Tracing [unified] Memory on
heterogeneous systems

Lancelot Normand

Previously...

* Started exploring different ways of tracing programs running on
GPU for HPC

* Introductionto TC, LTTNG, ROCPROFvX

* Goal: Identify performance bottlenecks on LLM finetuning jobs
running on HPC nodes.

Lancelot Normand - PRM25-1

Given a machine learning job

* We want to trace the memory movement
* Alloc/Free on host memory (CPU)
* Alloc/Free on device memory (GPU)
* Memory copies between host and devices.

* Why is this interesting in the case of unified memory?

* Because in unified-memory there should not be any copies between host
and device as they share the same memory.

Lancelot Normand - PRM25-1

CPU

H

Gu—

CPU

GPU AMD Instinct™ APU

i THRER

(HBM)

(a) Discrete CPU and GPU. (b) APU.

amd.com/software-tools-optimization/mi300a-programming/README.htm

Lancelot Normand - PRM25-1

https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html
https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html
https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html
https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html
https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html
https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html
https://rocm.blogs.amd.com/software-tools-optimization/mi300a-programming/README.html

Research Questions:

* What are the tools that can be used to trace programs running on
both GPU+CPU

* What is the impact of not utilizing unified memory on Pytorch?

* How much memory is duplicated on average?
* How much time is spent in redundant operations?

Lancelot Normand - PRM25-1

As of today, none of the machine learning
framework support unified-memory.

Lancelot Normand - PRM25-1

Visualizing memory w/ events

With common existing tools.

Measuring memcpy w/ events

= Flame Chart (new Callstack) x

P EI RBEEYy fLE&EE v i =0
Eunction 12:33:48 12:33:50 12:33:52 12:33:54 12:33:56 12:33:58 12:34:00 12:34:02 12:34:04 12:34:06 12:34:08
v @ 1226293
v @ 1226293

= finetuning.py(66): <module>

ransformers/tokenization_utils_base.py(2227): _from_pretrair ST
transformers/tokenization_utils_fast.py(98): __init_ 1
<built-in methed from_file of type object at 0x9b8fd20> [.

D‘-- -)
RS Lequests/se. | Jueue.py(15d.
"lﬁ |

|
[torch/nn/...] Optimizer.step#AdamW.step II
ftorch/optim/optimizer.py(72): |

(1 oo o8

LRIE (R R IR T R

x Bookmarks Finetuning on 10 samples

& Counters x = Progress iy

type filter text 50G-|

Counters Le
cid
correlation
size -
hipMemcpyWithStrea l

External id 306G+

cid 'g
correlation >

kind 206G~
size -
~ @1227m172 r f
~ [Name
~ @ hipMalloc Xk
External id
cid
correlation
size -

T
133240 12.22.en 172.22.02 133284 17:32€& 13.32.80 132400 192400 122404 192408 122400

Lancelot Normand - PRM25-1

12:33:51.900

12:33:52.000

12:33:52.100

Looking at Pytorch memcpy

12:34:05

12:34:06

12:34:07

finetuning.py(66): <module>

=]
Optimizers...|"]

orcn/opt] |
T i

(1} I
Bookmarks Finetuning on 10

oc 55G-
5G -
8.5G-
45G-
8G -
| 4c -
" "
3 7.5G- '5 3.5G-
> >
_— 36 -
25G-
6.5G-
26 -
SOl 1.5G-
12:33:51.900 12:33:52.000 12:33:52.100 12:34:05

Lancelot Normand - PRM25-1

12:34:06

12:34:.07

Evidence of lack of support for unified-
memory

10 CHAPTER 1. WEEK 1 - JAN 16-23

Function 03:15:53.630 03:15:53.635 03:15:53.640 03:15:53.645 03:15:53.650 03:15:53.655
ALl

¥ trace-2794420
¥ & Processes
v i 2794420
¥ @ HIP f

= hipMemcpyWithStream
¥ @ HSA f -
= hsa_signal_wait_scacquire |

I'hsa signal wait scacquire Jhsa amd memory pool alloc.... sa_amd_memory lock to poo

v & 2796535

Figure 1.6: Snippet of a Trace of LLM finetuning task written with PyTorch. The presence of hipMalloc
and hipMemcpyWithStream indicates that PyTorch does not consider the unified-memory architecture of the
MI300a and treats it as a regular Discrete GPU

Lancelot Normand - PRM25-1

10

1.2.6 Besides Unified memory, what about the performance comparison of ma-
trix multiplication?

Going back to the trivial code defined earlier, I ran the code with matrices of size N x N where N was
ranging from 2 to 16384. This was run on all 4 GPUs.

Runtime as we increase the size N of N*N Matrices Runtime as we increase the size N of N*N Matrices
(lower is better) (lower is better)
200 4 — AMD MI300a with Unified Memory —— AMD MI300a with Unified Memory
~» - AMD MI300a non-unified ~» - AMD MI300a non-unified
175 4 — AMD MI210 1024 . AMD MI210
—#— NVIDIA H100 —#— NVIDIA H100

150 1 —#— NVIDIA GH200 —#— NVIDIA GH200
2 7
© b=
E 125 s
2 @ 10! 4
] &
> 100 o
£ E
= -
g P K]
= =

50
10°
25 A
0+ & = = gL

Size of N Size of N
Figure 1.8: Runtime measured after multiplying ma- Figure 1.9: Same graph but with logarithmic scale
trices A x B of size (N x N) 10 times on different on y axis

MNDTTA

Lancelot Normand - PRM25-1

11

Limitations of the current tools for tracing
memory movement

* Many tools offer produce some kind of memory trace, but they
rarely combine both host and device memotry.

* While Rocprofiler can trace HipEvents it does not expose pointer
addresses of memorycpy.

* Pytorch is heavily instrumented and produces GPU memory
traces and complete HIP traces w/ addr but does traces use
different clocks that are not trivial to sync. Bigger traces are also
Subject to corruption.

* LTTng ust to trace malloc/free/realloc/calloc...

Lancelot Normand - PRM25-1 12

Limitations of the current tools for tracing
memory movement (contd)

 So we have different tools with no common trace format, no
common clock.

* Synchronizing them and stitching all that information is labor
Intensive but it should not be.

* This renders everything very difficult to reproduce and impractical.

Lancelot Normand - PRM25-1 13

“bytes": "79691776"

. "alloc",

id": 100,

N 563,

S': 1741050000725115,

- 'E",

ame": "alloc 76.00 MB @ 0x7ef8c8c00000",
gs": {

faddr": "0x7ef8c8c00000",

“bytes": "79691776"

A refined tool

To facilitate trace collection
of both host and device

memory

grindhe- PRM231 Lo , 14

New refined approach

*LD_P
trace

e Andt

RELOAD to overload HIP functions and add custom
point reported to LTTNG-UST

nat’s it.

Lancelot Normand - PRM25-1

15

Benefits of this approach

* Completely framework agnostic.

* Only need LTTng UST
* A single trace is produced, very easy to reproduce.

Lancelot Normand - PRM25-1

16

We define
our own
tracepoints

memtrace > hiptrace.h

4

#undef
#define

#undef

#define "./hiptrace.h"

#if !defined() || defined(
#define

#include <lttng/tracepoint.h>

LTTNG_UST_TRACEPOINT_EVENT(
hiptrace,
hip_malloc,
LTTNG_UST_TP_ARGS (
, Size,

*, ptr,

, result
)y
LTTNG_UST_TP_FIELDS(

lttng_ust_field_integer , Size, size
lttng_ust_field_integer_hex *, ptr, ptr

lttng_ust_field_integer , result,

LTTNG_UST_TRACEPOINT_EVENT(
hiptrace,
hip_malloc_managed,
LTTNG_UST_TP_ARGS (

, Size,
*x, ptr,
, Tlags,

, result

Lancelot Normand - PRM25-1

17

"C" hipError_t hipMalloc(*x ptr,

[J
using Fn = hipError_t (x)(voidxx,
} Fn real = load_symbol<Fn>("hipMa

if (!'real) return hipErrorUnknown;

(]
hipError_t result = real(ptr, size);
if (result == hipSuccess) A
tracepoint(hiptrace, hip_malloc, size, *ptr,

tracepoint(hiptrace, hip_malloc, size,

° J
I return result;

“C" hipError_t hipMallocManaged (%k ptr, (flags) {
J Fn = hipError_t (%)) 1%k, I);
Fn real = load_symbol<Fn>("hipMal

°
| I I lC | IOI I: ; if (!'real) return hipErrorUnknown;

hipError_t result = real(ptr, size, flags);
if (result == hipSuccess) {
tracepoint(hiptrace, hip_malloc_managed, size, *ptr, flags, result);

\

tracepoint(hiptrace, hip_malloc_managed, size, , flags, result);

1

return result;

hipError_t hipMemcpyAsync(* dst, * src, size, hipMemcpyKind kind, hipStream_t stream) {

] Fn = hipError_t (*)(voidx, *, , hipMemcpyKind, hipStream_t);

Fn real = load_symbol<Fn>("hipMemcpy

5 hinErrarlinkbnaums

Lancelot Normand - PRM25-1 18

How we compile, and start tracing

Usage

Compile the hipwrapper.cpp into a library and stores it into /usr/local/wrap_hip.so or any preferred directory

g++ —-fPIC -shared -o /usr/local/wrap_hip.so \
wrapl@.cpp hiptrace.c \
-ldl -1lttng-ust -rdynamic \
-I. -I/opt/rocm/include \
-L/usr/local/lib -Wl,-rpath,/usr/local/lib \
—D__HIP_PLATFORM_AMD_

LTTNG_UST_CTL_PATH=/home/users/lancend/mestraces lttng-sessiond ——daemonize —-—-no-kernel —-—group=prl_collab -v

lttng create May@5-trace

lttng enable-channel —-userspace ——blocking-timeout=inf blocking-channel

lttng enable-event —c blocking-channel -u lttng_ust_libcx*

lttng enable-event —c blocking-channel -u lttng_ust_statedumpx*

1ttng enable—event —c blocking-channel -u hiptracex

lttng add-context -c blocking-channel —-u -t vpid -t vtid

lttng start

LTTNG_UST_ALLOW_BLOCKING=1 LTTNG_UST_APP_PATH="/home/users/lancend/mestraces" LTTNG_UST_DEBUG=1 LTTNG_UST_VERBOSE=1
LD_PRELOAD="/usr/local/lib/liblttng-ust-libc-wrapper.so:/home/users/lancend/code/wrap_hip.so" <YOUR_EXECUTABLE>

To export the CTF trace into json call ctf2ctf <TRACE_DIRECTORY> > trace.json.

Lancelot Normand - PRM25-1

Some may point out that this shares a lot of
similarities with exa-tracer...

Lancelot Normand - PRM25-1

20

And indeed, 1t does...

* |In fact, exa-tracer implements everything | did but better.

* The good thing about it is that both traces use the same format so
one can use them interchangeably in the trace analysis part

Lancelot Normand - PRM25-1

21

The problem of measuring duplicated memory

Lancelot Normand - PRM25-1 22

Limitations

* Duplicated memory is difficult to compute, while at the type of a
copy we know for sure memory has been duplicated, it is not
always obvious when host memory is rewritten when it is not
explicitly freed.

* Copied pointers may not always align with the pointers returned
following a malloc. Therefore, we need to maintain an interval of
address range so that upon freeing a bigger block subsequent
reported duplicated chunks within it are substracted from the
current total duplicated bytes

Lancelot Normand - PRM25-1

23

Limitations part two

* Lots of freeing the null ptr which means the information might
have been freed before...

Lancelot Normand - PRM25-1

24

What’s next?

* Push further the analysis and vis.
* Make sure the duplicates are accounted correctly

Lancelot Normand - PRM25-1

25

Trace analysis (In progress

&
Memory Trace Dashboard -
i)
Overall Memory Allocation iai]
708
—— Host Memory +
60B == GPU Memory
——— Duplicated Memory
508 ~— Bytes Copied
408
0
-]
& 308
208
108
\.
1.74647317x10"° 1.74647318x 10 1.74647319x10'° 1.7464732x10 1.74647321x10'5 1.74647322x10 174647323105 1.74647324x10"°
Timestamp (trace units)
Duplicated Memory Timeline (Host « Device)
1.58B
1B
n
g
<.
[+
0.5B
1.7464732%10' 1.74647321x10'® 1.74647322x10' 1.74647323x10"° 1.74647324x 105

Timestamp (trace units)

File: ../may05/may05-memtrace.json * Samples: 820

o Errors x Callbacks | v3.0.4 | Server @ | () [

Lancelot Normand - PRM25-1

26

Thank you

Lancelot Normand - PRM25-1

27

	Slide 1: Tracing [unified] Memory on heterogeneous systems
	Slide 2: Previously…
	Slide 3: Given a machine learning job
	Slide 4
	Slide 5: Research Questions:
	Slide 6: As of today, none of the machine learning framework support unified-memory.
	Slide 7: Visualizing memory w/ events
	Slide 8: Measuring memcpy w/ events
	Slide 9: Looking at Pytorch memcpy
	Slide 10: Evidence of lack of support for unified-memory
	Slide 11
	Slide 12: Limitations of the current tools for tracing memory movement
	Slide 13: Limitations of the current tools for tracing memory movement (contd)
	Slide 14: A refined tool
	Slide 15: New refined approach
	Slide 16: Benefits of this approach
	Slide 17: We define our own tracepoints
	Slide 18: Our library overloading hip functions
	Slide 19: How we compile, and start tracing
	Slide 20: Some may point out that this shares a lot of similarities with exa-tracer…
	Slide 21: And indeed, it does…
	Slide 22: The problem of measuring duplicated memory
	Slide 23: Limitations
	Slide 24: Limitations part two
	Slide 25: What’s next?
	Slide 26: Trace analysis (in progress)
	Slide 27: Thank you

