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Introduction

• GPUs have become ubiquitous in many fields, notably HPC and
machine learning

• Multiple programming models have been developed, both low and
high level

• CUDA, HIP, OpenCL
• SYCL, OpenMP, OpenACC

• GPU programming remains a difficult task
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Motivation

• Tooling is maturing, mostly for profiling from the host point of view
• ROC-profiler
• Intel VTune
• HPCToolkit1, ...

• Most tools rely on hardware performance counters and/or PC
sampling

• Current work on device instrumentation

• Little consideration for instrumentation noise (runtime overhead,
register pressure, . . . )

1K. Zhou, L. Adhianto, J. Anderson, et al., “Measurement and
analysis of gpu-accelerated applications with hpctoolkit,” Parallel
Computing, vol. 108, p. 102 837, 2021.
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Shortcomings of current work

• CUDAAdvisor [2] proposes LLVM-based instrumentation of compute
kernels. PPT-GPU [3] is similar, with dynamic instrumentation.

• little consideration for overhead (costly kernel-wide atomic
operations)

• Overhead ranging from ∼ 10 × to 120×

• CUDA Flux [4] introduces Control-Flow Graph (CFG)
instrumentation combined with static analysis

• only one thread is instrumented, does not support divergence
• Overhead ranging from ∼ 1 × to 151× (avg. 13.2×)
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Baseline method

We propose a method for instrumenting kernel execution on the GPU
with a minimal runtime overhead.

• Relies on a set of LLVM passes for the host and device Intermediate
Representation (IR)

• Multi-stage performance analysis
• Control-flow counters to retrieve the control flow of the program
• Event collection for precise analysis
• Optionally, original kernel for timing data

• Knowledge of the control flow allows for pre-allocation of the buffers

• Deterministic execution is ensured by reverting memory

• Article published in the ACM Transactions on Parallel Computing2

2S. Darche and M. R. Dagenais, “Low-overhead trace collection and
profiling on gpu compute kernels,” ACM Trans. Parallel Comput.,
vol. 11, no. 2, Jun. 2024, ISSN: 2329-4949. DOI: 10.1145/3649510. [Online].
Available: https://doi.org/10.1145/3649510.
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Baseline Results

• Instrumentation tested on the Rodinia3 benchmark

Average overhead Median overhead
Counters instr. (kernel) 2.00× 1.67×
Tracing instr. (kernel) 1.50× 1.29×
Program execution time 1.60× 1.26×

• Good improvements over state of the art

• Correlation between kernel complexity and overhead

3S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite for
heterogeneous computing,” in 2009 IEEE International Symposium on
Workload Characterization (IISWC), 2009, pp. 44–54.
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Runtime Trace Collection

• First approach works well, but is unweildy in many ways
• Two kernel runs require saving context & input data
• Limited by non-deterministic kernels (parallelism?)

• "Regular" tracing is possible but has its own set of challenges

• Requires specific tuning for the hardware
• Memory locality
• Allocation granularity

• Second article covers a few methods (cf last progress report
meeting)
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Results

• Instrumentation tested on the HeCBench4 benchmark. Overhead is
reported as the slowdown factor between the traced kernel execution
time and the original, uninstrumented kernel.

mean median

hip-trace 2.07× 1.50×
4 × padded hip-trace 2.18× 1.58×

hip-global-mem 3.73× 1.96×
hip-cu-mem 2.47× 1.60×
hip-chunk-allocator 1.79× 1.33×
hip-cu-chunk-allocator 1.77× 1.32×

4Z. Jin and J. S. Vetter, “A benchmark suite for improving
performance portability of the sycl programming model,” in 2023
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, 2023, pp. 325–327.
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Reducing the number of tracepoints

• For most kernels, the number of tracepoints could be reduced
• Reduction in trace size
• Reduction in run time overhead

• Intuitively, if half of the threads go through an if statement, we can
deduce the other half goes to the else statement

• Can be generalized to switch statements and more complex control
flow (more than two outgoing edges)

Figure 1: AMD GCN Compute unit 5

5Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop
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Static analysis

• In an acyclic CFG (simple case), the control flow can be completely
computed by instrumenting n − 1 outgoing edges

• Vertices in the CFG are processed using a variant of Kahn’s
algorithm

∨
ei∈incoming

T (ei ) =
∨

ei∈outgoing

T (ei ) (1)

• The algorithm does not terminate for CFGs containing a cycle

• We identify back edges using a depth-first search (DFS), and run
the algorithm on the CFG stripped of its cycles. Back edges must be
instrumented.
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Static analysis
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Figure 2: Thread-centric CFG Example

• ea = ed · e0
• ec = ea + eb · ea = ea
• eend = ed + ec = ed + ea = ed + ed · e0 = e0
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Analysis run time complexity

• DFS is expensive, exponential complexity
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Figure 3: Processing time as a function of CFG complexity ∥V ∥+ ∥E∥
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Trace size reduction
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Figure 4: Relative reduction in number of events and total trace size
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Run time overhead
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Figure 5: Distribution of kernel run time as a function of collection method
and instrumentation
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Conclusion and future work

• PhD project is nearing its end

• Explored instrumentation methods for tracing compute kernels

• Studied the performance impact of data structures for online tracing

• Improved baseline results by reducing the number of tracepoints

• Interest for the project from partners

• Available freely on Github, feedback and/or use cases are more than
welcome
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