
Adaptive Tracing: 
Problematic Area Localization

By Masoumeh Nourollahi
16 May 2022

Michel DAGENAIS, Research supervisor

Naser EZZATI-JIVAN, Research co-supervisor

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Introduction

2



Large scale tracing challenges

● Huge number of requests results in enormous traces

● Puts overhead in trace collection, storage, and analysis

● Not much intelligence in collecting traces

3 of 20

To improve tracing effectiveness, 
tracing focus should adjust and adapt to collecting relevant 

events around the issues.

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Research question
1. Can we increase the tracing effectiveness using trace adjustment methods at runtime, so that

tracing is more focused on collecting events around the issues?

4 of 20

Early detection 

of problems

Problematic area 

localization

Tracing 

configuration

Adaptive Tracing

2. Can we identify the possible problematic areas by analyzing workload and resource metrics?

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Similar workflows should perform similarly!

5 of 20Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Preliminary results

6



Methodology

7 of 20Adaptive Tracing- Problematic area localization- Progress report 
meeting- May 2022

UST 

Instrumented 

Code

Baseline traces

Normal load

NormalLoad 
traces

HighLoad 
traces

info = (path , startTime, endTime, 
duration, count)

Trace-summary = 

(workflow , entryTime, 

exitTime, duration, count)

Collecting 
traces

Characterizing 
traces

Learning trace patterns

Learning trace 
patterns

Multi-expert analysis
Fuzzy clustering

Learning trace patterns

Outlier cause candidate

Ran

k

Workflow Outlie

r

score

1 Wf4: ['main', 'threads_number'] 0.36

2 Wf2: ['main', 'validate_parse_file', 

'process_root_tag', 'process_intervals_tag', 

'process_interv_tag', 'make_regex']

0.31

3 Wf12: ['main', 'write_to_file'] 0.29

3 Wf9: ['main', 'validate_parse_file', 

'process_root_tag', 'process_intervals_tag', 

'remove_string_part_last']

0.29

… ….. …

Ranking of candidate 
problematic Areas



Analysis results

● Always slow workflows
○ Candidates for problematic areas. Should check code for the functions included in

the workflows
● Slow workflows in high loads

○ Candidates for scalability issues. Should check in combination with resource usage
● Always freq. workflows

○ If performing well good candidates for trace sampling less frequently
● High load freq. workflow

○ Good candidates to check in-combination with workflows that are slow in high
loads

● Less frequent workflows
○ If performing well good candidates to disable tracing

8 of 20Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Demo

9 of 20Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Evaluation setup

10



DeathStarBench (SocialNetwork)- test setup

11 of 20Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022



Characteristics of DeathstarBench- Social Network Service

• Supported actions in DeathStarBench

• Create text post (optional media: image, video, shortened URL, user tag)

• Read post

• Read entire user timeline

• Receive recommendations on which users to follow

• Search database for user or post

• Register/Login using user credentials

• Follow/Unfollow user

12 of 20
Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022

Service Total LoCs Communication 
Protocol

Unique 
Microservices

Pre-language LoC breakdown

Social Network 68061 RPC 36 34% C, 23% C++, 18% Java, 7% node.js, 6% 
Python, 5% Scala, 3% PHP, 2% Javascript, 2% 
Go

Code Composition



Problematic area localization

13 of 20Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022

Performance problem:

• Scalability problem
• Software bottleneck

• Synchronization

• External call bottleneck

• Resource bottleneck

• …..

Performance 
problem

Unbalanced 
processing

Increasing req. 
response time

Varying req. 
response time

workload

Request 
response time

Workload type

Resource 
utilization

Varying
throughput

.

.

.



Example: Software Bottleneck

14 of 20

0

5

10

15

20

25

30

1 5 10 15 20 25 30

R
es

p
o

n
se

 t
im

e 
(S

)

Number of users

Software bottleneck
Resource bottleneck
No problem

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25 30

C
P

U
 U

ti
liz

at
io

n
[%

]

Number of users

Software bottleneck
Resource bottleneck
No problem



Checking software bottleneck detection

15 of 20Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022

Software bottleneck possible causes:

• Synchronization points
• Database locks
• Pools
• ….

Related functions contain DB queries

Iinject DB Lock 
bottleneck in source-

code



The way forward - update from the last 
meeting

• Automate the pipeline for the presented method

o done
• Test and extend the method for more complex applications with longer

execution paths
o in-progress

• Investigate other methods to model frequency and duration metrics
o working on fuzzy methods like fuzzy clustering

• Apply the same concept to other metrics like resource-related metrics modeling
in combination with UST trace metrics
o planned

• Improve performance of the code
o in-progress

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022
16 of 20



Github address for source code and test data:

https://github.com/mnourollahi/UST_adaptiveTracing

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022 17 of 20



References
[1] Tânia Esteves, Francisco Neves, Rui Oliveira, and João Paulo. 2021. CAT: content-aware tracing and analysis for distributed systems. In Proceedings of the 22nd International
Middleware Conference (Middleware '21). Association for Computing Machinery, New York, NY, USA, 223–235.

[2] S. Zhang, D. Liu, L. Zhou, Z. Ren, and Z. Wang, “Diagnostic framework for distributed application performance anomaly based on adaptive instrumentation,” in 2020 2nd
International Conference on Computer Communication and the Internet (ICCCI). IEEE, 2020, pp. 164–169.

[3]E. Ates, L. Sturmann, M. Toslali, O. Krieger, R. Megginson, A. K. Coskun, and R. R. Sambasivan, “An automated, cross-layer instrumentation framework for diagnosing
performance problems in distributed applications,” in Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 165–170.

[4] P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca, “Weighted sampling of execution traces: Capturing more needles and less hay,” in Proceedings of the ACM Symposium on
Cloud Computing, 2018, pp. 326–332.

[5] P. Las-Casas, G. Papakerashvili, V. Anand, and J. Mace, “Sifter: Scalable sampling for distributed traces, without feature engineering,” in Proceedings of the ACM Symposium on
Cloud Computing, 2019, pp. 312–324.

[6] A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, “Automated analysis of distributed tracing: Challenges and research directions,” Journal of Grid Computing, vol. 19, no. 1,
pp. 1–15, 2021.

[7] Q. Fournier, N. Ezzati-jivan, D. Aloise, and M. R. Dagenais, “Automatic cause detection of performance problems in web applications,” in 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2019, pp. 398–405.

[8] M. Dymshits, B. Myara, and D. Tolpin, “Process monitoring on sequences of system call count vectors,” in 2017 International Carnahan Conference on Security Technology
(ICCST). IEEE, 2017, pp. 1–5.

[9] F. Doray and M. Dagenais, “Diagnosing performance variations by comparing multilevel execution traces,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 2,
pp. 462–474, 2016.

[10] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing infrastructure,”
Google, Inc., Tech. Rep., 2010.

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022 18 of 20



References

[11] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W. Ong, B. Schaller, P. Shan, B. Viscomi, V. Venkataraman,
K. Veeraraghavan, and Y. J. Song, “Canopy: An end-to-end performance tracing and analysis system,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 34–50.

[12] Wert, Alexander, Jens Happe, and Lucia Happe. "Supporting swift reaction: Automatically uncovering performance
problems by systematic experiments." 2013 35th International Conference on Software Engineering (ICSE). IEEE, 2013.

[13] M. Gebai et M. R. Dagenais, “Survey and analysis of kernel and userspace tracers on linux : Design, implementation, and
overhead,” ACM Comput. Surv., vol. 51, no. 2, mars 2018.

[14] S. Tjandra, “Performance model extraction using kernel event tracing,” Thèse de doctorat, Carleton University, 2019.

[15] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken, W. Wang, L. Xu et G. R. Ganger,
“Diagnosing performance changes by comparing request flows.” dans NSDI, vol. 5, 2011, p. 1–1.

[16] Du, Min, et al. "Deeplog: Anomaly detection and diagnosis from system logs through deep learning." Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. 2017.

[17] V. Cortellessa et L. Traini, “Detecting latency degradation patterns in service-based systems,” dans Proceedings of the
ACM/SPEC International Conference on Performance Engineering, 2020, p. 161–172.

[18] F. Doray et M. Dagenais, “Diagnosing performance variations by comparing multi-level execution traces,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 2, p. 462–474, 2016.

Adaptive Tracing- Problematic area localization- Progress report meeting- May 2022 19 of 20


