

Deep Learning to Detect Novel Behaviours in Traces

Quentin Fournier

Polytechnique Montréal Laboratoire DORSAL

Novel Behaviours

- Novel behaviours are deviations from what has been previously observed
 - Shift in normal behaviours: user patterns change over time
 - New normal behaviours: new users or features
 - Rare behaviours: unique queries
 - Anomalous behaviours: latency, attacks, or bugs

Approach - Dataset

• Sequences of system calls with their arguments

- Expose the system behaviour
- Easy to collect large datasets
- Arguments enable more accurate predictions

Approach - Objective

- Learn an unsupervised language model
 - Labelling is time consuming and error-prone
 - Labels may change over time
 - Predict the next system call knowing the previous ones
 - Compute the likelihood of sequences

Approach - Objective

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

4/22 - dorsal.polymtl.ca

Perplexity

- The perplexity reflects how confused is the model about the input data
- The higher is the perplexity, the less likely is the input data under the model
- Set a threshold on the perplexity above which we consider the data to be unexpected and classify it as novel behaviour

Approach - Models

- Finite state machine *n*-gram
 - Conceptually simple and interpretable
 - Unable to model complex and long-range interactions
- Well known and proven neural network called LSTM
 - Designed to process variable-size sequences
 - Limited interaction range

Approach - Models

- State-of-the-art neural network called Transformer
 - Designed to model complex and long-range interactions
 - Memory intensive and sensitive to hyperparameters
- An efficient Transformer called Longformer
 - Able to model complex and long-range interactions
 - Significantly less memory intensive

Results - Datasets

- 1 known behaviour comprising 1,000,000+ web requests
- 6 novel behaviours comprising 100,000+ web requests each
 - Connection
 IO
 Socket
 - CPU
 OPCache
 SSL
- Simple and varied enough to evaluate the methodology
- Too simple to represent large-scale real-world use cases

Results - LSTM - OPCache Disabled

- The novel behaviour has a higher perplexity than the known behaviour (small overlap)
- Accuracy of 95.56%

Results - LSTM - OPCache Disabled

- x-axis: known and novel behaviours have similar durations
- y-axis: the novel behaviour has a higher perplexity

10/22 - dorsal.polymtl.ca

Results - LSTM - OPCache Disabled

- x-axis: known and novel behaviours have similar lengths
- y-axis: the novel behaviour has a higher perplexity

Results - LSTM - IO

- Best-case scenario, the novel behaviour has a significantly higher perplexity (no overlap)
- Accuracy 99.48%

Results - LSTM - IO

- x-axis: known and novel behaviours has similar duration
- y-axis: the novel behaviour has a significantly higher perplexity (clear separation)

Results - LSTM - IO

- x-axis: the novel behaviour has significantly more system calls
- *y*-axis: the novel behaviour has a significantly higher perplexity (clear separation)

14/22 - dorsal.polymtl.ca

Results - LSTM - Connection

- Worst-case scenario, the novel behaviour has the same perplexity as the known behaviours (large overlap)
- Accuracy 50.23% (random)

Results - LSTM - Connection

• The model is not able to separate between known and novel behaviours

16/22 - dorsal.polymtl.ca

Results - Root Cause Visualization

• What system calls are responsible for the perplexity?

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

- I am looking for a real-world use-cases:
 - Evaluate the proposed approach
 - Validate the synthetic results
 - Support the paper

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

- I am looking for a real-world use-cases:
 - Train set of 10,000+ samples
 - Evaluation set of 100+ samples
 - Kernel or userspace traces with or without arguments
 - Samples length between 10 and 10,000 events

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

- Applications: client, server, database, micro-services, etc.
- Sources: simulation, in production, deployed, etc.
- Behaviours: latency, bugs, attacks, software update, hardware changes, misconfigurations, etc.

Thank You

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

22/22 - dorsal.polymtl.ca