
Hardware-assisted Tracing for Low

Overhead Data Race Detection

Farzam Dorostkar with Pr. Michel Dagenais
May 16th 2022

Polytechnique Montreal

DORSAL Laboratory

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Project Introduction

2/20

Research Topic: Low overhead memory bug detection using hardware

tracing

Current Track:

Detecting data races in C/C++ programs that use POSIX pthreads

❖ Post-mortem data race detection using Intel Processor Trace (Intel PT)

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Agenda

3/20

➢ Introduction

• Data Race

• Motivation

• Intel Processor Trace (Intel PT)

➢ Methodology

• Opportunities & Limitations

• Algorithm

• Hybrid Tracing

• Preliminary Results

• Tools

➢ Conclusion & Future work

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 4/20

Introduction

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Data Race

5/20

In multithread Programming:

⚫ Shared variables allow threads to

communicate quickly

⚫ A bug when two+ threads access the same

shared variable concurrently and at least

one access is a write (Data Race!)

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Data Race

6/20

int count = 0; //Shared variable

void *routine_one(void *arg) {
count++;

}

void *routine_two(void *arg) {
count++;

}

int main() {
pthread_t t1, t2;
pthread_create(&t1, NULL, &routine_one, NULL);
pthread_create(&t2, NULL, &routine_two, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return 0;

}

t1 R t2 R t1 R

t1 W t2 W t2 R

t2 R t1 R t1 W

t2 W t1 W t2 W

count = 2 count = 2 Count = 1

In multithread Programming:

⚫ Shared variables allow threads to

communicate quickly

⚫ A bug when two+ threads access the same

shared variable concurrently and at least

one access is a write (Data Race!)

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Motivation

7/20

Why a new data race detector?

❖ Current standard tools impose considerable overhead!

▪ ThreadSanitizer (TSan):

• Slowdown: 5×-15× & Memory overhead: 5×-10×

▪ Helgrind:

• Slowdown: 100× & Memory overhead: 20×

❖ Not usable in production + difficult to test applications under real-world loads

Reason: Sole reliance on heavy code instrumentation!

Research question: Can we reduce the need for code instrumentation in a data race

detector by making use of hardware-assisted tracing?

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Intel Processor Trace (Intel PT)

8/20

▪ A hardware feature that logs information about software execution with minimal

impact

▪ A non-intrusive means to trace control flow by generating a variety of packets

• <5% performance overhead

▪ Decoder reconstructs the precise execution flow by combining PT packets with

the binaries of the traced program

▪ Trace data is generated only for non-statically-known control flow changes

▪ Can store both cycle count and timestamp information

▪ No need to modify source code!

• Run under Intel PT-enabled debug and profiling tools (like Linux perf & GDB)

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Intel Processor Trace (Intel PT)

9/20

Instructions Encoding

push

mov

cmp

je .L1 TNT (Taken Not Taken)

mov

add

L1:

Call (edx) // virtual function TIP (Target IP)

PT trace

T

0x4012a4

Control Flow Tracing

⚫ TNT (Taken Not-Taken) : direct conditional branches (generates only a 1-bit indication)

⚫ TIP (Target IP) : target address of indirect branches, exception, and interrupts

Trace

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Intel Processor Trace (Intel PT)

10/20

Instructions

push

mov

cmp

je .L1

mov

add

L1:

Call (edx) // virtual function

PT trace

T

0x4012a4

Reconstructed Control Flow

push

mov

cmp

je .L1

mov

add

L1:

Call (0x4012a4)

Reconstructing the Control Flow

Decoder can determine the exact execution flow from trace log

decode

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 11/20

Methodology

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Opportunities & Limitations

12/20

What are the opportunities and limitations of using HW tracing for detecting

data races?

What information is required for detecting data races?

How data races are detected?

Data race detection algorithms

• Happens-before

• Lockset

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Algorithm

13/20

Happens-before Algorithm

• Determines partial ordering between program events

• Inspired by Lamport’s Happens-before relation [1]

• For two events a and b:

i. If a and b in the same thread & a comes before b : a→b

ii. If (a, b) is a synchronization-pair (like lock/unlock the same mutex) : a→b

iii. If a→b & b→c : a→c (Transitivity)

If a!→b & b!→a : a and b are concurrent!

• Used by many tools including TSan, Helgrind, and GO’s built-in data race detector

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun. ACM, 21(7):558–565, 1978.

How data races are detected?

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Algorithm

14/20

Events of interest:

❖ Memory accesses:

• reads and writes

❖ Synchronization:

• Unlocking and locking the same mutex

• Signaling a condition and waiting on the same condition

• Broadcasting a condition and waiting on the same condition

Other required information:

❖ Control flow related information (like order of events)

What information is required for detecting data races?

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Hybrid Tracing

15/20

TID IP Addr Sym+off Insn

20295 0 4011dc routine_two+0xc mov $0x404060, %rdi

20295 401080 4011e6 routine_two+0x16 callq 0xfffffffffffffe9a

20295 0 4011eb routine_two+0x1b movl 0x40405c, %ecx

20295 0 4011f5 routine_two+0x25 movl %ecx, 0x40405c

20295 0 4011fc routine_two+0x2c mov $0x404060, %rdi

20295 401050 401209 routine_two+0x39 callq 0xfffffffffffffe47

20294 0 40118c routine_one+0xc mov $0x404060, %rdi

20294 401080 401196 routine_one+0x16 callq 0xfffffffffffffeea

20294 0 40119b routine_one+0x1b movl 0x40405c, %ecx

20294 0 4011a5 routine_one+0x25 movl %ecx, 0x40405c

20294 0 4011ac routine_one+0x2c mov $0x404060, %rdi

20294 401050 4011b9 routine_one+0x39 callq 0xfffffffffffffe97

Symbol Addr

count 0x40405c

mutex 0x404060

pthread_mutex_lock 0x401080

pthread_mutex_unlock 0x401050

An Example Decoded PT Trace

Two threads updating the global object "count" while holding the mutual lock "mutex"

• Control flow information

• Calls to synchronization functions

• Accesses to the global variable

No instrumentation required for this example

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Hybrid Tracing

16/20

In General:

❖ Included in PT Trace:

• Control flow related information

• Calls to synchronization functions of pthreads

• Accesses to global objects

❖ Not Included in PT Trace:

• Accesses to heap objects

• Accesses to stack objects

• Indirect pointer-based memory accesses

What are the opportunities and limitations of using HW tracing for

detecting data races?

Hardware-assisted Tracing

Software Tracing (i.e. Instrumentation)

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Hybrid Tracing

17/20

Instrumenting Most Memory Accesses

At the current stage:

• Static instrumentation

• Using the LLVM infrastructure

• Instrumenting load and store instructions at IR level with dummy function calls

When the execution is over, and possibly on a different machine, the Intel

PT trace data is decoded and analysed for possible data races.

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Preliminary Results

18/20

▪ Five C micro benchmarks

▪ No false positive or false negative report

▪ Proposed approach:

• Noticeably less memory overhead, for all the five benchmarks

• The least runtime overhead for four benchmarks

• Performing the post-mortem analysis took between 3 minutes (for benchmark #4 /

11 MB) to 16 minutes (for benchmark #5 / 347 MB)

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais 19/20

Conclusion &

Future Work

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Conclusion & Future Work

20/20

❖ Conclusion:

• A hybrid data race detection tool that benefits from hardware-assisted tracing to minimize

the need for code instrumentation

• Only instrumenting memory accesses. No need to instrument synchronization events.

• Promising preliminary results in comparison with Helgrind and TSan

❖ Future Work:

▪ More efficient instrumentation + Dynamic Instrumentation

▪ Exploit the potential of static code analysis to specify memory accesses that do not affect

the correctness of data race detection if not instrumented

▪ Investigating the potential of the PTWRITE instruction to further reduce the need for

instrumentation

Polytechnique Montreal – Farzam Dorostkar with Pr. Michel Dagenais

Questions?
farzam.dorostkar@polymtl.ca

https://github.com/FarzamDorostkar

