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Introduction

• Generative models learn the structure of training data to produce 
new data with similar characteristics [1]

• Is it possible to generate synthetic trace events using generative 
techniques? If yes, this could mean:

1. Enhancing datasets used to train machine learning models [2, 3, 4]
2. Reconstructing lost trace events
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Dataset Enhancement

 Goals

The goal of this stage is to explore different generative methods’ 
efficacy using vector representations of trace events. Specifically, we 
look at:
1) Quality

o  Novelty: Synthetic data should not just be a copy of authentic data
o  Diversity: Generative models should aim to introduce as much variability as 

possible without sacrificing fidelity
o  Fidelity: Synthetic data should be indistinguishable from authentic data

2) Utility
o How useful can synthetic data be in enhancing existing trace analysis 

methods?
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Dataset Enhancement

Framework

We start by looking at synthesizing event count vectors
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Dataset Enhancement 

Models

We analyze and compare various approaches that can be broadly 
classified into three categories:
1) Probabilistic Models – Statistical models created to model 

authentic data that are then sampled
2) Genetic Algorithms – Evolutionary techniques that search for 

optimal samples by adhering to specified criteria
3) Neural Networks – Models like GANs, VAEs, and Transformers that 

are trained to produce realistic samples
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Dataset Enhancement 

Quality Testing: Datasets

For two datasets, we quantify each method’s quality when tasked with 
generating 2000 synthetic samples for each class. 
1) ADFA-LD1 dataset

o Class 1: System call sequences exhibiting normal behaviour
o Class 2: System call sequences collected during malicious attacks

2) HDFS_v12 dataset
o Class 1: Log sequences exhibiting normal behaviour
o Class 2: Log sequences collected during injected performance anomalies
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1 https://research.unsw.edu.au/projects/adfa-ids-datasets
2 https://github.com/logpai/loghub/blob/master/HDFS/README.md

https://research.unsw.edu.au/projects/adfa-ids-datasets
https://github.com/logpai/loghub/blob/master/HDFS/README.md


Dataset Enhancement

Quality Testing: Metrics

• Novelty is computed as the proportion of synthetic samples that are 
not already seen in the training set

• Diversity is computed as the proportion of synthetic 
samples that are only found once in the generated set 

• Fidelity is computed in two ways: 
1) The univariate fidelity is computed using the variables' average Hellinger 

distance [5, 6]
2) The bivariate fidelity is computed using the Pairwise Correlation Difference 

(PCD) [5, 7]
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Dataset Enhancement

Quality Testing: Findings
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• When working with the diverse 
training data (> 0.6 score), every 
model can achieve high novelty 
and diversity scores

• Network-based models achieve 
the best fidelity in these cases

0
0.2
0.4
0.6
0.8

1

Duplicate Vine Copula GA CTGAN TVAE Transformer

Novelty Diversity

0

10

20

30

Duplicate Vine Copula GA CTGAN TVAE Transformer

Hellinger Distance PCD



Dataset Enhancement

Quality Testing: Findings
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• When working with training data 
that has a low diversity (< 0.1 
score), network-based approaches 
sacrifice novelty and diversity to 
maintain fidelity

• In these cases, data created using 
Genetic Algorithms have the best 
overall quality
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Dataset Enhancement

Utility Testing

• The performance of machine learning models is directly linked with 
the quality, diversity, and relevance of their training data

• Anomalies are rare, which often leads to severe class imbalances 
when training supervised learning models to perform anomaly 
detection

• To measure utility, we examine if performance improves when 
including synthetically generated anomalies in a classifier’s training 
data
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1) Training Data
Select a training dataset

2) Data Synthesis
Use a generative approach to learn 

the structure of the 
underrepresented class (or classes) 

and create synthetic samples

3) Classifier Training
Train a classification model using
the artificially balanced dataset
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Dataset Enhancement 

Utility Testing: Framework

Generative 
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Dataset Enhancement 

Utility Testing: Baselines

1) Original Data 2) Random
Add samples that are 
randomly generated

3) Random 
Undersampling (RUS)

Randomly remove 
samples from the larger 

class

4) Random 
Oversampling (ROS)

Randomly duplicate 
samples from the 

smaller class

5) SMOTE [8]
An oversampling 
technique that 

randomly adds samples 
between authentic 

samples based on their 
nearest neighbours
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Dataset Enhancement

Utility Testing: Results
Type Approach Accuracy F1-Score

Baseline

Original Data 88.130 58.594

Random 94.681 77.958

RUS 78.891 52.459

ROS 93.057 76.866

SMOTE 94.065 78.455

Probabilistic Vine Copula 94.345 80.00

Genetic Algorithm Genetic Algorithm 95.577 82.40

Neural Network

CTGAN 93.169 75.889

TVAE 94.793 79.470

Transformer 92.497 75.277
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Event Reconstruction

Goals

• The goal of this stage is to explore 
different generative methods' 
ability to synthesize sequences of 
trace events

• The results of this work could be 
used to reconstruct trace events 
that are overwritten or 
discarded due to a high volume 
of events
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Figure 4.1 of Martin, M. (2018). Analyse détaillée de trace en dépit 
d'événements manquants [Master's thesis, École Polytechnique de 
Montréal]. PolyPublie. https://publications.polymtl.ca/3248/

https://publications.polymtl.ca/3248/


Event Reconstruction

Framework
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Event Reconstruction

Model

• Structured state space diffusion (SSSD) 
models [9] combine the generative 
capabilities of diffusion models with 
structured state-space models (SSM) [10] 
reconstruct missing time series data

• Have seen success over other SOTA 
models with continuous data (ECG, 
electricity usage patterns, etc.)
oMay be adapted for kernel event sequence 

reconstruction
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Figure 3 of Lopez Alcaraz, J.M., & Strodthoff, N. (2022). Diffusion-based Time 
Series Imputation and Forecasting with Structured State Space Models. ArXiv, 
abs/2208.09399.



Event Reconstruction

Results

• Preliminary results seen with kernel traces collected with LTTng on 
an Apache Web Server are promising

• When given 5000 sequences of 100 events:
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Length of Missing Portion Method Event-Level Accuracy % of Perfectly 
Recreated Sequences

5
Random 3.24 N/a

SSSD 80.16 56.4

10
Random 2.38 N/a

SSSD 80.38 38.8

20
Random 2.61 N/a

SSSD 78.06 14.2
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Future Work

• Employ various methods to improve the accuracy of SSSD model
• Synthesis of trace event arguments, durations, etc.
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