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Introduction
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Large scale tracing challenges

● Huge number of requests results in enormous traces

● Puts overhead in trace collection, storage, and analysis

● Not much intelligence in collecting traces
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To improve tracing effectiveness, 
tracing focus should adjust and adapt to collecting relevant 

events around the issues.
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Research question
1. Can we increase the tracing effectiveness using trace adjustment methods at runtime, so that

tracing is more focused on collecting events around the issues?
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2. Can we identify the possible problematic areas by analyzing workload and resource metrics?
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Similar workflows should perform similarly!
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Preliminary results
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Methodology
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1 Wf4: ['main', 'threads_number'] 0.36
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3 Wf9: ['main', 'validate_parse_file', 

'process_root_tag', 'process_intervals_tag', 

'remove_string_part_last']
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… ….. …
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Analysis results

● Always slow workflows
○ Candidates for problematic areas. Should check code for the functions included in

the workflows
● Slow workflows in high loads

○ Candidates for scalability issues. Should check in combination with resource usage
● Always freq. workflows

○ If performing well good candidates for trace sampling less frequently
● High load freq. workflow

○ Good candidates to check in-combination with workflows that are slow in high
loads

● Less frequent workflows
○ If performing well good candidates to disable tracing
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Demo
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Evaluation setup
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DeathStarBench (SocialNetwork)- test setup
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Characteristics of DeathstarBench- Social Network Service

• Supported actions in DeathStarBench

• Create text post (optional media: image, video, shortened URL, user tag)

• Read post

• Read entire user timeline

• Receive recommendations on which users to follow

• Search database for user or post

• Register/Login using user credentials

• Follow/Unfollow user
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Service Total LoCs Communication 
Protocol

Unique 
Microservices

Pre-language LoC breakdown

Social Network 68061 RPC 36 34% C, 23% C++, 18% Java, 7% node.js, 6% 
Python, 5% Scala, 3% PHP, 2% Javascript, 2% 
Go

Code Composition



Problematic area localization
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Performance problem:

• Scalability problem
• Software bottleneck

• Synchronization

• External call bottleneck

• Resource bottleneck

• …..
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Example: Software Bottleneck
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Checking software bottleneck detection
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Software bottleneck possible causes:

• Synchronization points
• Database locks
• Pools
• ….

Related functions contain DB queries

Iinject DB Lock 
bottleneck in source-

code



The way forward - update from the last 
meeting

• Automate the pipeline for the presented method

o done
• Test and extend the method for more complex applications with longer

execution paths
o in-progress

• Investigate other methods to model frequency and duration metrics
o working on fuzzy methods like fuzzy clustering

• Apply the same concept to other metrics like resource-related metrics modeling
in combination with UST trace metrics
o planned

• Improve performance of the code
o in-progress
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Github address for source code and test data:

https://github.com/mnourollahi/UST_adaptiveTracing
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