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What is software monitoring?
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Augmentation vs. Automation
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always be accounted for in the design of tools, systems, and processes.

2. Augmentation > automation. Developers know far more than we think.VWe
should be designing for augmentation, not automation, combining the insights that both
developers and machines have to make much more powerful systems that automation
can achieve alone.




Infrastructural support
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Pros: proactive

Cons: perf./storage/analysis overhead

Reducing overhead
* Low overhead tracing (LT Tng)
* Tracing optimization / adaptive
tracing
= CTF2/log compression
Data preprocessing
* Log/trace parsing
Data visualization
* Flame Graph
= Time Curve
= Data Map
Intelligent/semantic search
" Vector search



Bottom-up vs. top-down approaches

Premature optimization is the root of all evil
— Donald Knuth (Turing Award Winer, 1974)

= SOFTWARE ENGINEERING
# Home |s premature optimization really the root of all evil?
[ Questions

Asked 16 years, 7 months ago Modified 3 years, 4 months ago Viewed 113k times
Y Unanswered

® Tags e A colleague of mine today committed a class called ThreadLocalFormat , which

basically moved instances of Java Format classes into a thread local, since they are not
304 thread safe and "relatively expensive" to create. | wrote a quick test and calculated that

@ Chat | could create 200,000 instances a second, asked him was he creating that many, to

22 Users ) 4 which he answered "nowhere near that many". He's a great programmer and everyone
on the team is highly skilled so we have no problem understanding the resulting code,
but it was clearly a case of optimizing where there is no real need. He backed the code

B Companies out at my request. What do you think? Is this a case of "premature optimization" and
how bad is it really?



Bottom-up vs. top-down approaches

Premature optimization is the root of all evil
— Donald Knuth (Turing Award Winer, 1974)

Knuth, D. E. (1974). Structured
programming with go to
statements. ACM Computing
Surveys (CSUR), 6(4), 261-301.

considered. We should forget about small

efficiencies, say about

97 % lof the time: pre-

mature optimization is the root of all ewil.
Yet we should not pass up our opportuni-
tigs in that [critical 3%. A good programmer

will not be lulled into complacency by such

reasoning, he will be

wise to look carefully

at the critical code; but only afier that code
has been identified. It is often a mistake to



Bottom-up vs. top-down approaches

Tracing Optimization for Performance Modeling and Regression Detection
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Shahedi, Kaveh, et al. "Tracing Optimization for Performance Modeling and Regression Detection." arXiv preprint arXiv:2411.17548 (2024).



Bottom-up vs. top-down approaches

Tracing Optimization for Performance Modeling and Regression Detection
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Shahedi, Kaveh, et al. "Tracing Optimization for Performance Modeling and Regression Detection." arXiv preprint arXiv:2411.17548 (2024).



Bottom-up vs. top-down approaches

Tracing Optimization for Performance Modeling and Regression Detection

Performance-Sensitive Functions Identification (RQ1)

Preprocessing Performance-Sensitive Functions

Trace Data T

Tracing Overhead Reduction]
Analysis J ‘

— Statistical Analysis

> Top-down approach to identify

Only g small portion of functions (as low as|.0%)|statistically significantly contribute
to system performance variations

Shahedi, Kaveh, et al. "Tracing Optimization for Performance Modeling and Regression Detection." arXiv preprint arXiv:2411.17548 (2024).



Measurement vs. estimation

Power supply

Arduino

Andy’s measurement setup



Measurement vs. estimation

: Self-configuring Optimized Self-optimizing
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Li, Heng, et al. "Adopting autonomic computing capabilities in existing large-scale systems: An industrial experience report." ICSE-SEIP,2018.



Approximate computing: software is
continuous!?

Acceptability
Metric

Can we leverage the continuity of
software for efficient monitoring?
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Hoffmann, Henry, et al. "Using code perforation to improve performance, reduce energy consumption, and
respond to failures." (2009).



Complex/expensive/untrusted
dependences may cause issues

= Software supply chain issues
* Maintainability
" Security
" Bloated dependencies

* Dependency on external services such
as LLM servers

" Monetary costs
= Stability/availability/evolution

00

----- > Usage relationship @ APl members

Used dependency Bloated dependency

Soto-Valero, César, Thomas Durieux, and Benoit

Baudry. "A longitudinal analysis of bloated java
dependencies." ESEC/FSE 2021.



LLM vs. classical: a classical log parser
performing better than LLM-based
approaches
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Qiaolin Qin et al. Plug it and Play on Logs: A Configuration-free Log Parser. Under review.



Augmenting developers’ capacity through
visualization

* What tool/app helps you the most in your everyday life?



Augmenting developers’ capacity through
visualization

* Imagine we have a “Google Map” for log/trace data (e.g., log map)

O Logs ' @ search_logs: error X SOFTWARE LOGS

. 2024-04-24 10:15:32 ERROR
Unexpected issue

2024-04-24 10:10:27 INFO
Operation completed

2024-04-24 10:09:14 DEBUG
Debugging mode on

| 2024-04-24 10:08:50 INFO
User login successful

(Figure by ChatGPT)




Augmenting developers’ capacity

Ci1-GCs

 Time curve visualization
for log data (Spark logs)

A: startup;

B1-B5: injected failures;
CI1-C5: recovery;

D: shutdown

Dmytro Borysenkov et al. Analyzing Logs of Large-Scale Software Systems using Time Curves Visualization. SANER 2025



Summary

¢ Automation or augmentation
* Bottom-up (premature optimization?) vs. top-down approaches

* Estimation/approximation is helpful when we can sacrifice some
precision for better efficiency

* Complex/expensive/untrusted dependences may cause issues

* Augmenting developers’ capacity through visualization



