Hardware-assisted Tracing for Low
Overhead Data Race Detection

Farzam Dorostkar with Pr. Michel Dagenais
May 16t 2022

Polytechnique Montreal

DORSAL Laboratory

Project Introduction

Research Topic: Low overhead memory bug detection using hardware
tracing

Current Track:

Detecting data races in C/C++ programs that use POSIX pthreads
*» Post-mortem data race detection using Intel Processor Trace (Intel PT)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

————————————————
Agenda

» Introduction

« Data Race

« Motivation

* Intel Processor Trace (Intel PT)
» Methodology

* Opportunities & Limitations

« Algorithm

« Hybrid Tracing

* Preliminary Results

« Tools

» Conclusion & Future work

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Data Race

In multithread Programming:

. Shared variables allow threads to

communicate quickly

« A bug when two+ threads access the same
shared variable concurrently and at least

one access is a write (Data Race!)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Data Race

In multithread Programming: int count = 0; //Shared variable
: oid *routine_one(void *a
« Shared variables allow threads to Y Nt (void *arg) {
communicate quickly ;
void *FOUEINENEWE (void *arg) {
« A bug when two+ threads access the same count++;
. by
shared variable concurrently and at least
_ _ int main() {
one access is a write (Data Race!) pthread_t t1, t2;
pthread_create(&t1, NULL, &routine_one, NULL);
pthread_create(&t2, NULL, &routine_two, NULL);
ar [T@RT us Pthread_join(tL, NULL);
pthread_join(t2, NULL);
uw ew L RR |
t1 R t1 W by

Law. aw W

count= 2 count= 2 Count=1

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Motivation

Why a new data race detector?

*» Current standard tools impose considerable overhead!
= ThreadSanitizer (TSan):
« Slowdown: 5x-15x & Memory overhead: 5x-10x
= Helgrind:
« Slowdown: 100x & Memory overhead: 20 X

*» Not usable in production + difficult to test applications under real-world loads

Research question: Can we reduce the need for code instrumentation in a data race
detector by making use of hardware-assisted tracing?

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Intel Processor Trace (Intel PT)

A hardware feature that logs information about software execution with minimal

impact
A non-intrusive means to trace control flow by generating a variety of packets
« <5% performance overhead

Decoder reconstructs the precise execution flow by combining PT packets with

the binaries of the traced program

Trace data is generated only for non-statically-known control flow changes
Can store both cycle count and timestamp information

No need to modify source code!

* Rununder Intel PT-enabled debug and profiling tools (like Linux perf & GDB)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Intel Processor Trace (Intel PT)

Control Flow Tracing
« TNT (Taken Not-Taken) : direct conditional branches (generates only a 1-bit indication)

. TIP (Target IP) : target address of indirect branches, exception, and interrupts

Instructions Encoding PT trace

push Taco S

mov 0x4012a4
cmp
je .L1 TNT (Taken Not Taken)
mov
add
L1:

Call (edx) // virtual function | TIP (Target IP)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Introduction: Intel Processor Trace (Intel PT)

Reconstructing the Control Flow

Decoder can determine the exact execution flow from trace log

Instructions

push

mov

cmp

je.L1

mov

add

L1:

Call (edx) // virtual function

+

PT trace
T
0x4012a4

Reconstructed Control Flow

push

mov

cmp

je.L1

mov

add

L1:

Call (0x4012a4)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Methodology

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

————————————————
Methodology: Opportunities & Limitations

What are the opportunities and limitations of using HW tracing for detecting

dataraces?

\

What information is required for detecting dataraces?

\

How dataraces are detected?
Data race detection algorithms
* Happens-before

 Lockset

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

————————————————
Methodology: Algorithm

Happens-before Algorithm
« Determines partial ordering between program events
« Inspired by Lamport’s Happens-before relation [1]
* Fortwo events a and b:
I. If a and b in the same thread & a comes before b : a—b
ii. If (@, b) is a synchronization-pair (like lock/unlock the same mutex) : a—b
lii. Ifa—b & b—c : a—c (Transitivity)
If a!>b & b!->a :a and b are concurrent!
« Used by many tools including TSan, Helgrind, and GO'’s built-in data race detector

How data races are detected? "~

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun. ACM, 21(7):558-565, 1978.

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

————————————————
Methodology: Algorithm

Events of interest:
* Memory accesses:
* reads and writes
¢ Synchronization:
« Unlocking and locking the same mutex
« Signaling a condition and waiting on the same condition

« Broadcasting a condition and waiting on the same condition

Other required information:

s Control flow related information (like order of events)

What information is required for detecting data races?

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

TID
20295
20295
20295
20295
20295
20295
20294
20294
20294
20294
20294
20294

Methodology: Hybrid Tracing

An Example Decoded PT Trace

Two threads updating the global object "count"” while holding the mutual lock "mutex"”

IP

0
401080

0

0

0
401050

0
401080

0

0

0
401050

Addr
4011dc
4011e6
4011eb
4011f5
4011fc
401209
40118c
401196
40119b
4011a5
4011ac
4011b9

Sym-+off
routine_two+0xc
routine_two+0x16
routine_two+0x1b
routine_two+0x25
routine_two+0x2c
routine_two+0x39
routine_one+0xc
routine_one+0x16
routine_one+0x1b
routine_one+0x25
routine_one+0x2c

routine_one+0x39

Insn
mov $0x404060, %rdi
callg Oxfffffffffffffe9a
movl 0x40405c, %ecx
mowvl %ecx, 0x40405¢c
mov $0x404060, %rdi
callg Oxfffffffffffffe4 7
mov $0x404060, %rdi
callg Oxfffffffffffffeea
movl 0x40405c, %ecx
mowvl %ecx, 0x40405¢c
mov $0x404060, %rdi
callg Oxfffffffffffffe97

Symbol Addr
count 0x40405c
mutex 0x404060

pthread _mutex lock 0x401080

pthread _mutex unlock 0x401050

Control flow information ~/
Calls to synchronization functionsv
Accesses to the global variable

No instrumentation required for this example

Polytechnique Montreal — Farzam Dorostkar with Pr.

Michel Dagenais

————————————————
Methodology: Hybrid Tracing

In General:

< Includedin PT Trace:

 Control flow related information

. Calls to synchronization functions of pthreads | Hardware-assisted Tracing

« Accessesto global objects
* Not Included in PT Trace:
« Accessesto heap objects

. Accesses to stack objects - Software Tracing (i.e. Instrumentation)

 Indirect pointer-based memory accesses

What are the opportunities and limitations of using HW tracing for
detecting data races? +/

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

————————————————
Methodology: Hybrid Tracing

Instrumenting Most Memory Accesses
At the current stage:

e Static instrumentation
e Using the LLVM infrastructure

* Instrumenting load and store instructions at IR level with dummy function calls

Source File LLLL
|
A —————»| Executable ———» L3

LA
LLVM Static Instrumentation Execute under Intel PT

JLLL
LAALI

Post-mortem
Data Race
Detection

Debug Information Intel PT Trace Data

: <

When the execution is over, and possibly on a different machine, the Intel
PT trace data is decoded and analysed for possible data races.

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Methodology: Preliminary Results

Benchmark

Benchmark Characteristic

Runtime Overhead

Memory Overhead

#Threads R/RF Object Type | Helgrind | TSan | Proposed | Helgrind | TSan | Proposed
#1 3 Race-free Global 99.4 x 4.9x 1.8x 23.4x 7.6x 3.1x
#2 3 Data Race Global 20.2x 231.1x 41.6 % 22.3 % 7.4% 2.9x
#3 6 Data Race Heap 76.7x 38.8 % 3.5% 22.2x | 10.5x 2.8 %
#4 3 Data Race Stack 327.3x | T47.4x 68.7 x 22.2x 8.0x 2.8 %
#5 6 Race-free Heap 62.4 x 6.4 % 3.8x 22.1x 9.6 x 2.7x

= Five C micro benchmarks

= No false positive or false negative report
* Proposed approach:
* Noticeably less memory overhead, for all the five benchmarks
« The least runtime overhead for four benchmarks

« Performing the post-mortem analysis took between 3 minutes (for benchmark #4 /

11 MB) to 16 minutes (for benchmark #5 / 347 MB)

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Conclusion &
Future Work

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Conclusion & Future Work

+» Conclusion:

* A hybrid data race detection tool that benefits from hardware-assisted tracing to minimize

the need for code instrumentation
« Only instrumenting memory accesses. No need to instrument synchronization events.
* Promising preliminary results in comparison with Helgrind and TSan
¢ Future Work:
= More efficient instrumentation + Dynamic Instrumentation

= Exploit the potential of static code analysis to specify memory accesses that do not affect

the correctness of data race detection if not instrumented

* |nvestigating the potential of the PTWRITE instruction to further reduce the need for

instrumentation

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

Questions?

farzam.dorostkar@polymtl.ca
https://github.com/FarzamDorostkar

Polytechnique Montreal — Farzam Dorostkar with Pr. Michel Dagenais

