
Automation or augmentation?
A few thoughts on infrastructural
support for software monitoring

Heng Li

Dorsal Progress Report Meeting

May 2025

What is software monitoring?

Systematic/widespread
monitoring On-demand monitoring

Search

Analysis

Problem/
demand Analysis

Pros: proactive

Cons: perf./storage/analysis overhead

Pros: lower overhead

Cons: reactive

Monitoring
placement

1. Automation alone is insufficient. Humans are always in the loop, and must
always be accounted for in the design of tools, systems, and processes.

2. Augmentation > automation. Developers know far more than we think. We
should be designing for augmentation, not automation, combining the insights that both
developers and machines have to make much more powerful systems that automation
can achieve alone.

Augmentation vs. Automation

Infrastructural support

Systematic/widespread
monitoring

Pros: proactive

Cons: perf./storage/analysis overhead

§ Reducing overhead
§ Low overhead tracing (LTTng)
§ Tracing optimization / adaptive

tracing
§ CTF2 / log compression

§ Data preprocessing
§ Log/trace parsing

§ Data visualization
§ Flame Graph
§ Time Curve
§ Data Map

§ Intelligent/semantic search
§ Vector search

Search

Analysis

Monitoring
placement

Bottom-up vs. top-down approaches
Premature optimization is the root of all evil
 – Donald Knuth (Turing Award Winer, 1974)

Bottom-up vs. top-down approaches

Knuth, D. E. (1974). Structured
programming with go to
statements. ACM Computing
Surveys (CSUR), 6(4), 261-301.

Premature optimization is the root of all evil
 – Donald Knuth (Turing Award Winer, 1974)

Bottom-up vs. top-down approaches

Performance Modeling (RQ2)

Building
Performance

Models

Full Tracing Performance Model
(All Functions)

Optimized Performance Model
(Performance-Sensitive Functions)

Measuring and
Comparing
Accuracies

Executing and
Tracing the
Program

Performance-Sensitive Functions Identification (RQ1)

Performance-Sensitive Functions

Statistical Analysis

Preprocessing
Trace Data

Tracing Overhead Reduction
Analysis

Trace Data Collection

Randomly Generated
Diverse Inputs

Trace-Ready Compilation

Executing and Tracing
the Program

Storing the Trace
Data

Program

Code Static
Features Extraction

Performance Regression Detection (RQ3)

Injecting Performance
Regressions

Performance
Regressions?

New Trace Data Executing and Tracing
the Program

Statistical Analysis

Shahedi, Kaveh, et al. "Tracing Optimization for Performance Modeling and Regression Detection." arXiv preprint arXiv:2411.17548 (2024).

Tracing Optimization for Performance Modeling and Regression Detection

Bottom-up vs. top-down approaches

Performance Modeling (RQ2)

Building
Performance

Models

Full Tracing Performance Model
(All Functions)

Optimized Performance Model
(Performance-Sensitive Functions)

Measuring and
Comparing
Accuracies

Executing and
Tracing the
Program

Performance-Sensitive Functions Identification (RQ1)

Performance-Sensitive Functions

Statistical Analysis

Preprocessing
Trace Data

Tracing Overhead Reduction
Analysis

Trace Data Collection

Randomly Generated
Diverse Inputs

Trace-Ready Compilation

Executing and Tracing
the Program

Storing the Trace
Data

Program

Code Static
Features Extraction

Performance Regression Detection (RQ3)

Injecting Performance
Regressions

Performance
Regressions?

New Trace Data Executing and Tracing
the Program

Statistical Analysis

Shahedi, Kaveh, et al. "Tracing Optimization for Performance Modeling and Regression Detection." arXiv preprint arXiv:2411.17548 (2024).

Tracing Optimization for Performance Modeling and Regression Detection

Performance Modeling (RQ2)

Building
Performance

Models

Full Tracing Performance Model
(All Functions)

Optimized Performance Model
(Performance-Sensitive Functions)

Measuring and
Comparing
Accuracies

Executing and
Tracing the
Program

Performance-Sensitive Functions Identification (RQ1)

Performance-Sensitive Functions

Statistical Analysis

Preprocessing
Trace Data

Tracing Overhead Reduction
Analysis

Trace Data Collection

Randomly Generated
Diverse Inputs

Trace-Ready Compilation

Executing and Tracing
the Program

Storing the Trace
Data

Program

Code Static
Features Extraction

Performance Regression Detection (RQ3)

Injecting Performance
Regressions

Performance
Regressions?

New Trace Data Executing and Tracing
the Program

Statistical Analysis

Bottom-up vs. top-down approaches

Performance Modeling (RQ2)

Building
Performance

Models

Full Tracing Performance Model
(All Functions)

Optimized Performance Model
(Performance-Sensitive Functions)

Measuring and
Comparing
Accuracies

Executing and
Tracing the
Program

Performance-Sensitive Functions Identification (RQ1)

Performance-Sensitive Functions

Statistical Analysis

Preprocessing
Trace Data

Tracing Overhead Reduction
Analysis

Trace Data Collection

Randomly Generated
Diverse Inputs

Trace-Ready Compilation

Executing and Tracing
the Program

Storing the Trace
Data

Program

Code Static
Features Extraction

Performance Regression Detection (RQ3)

Injecting Performance
Regressions

Performance
Regressions?

New Trace Data Executing and Tracing
the Program

Statistical Analysis

Shahedi, Kaveh, et al. "Tracing Optimization for Performance Modeling and Regression Detection." arXiv preprint arXiv:2411.17548 (2024).

Tracing Optimization for Performance Modeling and Regression Detection

Performance Modeling (RQ2)

Building
Performance

Models

Full Tracing Performance Model
(All Functions)

Optimized Performance Model
(Performance-Sensitive Functions)

Measuring and
Comparing
Accuracies

Executing and
Tracing the
Program

Performance-Sensitive Functions Identification (RQ1)

Performance-Sensitive Functions

Statistical Analysis

Preprocessing
Trace Data

Tracing Overhead Reduction
Analysis

Trace Data Collection

Randomly Generated
Diverse Inputs

Trace-Ready Compilation

Executing and Tracing
the Program

Storing the Trace
Data

Program

Code Static
Features Extraction

Performance Regression Detection (RQ3)

Injecting Performance
Regressions

Performance
Regressions?

New Trace Data Executing and Tracing
the Program

Statistical Analysis

Only a small portion of functions (as low as1.0%) statistically significantly contribute
to system performance variations

Top-down approach to identify

Measurement vs. estimation

Andy’s measurement setup

Measurement vs. estimation

Software system
Self-
monitoring

Self-configuring Self-optimizingOptimized
parameter values

Remote
control

Logs

Performance
measures

Metrics

Li, Heng, et al. "Adopting autonomic computing capabilities in existing large-scale systems: An industrial experience report." ICSE-SEIP, 2018.

Based on estimated
performance changes

Estimation is helpful
when we can
sacrifice some
precision for better
efficiency

Approximate computing: software is
continuous?

Hoffmann, Henry, et al. "Using code perforation to improve performance, reduce energy consumption, and
respond to failures." (2009).

Can we leverage the continuity of
software for efficient monitoring?

Complex/expensive/untrusted
dependences may cause issues
§ Software supply chain issues

§ Maintainability
§ Security
§ Bloated dependencies

§Dependency on external services such
as LLM servers
§ Monetary costs
§ Stability/availability/evolution Soto-Valero, César, Thomas Durieux, and Benoit

Baudry. "A longitudinal analysis of bloated java
dependencies." ESEC/FSE 2021.

LLM vs. classical: a classical log parser
performing better than LLM-based
approaches

Qiaolin Qin et al. Plug it and Play on Logs: A Configuration-free Log Parser. Under review.

Augmenting developers’ capacity through
visualization
• What tool/app helps you the most in your everyday life?

Augmenting developers’ capacity through
visualization
• Imagine we have a “Google Map” for log/trace data (e.g., log map)

(Figure by ChatGPT)

Augmenting developers’ capacity

• Time curve visualization
for log data (Spark logs)

A: startup;
B1-B5: injected failures;
C1-C5: recovery;
D: shutdown

Dmytro Borysenkov et al. Analyzing Logs of Large-Scale Software Systems using Time Curves Visualization. SANER 2025

Summary

• Automation or augmentation
• Bottom-up (premature optimization?) vs. top-down approaches
• Estimation/approximation is helpful when we can sacrifice some

precision for better efficiency
• Complex/expensive/untrusted dependences may cause issues

• Augmenting developers’ capacity through visualization

