

Log Grouping and Causality Analysis

Fateme Faraji Daneshgar

Polytechnique Montréal

DORSAL Laboratory

Root Cause Detection pipeline

Parser

- Regular expression
 - Cannot open directory X
- Drain approach
 - Clustering logs using a prefix tree
 - Incremental prefix tree

Parser Results

- Same Templates
- Different Templates
 - Improvement (61.5%)
 - o Errors(2.8%)
 - Low frequency and invariant variables (34.8%)

Noise Elimination

- Criterion
 - Fluctuation of the frequency of log templates

Noise Elimination

Expert Knowledge Extraction

Frequent Pattern mining

- Time consuming
- Candidate generation
 - Frequent Pattern
 - Conditional Pattern Growth

Causality Analysis

- Conditional Independence
- Correlation does not imply Causality
 PC, FCI, RFCI, ...
- A \perp B|C \longrightarrow P(A|B,C)=P(A|B)
- Variable A can predict Variable B

Constraint of traditiona CE for Log Analysis

- Tabular data
 - Missing the order
- Number of variables
- Time-series based
 - Sparse data
- Large language models

X	Y	C_0	C_1
0	0	0	0*
0	0	0	0^{*}
0	0	0	0^{*}
0	0	0	0^{*}
1	1	1*	1
1	1	1*	1
1	1	1*	1
1	1	1*	1

LLM-Augmented PC

Contingency Table

- Log Sequences :
 - {AB,CA,BC,ACB,A}
- Conditional Independence test
 - A and B given C

$$ullet E_{i,j} = rac{ ext{Row Total} imes ext{Column Total}}{ ext{Grand Total}}$$

Chi-square test

A	В	С
1	1	0
1	0	1
0	1	1
0	0	0
1	1	1
1	0	0

Contingency Table for C = 0:

A\B	0	1	Total
0	1	1	2
1	1	1	2
Total	2	2	4

Contingency Table for C = 1:

A\B	0	1	Total
0	1	0	1
1	1	1	2
Total	2	1	3

LLM-Augmented PC

- Decoder-only transformer
- Each log template is considered as a token
- Continual pre-train
- P(X|Y) and P(X|Y,C):
- For each sequence having Y (Y and C):
 - probability of X for all positions after Y

Suppose si=Y S1 S2 S3 ... Si Si+1 ... Sn

LLM-Augmented PC

- Traditional PC
 - log template seq: S1 S2 S3 ... Si Si+1 ... Sn
 - 1 if we have X (before or after) and 0 otherwise
- LLM_Augmented approach:
 - log template seq: S1 S2 S3 ... Si Si+1 ... Sn
 - How probable is having or not having X after Y

Thanks!

fateme-faraji.daneshgar@polymtl.ca