Tabular
+autocmd +find_in_path -mouse_sysmouse +tag_old_static
[(Definiteunitld (DefUnitld {unbefunitid = Unitld
"base-4.8.2.0-8d6d1884fbc@4lelcdedd228e88e264d"}), Defaul tRenaming) , (DefiniteUnit]

Recursive
(DefUnitId {unDefUnitld = Unitld
“file-embed-0.0.11-5eblk12yNd7K74FblufEQk ")), Defaul tRenaming)]

20

The ugly truth of logs in real life

{ Error: Request failed with status code 508

at createError (...) /home/travis/.nvm/versions/node/v6.4.0/1ib

at settle (...) L+ markdown-spellcheck@d.11.8
f—— async@l.5.2

[Symbol (isCorked)]: false,
f-r chalker.1.3

[Symbol (outHeadersKey)]: [Object] 3,
data:
T
isAxiosError: true,

toJSON: [Function] }

L unique-concat@®.2.2
(S native-promise-only@®.8.1

GORACE=""
GOROOT="/home/travis/.gimme/versions/gol.8.linux.amd64"
GOTOOLDIR="/home/travis/.gimme/versions/go1.8.linux.amd64/pkg/tool/linux_amd64"

https://ece.uwaterloo.ca/~wshang/

Adopting AIUpS In practice is more
than a simple pipeline

We need more than better Al tools.

Anomaly detection oo

E Timestamp partition g — E
Log —_— Feature E:]F. Model i lo -« D-)E ;‘\..T“,

Oﬁe \l

We need data! Real industrial datal
W—NW

We need industrial-involved solutions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Logs are one of the only resources of information
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Log parsing does not seem to be a big issue on papers
	Slide 12: The data is way too pretty
	Slide 13: The ugly truth of logs in real life
	Slide 14: The ugly truth of logs in real life
	Slide 15: The ugly truth of logs in real life
	Slide 16: The ugly truth of logs in real life
	Slide 17: We need a second thought on how to pre-process these logs
	Slide 18: What are the other structures of logs?
	Slide 19: We manually studied some “unconventional” logs
	Slide 20: What are the formats of data in each chunk?
	Slide 21: The first attempt would be automatically identifying these chunks and their formats
	Slide 22: Is that all for log parsing?
	Slide 23: Non-functional attributes are detrimental to the success of adoption in industry
	Slide 24: Logram: A fast and scalable parser
	Slide 25: Logram: A fast and scalable parser
	Slide 27: PILAR: A parser that is parameter insensitive
	Slide 28
	Slide 29: Only 21% of logging statements contain IDs.
	Slide 30: We leverage node dominations to create relationship between logs.
	Slide 31: Here is an example of how the IDs are propagated:
	Slide 32
	Slide 33

