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Previously...

* Started exploring different ways of tracing programs running on
GPU for HPC

* Introductionto TC, LTTNG, ROCPROFvX

* Goal: Identify performance bottlenecks on LLM finetuning jobs
running on HPC nodes.
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Given a machine learning job

* We want to trace the memory movement
* Alloc/Free on host memory (CPU)
* Alloc/Free on device memory (GPU)
* Memory copies between host and devices.

* Why is this interesting in the case of unified memory?

* Because in unified-memory there should not be any copies between host
and device as they share the same memory.
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Research Questions:

* What are the tools that can be used to trace programs running on
both GPU+CPU

* What is the impact of not utilizing unified memory on Pytorch?

* How much memory is duplicated on average?
* How much time is spent in redundant operations?
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As of today, none of the machine learning
framework support unified-memory.
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Visualizing memory w/ events

With common existing tools.



Measuring memcpy w/ events
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Looking at Pytorch memcpy

12:34:05

12:34:06

12:34:07

finetuning.py(66): <module>

=]
Optimizers...|"]

orcn/opt] |
T i

(1} I
Bookmarks Finetuning on 10

oc 55G-
5G -
8.5G-
45G-
8G -
| 4c -
" "
3 7.5G- '5 3.5G-
> >
_— 36 -
25G-
6.5G-
26 -
SOl 1.5G-
12:33:51.900 12:33:52.000 12:33:52.100 12:34:05

Lancelot Normand - PRM25-1

12:34:06

12:34:.07



Evidence of lack of support for unified-
memory

10 CHAPTER 1. WEEK 1 - JAN 16-23
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Figure 1.6: Snippet of a Trace of LLM finetuning task written with PyTorch. The presence of hipMalloc
and hipMemcpyWithStream indicates that PyTorch does not consider the unified-memory architecture of the
MI300a and treats it as a regular Discrete GPU
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1.2.6 Besides Unified memory, what about the performance comparison of ma-
trix multiplication?

Going back to the trivial code defined earlier, I ran the code with matrices of size N x N where N was
ranging from 2 to 16384. This was run on all 4 GPUs.
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Limitations of the current tools for tracing
memory movement

* Many tools offer produce some kind of memory trace, but they
rarely combine both host and device memotry.

* While Rocprofiler can trace HipEvents it does not expose pointer
addresses of memorycpy.

* Pytorch is heavily instrumented and produces GPU memory
traces and complete HIP traces w/ addr but does traces use
different clocks that are not trivial to sync. Bigger traces are also
Subject to corruption.

* LTTng ust to trace malloc/free/realloc/calloc...
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Limitations of the current tools for tracing
memory movement (contd)

 So we have different tools with no common trace format, no
common clock.

* Synchronizing them and stitching all that information is labor
Intensive but it should not be.

* This renders everything very difficult to reproduce and impractical.
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“bytes": "79691776"

. "alloc",

id": 100,

N 563,

S': 1741050000725115,

- 'E",

ame": "alloc 76.00 MB @ 0x7ef8c8c00000",
gs": {

faddr": "0x7ef8c8c00000",

“bytes": "79691776"

A refined tool

To facilitate trace collection
of both host and device

memory

grindhe- PRM231 Lo , 14



New refined approach

*LD_P
trace

e Andt

RELOAD to overload HIP functions and add custom
point reported to LTTNG-UST

nat’s it.
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Benefits of this approach

* Completely framework agnostic.

* Only need LTTng UST
* A single trace is produced, very easy to reproduce.
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We define
our own
tracepoints

memtrace > hiptrace.h

4

#undef
#define

#undef

#define "./hiptrace.h"

#if !defined( ) || defined(
#define

#include <lttng/tracepoint.h>

LTTNG_UST_TRACEPOINT_EVENT(
hiptrace,
hip_malloc,
LTTNG_UST_TP_ARGS (
, Size,

*, ptr,

, result
)y
LTTNG_UST_TP_FIELDS(

lttng_ust_field_integer , Size, size
lttng_ust_field_integer_hex *, ptr, ptr

lttng_ust_field_integer , result,

LTTNG_UST_TRACEPOINT_EVENT(
hiptrace,
hip_malloc_managed,
LTTNG_UST_TP_ARGS (

, Size,
*x, ptr,
, Tlags,

, result
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"C" hipError_t hipMalloc( *x ptr,

[ J
using Fn = hipError_t (x)(voidxx,
} Fn real = load_symbol<Fn>("hipMa

if (!'real) return hipErrorUnknown;

(]
hipError_t result = real(ptr, size);
if (result == hipSuccess) A
tracepoint(hiptrace, hip_malloc, size, *ptr,

tracepoint(hiptrace, hip_malloc, size,

° J
I return result;

“C" hipError_t hipMallocManaged ( %k ptr, ( flags) {
J Fn = hipError_t (%) ) 1%k, I );
Fn real = load_symbol<Fn>("hipMal

°
| I I lC | IOI I: ; if (!'real) return hipErrorUnknown;

hipError_t result = real(ptr, size, flags);
if (result == hipSuccess) {
tracepoint(hiptrace, hip_malloc_managed, size, *ptr, flags, result);

\

tracepoint(hiptrace, hip_malloc_managed, size, , flags, result);

1

return result;

hipError_t hipMemcpyAsync( * dst, * src, size, hipMemcpyKind kind, hipStream_t stream) {

] Fn = hipError_t (*)(voidx, *, , hipMemcpyKind, hipStream_t);

Fn real = load_symbol<Fn>("hipMemcpy

5 hinErrarlinkbnaums
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How we compile, and start tracing

Usage

Compile the hipwrapper.cpp into a library and stores it into /usr/local/wrap_hip.so or any preferred directory

g++ —-fPIC -shared -o /usr/local/wrap_hip.so \
wrapl@.cpp hiptrace.c \
-ldl -1lttng-ust -rdynamic \
-I. -I/opt/rocm/include \
-L/usr/local/lib -Wl,-rpath,/usr/local/lib \
—D__HIP_PLATFORM_AMD_

LTTNG_UST_CTL_PATH=/home/users/lancend/mestraces lttng-sessiond ——daemonize —-—-no-kernel —-—group=prl_collab -v

lttng create May@5-trace

lttng enable-channel —-userspace ——blocking-timeout=inf blocking-channel

lttng enable-event —c blocking-channel -u lttng_ust_libcx*

lttng enable-event —c blocking-channel -u lttng_ust_statedumpx*

1ttng enable—event —c blocking-channel -u hiptracex

lttng add-context -c blocking-channel —-u -t vpid -t vtid

lttng start

LTTNG_UST_ALLOW_BLOCKING=1 LTTNG_UST_APP_PATH="/home/users/lancend/mestraces" LTTNG_UST_DEBUG=1 LTTNG_UST_VERBOSE=1
LD_PRELOAD="/usr/local/lib/liblttng-ust-libc-wrapper.so:/home/users/lancend/code/wrap_hip.so" <YOUR_EXECUTABLE>

To export the CTF trace into json call ctf2ctf <TRACE_DIRECTORY> > trace.json.
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Some may point out that this shares a lot of
similarities with exa-tracer...
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And indeed, 1t does...

* |In fact, exa-tracer implements everything | did but better.

* The good thing about it is that both traces use the same format so
one can use them interchangeably in the trace analysis part
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The problem of measuring duplicated memory
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Limitations

* Duplicated memory is difficult to compute, while at the type of a
copy we know for sure memory has been duplicated, it is not
always obvious when host memory is rewritten when it is not
explicitly freed.

* Copied pointers may not always align with the pointers returned
following a malloc. Therefore, we need to maintain an interval of
address range so that upon freeing a bigger block subsequent
reported duplicated chunks within it are substracted from the
current total duplicated bytes
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Limitations part two

* Lots of freeing the null ptr which means the information might
have been freed before...
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What’s next?

* Push further the analysis and vis.
* Make sure the duplicates are accounted correctly
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Trace analysis (In progress
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Thank you
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