Locating Inter-communication
Performance Anti-patterns in
Microservices

Masoumeh Nourollahi

Polytechnique Montréal

DORSAL Laboratory

POLYTECHNIQUE MONTREAL

Introduction

* Performance anti-patterns (SPASs)
« Bad practices which result in performance degradation

« May not cause system Failure, but impact performance

Performance
Problem

= Previous work |
= This work '
m Riley-Ezzati[2]

= Not covered

Application
Hiccups

Continuously
violated

performance
requirement

|
[

I
Excessive .
l I

| |
| I | | | I |
L — [] [] [] []
Service

= B

Dispensable
synchronization

Locating Inter-communication Performance Anti-patterns in Microservices 2/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Agenda

* Problem statement

* Proposed artichecture and detection method
 Experiments

« Results

« Discussion and future work

Locating Inter-communication Performance Anti-patterns in Microservices 3/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Problem statement

« EXxcessive Messaging

* Blob Response time changes for inter-

« High communication overhead through remote communication SPAs

communication between central blob

component and other components

 Empty Semi-truck

« Large number of small messages transmitted /‘__‘_./,_,_./0/‘—'

between two components as part of a single

Response Time

Users

user request
—o—\\ithout problem —e=Blob Empty-semi-truck

- Excessive
Messaging

Empty Semi-truck

Locating Inter-communication Performance Anti-patterns in Microservices 4/14 - dorsal.polymtl.ca

Proposed Architecture

1.Tracing setup___----------__ -
//,/ \\\\\ / \
a Problem x: N Application 2.Collect traces
! / Workload B > Tracepoint
Detection \ Eloxider 3.Analysis
L - € 4
Heuristic !
, LTTng Tracer Summarize traces
Performance problems higrarchy .~
______________ - Diagnose SPAs
Iteration k

No

Feedback: observe other branches

Set of suspicious
causes

No

Feedback: Go deeper down this branch

4.Decision making

Locating Inter-communication Performance Anti-patterns in Microservices

5/14 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

SPA Detection method

1. Decision making on the required tracing setup (load test and tracing scope)
2. Trace collection

3. Data Aggregation: The data is aggregated over fixed time windows

4,

Using heuristics to detect SPA

LOAD PROFILES TRACING SCOPE

1.Kernel space

Kernel events
2.single user- mixed action net_"*' sock_"*",napi_poll,skb_"*"
Sched '+

1.single user- single action

3.increasing load- single action
2.User space

4.increasing load- mixed action , ,
Function call entry/exit

5.max load- single action

6.max load- mixed action

Locating Inter-communication Performance Anti-patterns in Microservices 6/14 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Intercommunication SPAs- Detection Method

» Excessive Messaging
 Load proFile: Increasing load- single action
. Tracing Scope: Kernel events: net_if_receive_skb, net_if_receive_skb

« Blob
* Load proFi le: stress load- single action
. Tracing Scope: Kernel events: net_if_receive_skb, net_if_receive_skb
« Empty Semi-truck
« Load profile: Single user-single action
. Tracing SCope: Kernel events: net_if_receive_skb, net_if_receive_skb, Sched_*, 2 UST Tracepoints- action related method

entry/exit
Tracepoint Definition
Net_dev_queue A network packet is sent
Net_if receive_Skb A network packet is received
Sched_switch Transition from one task to another on a CPU

Locating Inter-communication Performance Anti-patterns in Microservices 7/14 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Experiments

e TestBed:

« DeathStarBench- Social Network application

Frontend Logic Caching & Storage

Search
Unique ID Read Home A\ Memcached | MongoDB | RVEEIES (o] =Te]
Timeline —_
Pos

-
WMemcached \(ls)gelelp)=1] Post storage
P

B ad Slorage Index, [Index, Index

" z User timeline
; MongoDB
@ Load e Redis storage
Balancer Timeline Home timeline

, storage

RabbitMQ S¥fasceas ey MongoDB Social graph

storage
Viemcached | "MongoDE I\ [-Te[-¥S (o] ¢=Ts =]

Frontend

A

User Tag |

)
Social Lz Write Home

Recommender Graph Timeline

Locating Inter-communication Performance Anti-patterns in Microservices 8/14 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

SPA Injection- Excessive messaging

« A loop that performs 1000 consecutive queries to MongoDB. This excessive messaging

significantly increases the load on the MongoDB server during read operations.

int mongo_start = start + post_ids.size();
std: :multimap<std::string, std::string> redis_update_map;
if (mongo_start < stop) {
/[Instead find post_ids from mongodb
mongoc_client_t *mongodb_client = mongoc_client_pool_pop(
_mongodb_client_pool);
if (!mongodb_client) {
ServiceException se;
se.errorCode = ErrorCode::SE_MONGODB_ERROR;
se.message = ;
throw se;
}
auto collection = mongoc_client_get_collection(
mongedb_client, ; , F
if (!collection)
ServiceException se;
se.errorCode = ErrorCode::SE_MONGODB_ERROR;
SE.MEssage =
throw se;

int mongo_start = start + post_ids.size();
std: :multimap<std::string, std::string> redis_update_map;
if (mongo_start < stop) {
// Excessive messaging: Multiple queries to MongoDB
for (int L = 0; 1 < ; ++1) {
mongoc_client_t *mongodb_client = mongoc_client_pool_pop(
_mongodb_client_pool);
if (!mongodb_client) {
ServiceException se;
se.errorCode = ErrorCode::SE_MONGODB_ERROR;
se.message = '

throw se;
}
auto collection = mongoc_client_get_collection(
mongodb_client, ’ e");

if (!collection) {
ServiceException se;
se.errorCode = ErrorCode::SE_MONGODB_ERROR;
se.message = eate 1 DB";
throw se;

}

Locating Inter-communication Performance Anti-patterns in Microservices

9/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Results

« |dentification of intercommunication performance anti-patterns by kernel traces
« Reduced pre-tracing effort

« Low-cost tracing (2 to 6 kernel events required to identify the SPAS)

Wewic | eabiam Qo211 | vt coon e |t v
UST UsT UST

Rretiacingiefiion: instrumentation instrumentation instrumentation LS
Tracing High for EST Between 2 to 6
cost/overhead Not reported Not reported pattern kernel events
: Load testing and Qe Algorithmic Statlstlcal.anal.y5|s
Detection method " performance and Algorithmic
profiling approach
models approach

True positive = 1 True positive = 1
Accuracy F-measure > 85% F-measure > 44% Notable False Notable False

positive positive

Locating Inter-communication Performance Anti-patterns in Microservices 10/14 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Discussion

1. Considering time-window analysis instead of per-request

2. Previous works all used UST traces to detect intercommunication anti-patterns,
we are mostly using kernel traces
* Less effort pre tracing (does not need any or very little instrumentation)
« Avoiding unknown impact on system performance
« Taking 2 to 6 kernel events which is very low-overhead tracing

3. We implemented a number of methods to compare
« Wert statistical heuristics to detect performance anti-patterns [10]
« Avritzer queuing model for anti-pattern detection [6]

Locating Inter-communication Performance Anti-patterns in Microservices 11/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Discussion

e Future directions:

* Metrics based comparison of application performance to
detect SPAs

« Use of time-series analysis methods by using the available
metrics

« Some suggested metrics to measure in each time window

* mMsg_service_time

« request_throughput

« message_throughput

« request_arrival_rate

« msg_arrival_rate

* msg_response_time_variance

* msg_waiting_time

 msg_residence_time

Locating Inter-communication Performance Anti-patterns in Microservices 12/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

References

1. Trubiani, Catia, et al. "Automated detection of software performance antipatterns in Java-based
applications." IEEE Transactions on Software Engineering (2023).

2. VanDonge, Riley, and Naser Ezzati-Jivan. "N-Lane Bridge Performance Antipattern Analysis Using
System-Level Execution Tracing." 2022 IEEE 22nd International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 2022.

3. Chalawadi, Ram Kishan. "Automating the characterization and detection of software performance
antipatterns using a data-driven approach." (2021).

4, Stefanakos, loannis. Software analysis and refactoring using probabilistic modelling and performance
antipatterns. Diss. University of York, 2021.

5. Smith, Connie U. "Software performance antipatterns in cyber-physical systems." Proceedings of the
ACM/SPEC International Conference on Performance Engineering. 2020.

6. Avritzer, Alberto, et al. "Scalability assessment of microservice architecture deployment configurations: A
domain-based approach leveraging operational profiles and load tests." Journal of Systems and
Software 165 (2020): 110564.

7. Trubiani, Catia, et al. "Exploiting load testing and profiling for performance antipattern
detection." Information and Software Technology 95 (2018): 329-345.

8. Heger, Christoph, et al. "Expert-guided automatic diagnosis of performance problems in enterprise
applications." 2016 12th European Dependable Computing Conference (EDCC). IEEE, 2016.

9. Keck, Philipp, et al. "Antipattern-based problem injection for assessing performance and reliability
evaluation techniques." 2016 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2016.

10. Wert, Alexander, et al. "Automatic detection of performance anti-patterns in inter-component
communications." Proceedings of the 10th international ACM Sigsoft conference on Quality of software
architectures. 2014.

Locating Inter-communication Performance Anti-patterns in Microservices 13/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Thanks for your attention

Masoumeh.nourollahi@polymtl.ca
https://github.com/mnourollahi

Locating Inter-communication Performance Anti-patterns in Microservices 14/14 - dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Blob Injection

* Instead of fetching only the necessary data (such as post IDs) from MongoDB, it
fetches entire documents Ffor the user's timeline. This approach unnecessarily
transfers large amounts of data between the database and the application, leading
to inefficient resource utilization and slower performance.

bo
if

ol found = mongoc_cursor next(cursor, &doc);
(found) {

bson_iter t iter 0;

bson iter t iter 1;

bson_iter t post id child;

bson_iter_t timestamp child;
int idx = 0;
bson_iter init(&iter_ 0, doc):

bson_iter_init(&iter 1, doc);
while (bson iter_ find descendant (siter 0,
("posts."™ + std::to_string(idx) + ".post_id").c_str(),
&post_id child)
&& BSON ITER HOLDS INT64 (&post id child)
&& bson_iter find descendant (&iter 1,
("posts."™ + std::to_string(idx) + ".timestamp").c_str(),
×tamp child)
&& BSON ITER HOLDS INT64 (s×tamp child)) {
auto curr post _id = bson iter_ int64 (&post_id child):
auto curr_timestamp = bson iter inté4(stimestamp child);
if (idx >= mongo_start) {
post_ids.emplace back(curr post id):

}

redis update map.insert(std::make pair(std::to string(curr timestamp),
std::to_string(curr_post_id)));

bson_iter init(&iter 0, doc);

bson_iter init(&iter 1, doc):

idx++;

bool found = mongoc_cursor_next(cursor, &doc);
if (found) {
bson iter t iter;

if (bson_iter_init(siter, doc)) {
bson iter t array:
if (bson_iter find descendant(&iter, "posts", &array)) f{
bson iter t post;
while (bson iter next (sarray)) {
bson_iter recurse(&array, &post);

bson_iter t post_id iter;

if (bson iter find descendant (spost, "post id", &post id iter)) {

int64 t post id = bson iter as inté4(spost id iter);

post_ids.push back(post id):
}
}
}

Locating |

nter-communication Performance Anti-patterns in Microservices

15/14 — dorsal.polymtl.ca

POLYTECHNIQUE MONTREAL

Empty-semi-truck Injection

« After retrieving data from Redis, a large vector containing 100 MB of
unnecessary data is created

By introducing this anti-pattern, we illustrate how transferring large
amounts of unnecessary data can lead to increased resource consumption,
slower performance, and wasted resources.

// Simulate empty semi-truck anti-pattern: transferring large amounts of data
unnecessarily

std::vector<char> unnecessary data(1024 * 1024 * 100, '0'); // 100 MB of
unnecessary data

LOG(info) << "Transferring unnecessary data of size: " << unnecessary data.size()
<< " bytes";

// Transfer the unnecessary data over the network

std::ofstream outfile{"unnecessary_data.txt", std::10s5::binary);
outfile.write (unnecessary data.data(), unnecessary data.size());
outfile.close():;

//empty semi-truck finished

-

« After creating the datg, it is then written to a file named "unnecessary_data.txt" in binary
mode. This file write operation simulates the transfer of the unnecessary data over the
network, which impacts the network resources.

Locating Inter-communication Performance Anti-patterns in Microservices 16/14 - dorsal.polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Problem statement
	Slide 5
	Slide 6
	Slide 7: Intercommunication SPAs- Detection Method
	Slide 8: Experiments
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

