
Low-overhead Spatial Memory 

Safety Verification

Farzam Dorostkar with Prof. Michel Dagenais
May 30th 2024

Polytechnique Montreal

DORSAL Laboratory



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 2/19

ThreadMonitor (TMon)

Post-mortem data race detector for C/C++ programs that use Pthreads

• Compile-time instrumentation updated to LLVM 17

• Trace decoder updated to Perf 6.8

• Vince Bridgers and Ankush Tyagi joined us from Ericsson!

• github.com/farzamdorostkar/tmon

Since Last Meeting

https://github.com/farzamdorostkar/tmon


Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 3/19

AddressMonitor (AMon) - New Project

Detects heap spatial access violations in C programs on X86-64

• Dynamic analysis based on pointer tainting

• Two variants: on-the-fly and post-mortem

▪ AMon-OTF: runtime analysis

▪ AMon-PM: traces a program execution using Intel ptwrite

o Uses Intel's ptwrite packets

o User-generated 64-bit payload

o Uses the trace data to emulate the same runtime verification performed by AMon-OTF

• Minimal data and instruction memory overhead, low runtime overhead

Since Last Meeting



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 4/19

Problem Definition: 
Lack of Spatial Safety in C



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 5/19

Problem Definition: Lack of Spatial Safety in C

• C provides developers direct control over various memory operations

• Ability to directly access and manipulate memory addresses

▪ Advantageous in scenarios demanding high performance

▪ Absence of built-in mechanisms to verify the safety of memory accesses

▪ Source of bugs

• Spatial Safety Violation

▪ Write to or read from memory locations outside the intended boundary of an object



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 6/19

Common Approaches



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 7/19

Common Approaches

Shadow-based Approaches:

• Allocate shadow memory to track the status of application memory

• Unchanged memory layout

• Incomplete in detecting all spatial violations

• High memory overhead

Pointer-based Approaches:

• Encode bounds information within each pointer

• Fat vs low-fat pointers

• Enforce complete spatial safety

• No data memory overhead



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 8/19

Methodology:
Pointer Tainting



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 9/19

Methodology: Pointer Tainting

Approach

When Allocating Heap Objects

• Assign a unique taint to each allocated object

• Build and maintain an object table [taint, base address, size]

• Embed the taint into the 2 MS bytes of the returned address

• On the Intel 64 bits architecture the first 2 bytes are unused

When Accessing Memory

• Retrieve the taint

• Use the taint to look up the object's bounds in the object table

• Ensure the accessed memory falls within the object's bounds

• Raise an alert if a violation is detected



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 10/19

Methodology: Pointer Tainting

Challenge

Embedded taint changes the address layout

• Although unused, 2 MS address bytes are not ignored

• Changes the effective address

• Dereferencing a tainted pointer causes segmentation fault

Solution

To verify and dereference a tainted pointer

1. Use the taint to verify the spatial safety of the memory access

2. Untaint the pointer

3. Dereference the untainted pointer

4. Re-taint the pointer



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 11/19

AddressMonitor (AMon):
Implementation



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 12/19

AddressMonitor (AMon): Implementation

Two variants

1. On-the-fly (AMon-OTF)

2. Post-mortem (AMon-PM)

Each variant consists of two main modules

1. Runtime library (libamon.so)

2. Compile-time transformation



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 13/19

AddressMonitor (AMon): Implementation

Runtime Library (libamon.so)

• Intercepts standard heap allocation functions

▪ To add taint to returned pointers

• Intercepts other standard C functions as well

▪ To untaint possibly tainted arguments

• Maintains the object table

• Defines the bounds checking logic

• Defines environment variables to control the behavior of AMon

▪ On-the-fly vs post-mortem analysis modes, supported object sizes, etc.

• It is preloaded



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 14/19

AddressMonitor (AMon): Implementation

Compile-time Transformation

At LLVM IR level

• Function pass

• Traverses each function to identify the memory access instructions (Loads and Stores).

• For each load/store instruction:

▪ Creates a new equivalent instruction where the dereferenced pointer is untainted

▪ Replaces the old instruction with the new one

▪ Re-taints the dereferenced pointer

This part is common between the two variants of AMon.



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 15/19

AddressMonitor (AMon): Implementation

Compile-time Transformation: Variant-specific

AMon-OTF

• Inserts the bounds checking logic immediately before each access

AMon-PM

• Instruments each access with a single ptwrite instruction

• Uses a ptwrite packet to record the required runtime information for each access

▪ Base address, taint, and the access size

• The post-mortem analyzer uses the trace data to emulate the same runtime verification 

performed by AMon-OTF



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 16/19

Preliminary 
Evaluation Study &

Discussion



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 17/19

Preliminary Evaluation Study & Discussion

• Two SPEC CPU 2017 benchmarks

• Under ASan, AMon-OTF, and AMon-PM

• Compared to native compilation

Benchmark
ASan AMon-OTF AMon-PM

Time (x) MRSS (x) Time (x) MRSS (x) Time (x) MRSS (x)

470. mcf 1.6 x 2.5 x 1.2 x 1.1 x 2.9 x 2.1 x

444.namd 1.9 x 3.5 x 1.4 x 1.2 x 3.0 x 1.5 x



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 18/19

Preliminary Evaluation Study & Discussion

• ASan causes high memory overhead due to its use of shadow memory and red zones

• The reported memory overhead for AMon-PM is associated with the tracer (Linux Perf)

▪ Trace data collection activities conducted by the Perf tool

▪ More flexible and less restrictive than the direct memory overhead caused by ASan

• The low memory overhead of AMon-OTF is mostly associated with allocating an object table

• For ASan and AMon-OTF, the reported execution time overheads are associated with on-the-fly 

bounds checking operations

• For AMon-PM, the reported execution time overhead is mostly associated with the tracer, with a 

smaller impact from the untainting and re-tainting process



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 19/19

Conclusion & Future Work

• AddressMonitor (AMon): detects heap spatial access violations in C programs on X86-64

• Dynamic analysis tool with two variants: on-the-fly (AMon-OTF) and post-mortem (AMon-PM)

• Pointer tainting and compile-time transformation

• Minimal data and instruction memory overhead, low runtime overhead

• AMon is already capable of detecting temporal access violations to some extent (e.g. use-after-free).



Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Thanks!
Questions? Comments?

farzam.dorostkar@polymtl.ca
https://github.com/farzamdorostkar

https://farzamdorostkar.github.io/

https://github.com/farzamdorostkar
https://farzamdorostkar.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

