Polytechnique Montréal - May 2022

LTTng and Related Projects Updates

EfficiOS

e LTTng 2.14 (ongoing development)
— Aggregation Maps and Trace Hit Counters

e LTTng 2.15 and Babeltrace 2.1 (ongoing development)
— Common Trace Format 2 (CTF 2)

e Restartable Sequences
— Virtual CPU IDs

EfficiOS

LTTng 2.14 (Ongoing Development)

e Newin LTTng 2.14: Aggregation Maps and Trace Hit Counters

EfficiOS

Tracing vs Aggregation (1/3)

Tracing

[18:21:19.648266565] (+0.001025307) raton my_app:adjust_sensor: { cpu_id =1 }, { id = 3 }
[18:21:19.648278383] (+0.000001329) raton my_app:curr_temp: { cpu_id = 1 } { temp = 53, status = OK }
[18:21:19.648277054] (+0.000010489) raton my_app:empty: { cpu_id = 2 }, { }

[18:21:1

0

.648278948] (+0.000000565) raton my_app:curr_temp: { cpu_id = 5 }, { temp = 64, status = OK }

[18:21:1

©

.648279875] (+0.000000317) raton my_app:curr_temp: { cpu_id =1 }, { temp = 98, status = OK }

[18:21:19.648283004] (+0.000000571) raton my_app:temp_too_high: { cpu_id = 1 }, { temp = 103, status = OVERHEATING }

EfficiOS 4

Tracing vs Aggregation (2/3)
Aggregation

T P R +
| name | count |
Hmmmmmmmmm e Hmmmmm-- +
my_app:adjust_sensor	6
my_app:curr_temp	53
my app:temp_too high	1
Hmmmmmmmmm e Hmmmmm-- +

EfficiOS 5

Tracing vs Aggregation (3/3)

Tracing Aggregation
e Event ordering e Event counting
e Precise timing e Event grouping
e Payload recording e High level view

EfficiOS 6

Concrete examples (1/2)

e Report the number of times an event occurred

e +------- +
| name | count |
e +------- +
event_ 1	571
event 2	4163
event 3	7
e +------- +

EfficiOS 7

Concrete examples (2/2)

e Report event occurrence by subsystem

T fmmmmma- +
| name | count |
T fmmmmma- +
data_thread	853
ui_thread	190
control thread	5621
T fmmmmma- +

EfficiOS 8

e Maps are key-value stores
o string -> signed integer
o are part of tracing sessions
e Configuration options:
o Domain,
o Buffer type,
o Bucket size,
o Number of buckets.

EfficiOS 9

Trace Hit Counter

Similar to regular LTTng events,

Apply on a specific session and map,
Arbitrary key,

Exposed through the LTTng Trigger interface,

o “on-event condition,
o One or more “incr-value’ actions.

EfficiOS 10

CLI - Typical Workflow

e Create a ‘on-event and ‘incr-value trigger
e Create session

e Create map

e Start session

e Run workload

e Stop session

e Visualize the map

EfficiOS 1

CLI - incr-value action

$ lttng add-trigger \
--condition on-event --userspace "tp:*" \
--action incr-value \
--session my_session \
--map my_map \
--key 'my_incr_value_${EVENT_NAME}'

Arbitrary keys created using the key syntax:
e Literal string,
e Event (name or provider).

Examples:
e --key "Event category #2"
e --key "${EVENT_NAME} postfix"

EfficiOS 12

CLI - add-map

Maps offer multiple configuration options:
$ lttng add-map \
--userspace \
--session mysession \
--per-uid \
--bitness 32 \
--max-key-count 4096 \
mymap

EfficiOS 13

CLI - list
Maps are listed in the existing “list” and "status’

commands:

$ lttng status

Or

$ lttng list my_session
[...]

- my_map (enabled)
Attributes:
Bitness: 32
Counter type: per-uid
Boundary policy: OVERFLOW
Bucket count: 4096
Coalesces hits: TRUE

EfficiOS 14

CLI - view-map

The content of a map can be viewed using the "view-map’ command.

Shows the value, the underflow(uf) and overflow(of) flags for each key.
$ lttng view-map my_map

Session: 'my_session', map: 'my_map', map bitness: 64
UID: 1000, CPU: ALL

Fommmmmmmmeeeeee- +----- R e
| key | val | uf | of |
Fommmmmmmmeeeeee- +----- R e
| Event category #2 | 20| @ | o |
Fommmmmmmmeeeeee- +----- R e
| tp_tptestl | 10| o] o |
Fommmmmmmmeeeeee- +----- R e
| tp_tptests | 10| o] o |
Fommmmmmmmeeeeee- +----- R e
| tptestl:postfix | 1@ | @ | o |
Fommmmmmmmeeeeee- +----- R e
| tptestS:postfix | 1@ | @ | o |
Fommmmmmmmeeeeee- +----- R e

EfficiOS 15

CLI - view-map

The value of a specific key can accessed using the “--key" option:

$ lttng view-map my_map --key 'tptestl:postfix’

Session: 'my_session', map: 'my_map', map bitness: 64
UID: 1000, CPU: ALL

Hmmmmmmm e 4mmmm- Hmmmmgmm et
| key | val | uf | of |
Hmmmmmmm e 4mmmm- Hmmmmgmm et
| tptestl:postfix | 10 | o | o |
Hmmmmmmm e 4mmmm- Hmmmmgmm et

EfficiOS 16

Future avenues

e ‘decr-value action,
o Decrement the value of a map bucket,
o Account entry and exit of functions or syscalls,

e Aggregate based on event payload fields,
e Increment based on event payload fields.

e Ring buffer usage accounting mode,
o Estimate memory needed of a tracing workload,
o Based on event occurrence and size.

EficiOS "

Summary - Aggregation Maps

Aggregation allows for cheap and quick overview and
analysis.

Aggregation is useful to tune tracing configuration for a
given workload.

Aggregation allows for easy extraction of metrics.

EfficiOS 18

Common Trace Format (CTF)

“Common Trace Format”
Self-described binary trace format
CTF 1 specified in 2010-2011

Focused on producer’s performance, supporting:
o Big-endian and little-endian fields
o Bitfields
o Custom field alignments
o Multiple data streams

EfficiOS 19

Anatomy of a CTF Trace

e One metadata
stream

[Zero or more data Data stream A Packet 1 Packet 2 Packet 3 Packet 4 Packet 5
streams

Data stream 8 Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6

Data stream C Packet 1 Packet 2 Packet 3 Packet 4

Packet Header Context Event record 1 Event record 2

Common Specific
context context

Event record Header Payload

EfficiOS 20

Limitations of CTF 1: Summary

e Metadata language is hard to consume
e Metadata language is hard to extend

e Missing useful/needed field types:
o Bitarray
o Variable-length integer

o Boolean
o Optional
o BLOB

e Hard to attach data to a specific trace

EficiOS 2

Common Trace Format 2 (CTF 2) Timeline

Date Event

October 2016 Specification proposal 1.0

November 2016 DiaMon conference call about CTF2

October 2017 “Introduction to CTF2” talk @ Tracing Summit
November 2020 Specification proposal 2.0

November 2021 Specification RC 1.0

December 2021 Specification RC 2.0, RC 3.0

March, April 2022 Specification RC 4.0, RC 5.0

EfficiOS 2

CTF 2: What’s New ?

e Trace metadata now expressed as JSON rather
than custom DSL,

e Require explicit references and descriptions to
simplify trace consumers,

e Remove type aliases (not much used in CTF 1),

e Keep semantic compatibility with TSDL.:

o Atracer producing a CTF 1.8 data stream can move
to CTF 2 just by changing the metadata format.

EficiOS 2

CTF 2: What’s New ? (2)

e Introduce user-attributes property in selected

metadata objects:
o Field classes, event record classes, data stream
classes, trace class, and the rest.

e User attributes are part of a specific namespace
(trace vendor, specification, etc) to avoid conflicts.

EfficiOS 24

CTF 2: What’s New ? (3)

e Introduce new field types:
o Fixed-length bit array field class,
o Variable-length integer and enumeration field classes:
m Use LEB128 encoding.
o Fixed-length boolean field class,
o “Optional” field class,
m Optional field dynamically enabled by a boolean/integer

selector field,
m Occupies 0 data stream bits if disabled.

o Static-length and dynamic-length BLOB field classes:
m Similar to array field classes, but with more constraints,
m Has an IANA media type (MIME).

EficiOS 25

CTF 2: What’s New ? (4)

e New in CTF2-SPECRC-5.0:

o An auxiliary stream becomes a data stream which has

a nhamespace and name.
m Auxiliary stream example content: The specific
environment of the trace (TSDL env block).

EfficiOS 26

CTF 2: Planned Adoption

e Babeltrace (source and sink): v2.1

e LTTng:v2.15
o Plan to produce CTF2 by default, with a “legacy”
option to produce CTF1.8.

e barectf: as needed

e Trace Compass: EfficiOS collaborates with the
Ericsson Trace Compass team to ensure timely
CTF2 support.

EficiOS 27

Restartable Sequences (RSEQ)

e Linux kernel rseq system call merged in Linux 4.18
(in August 2018),
e Support for restartable sequences released with
glibc 2.35 (February 2022):
o Accelerate sched_getcpu(3)
e Will eventually enable fast per-cpu data accesses:
o LTTng-UST ring buffer
o LTTng-UST aggregation maps
o Memory allocators (tcmalloc, jemalloc, libc malloc)
e Working on a librseq library to provide rseq support

Eﬁici()Sfor applications linked azgalnst older glibc.

RSEQ: Virtual CPU IDs

e Extending restartable sequences with virtual CPU IDs
o https://lwn.net/Articles/885818/

e Expose vCPU IDs within the possible CPUs range,

e Based on the number of concurrently running threads
per memory space, eventually per-namespace,

e Scales the amount of memory required for per-CPU
data structures based on scheduler knowledge of the
number of concurrently running threads,

e NUMA-aware: vCPU ID is uniquely assigned to a
NUMA node within memory space or namespace.

EficiOS 29

https://lwn.net/Articles/885818/

Resources

e LTTng project: https://lttng.org
e CTF website: https://diamon.org/ctf/
e CTF 2 specification RC:
o http://diamon.org/ctf/files/CTE2-SPECRC-5.0.html
e EfficiOS blog post:
o “The 5-year journey to bring restartable sequences to
Linux”
o https://www.efficios.com/blog/2019/02/08/linux-restart
able-sequences/

EfficiOS 30

https://lttng.org
https://diamon.org/ctf/
http://diamon.org/ctf/files/CTF2-SPECRC-5.0.html
https://www.efficios.com/blog/2019/02/08/linux-restartable-sequences/
https://www.efficios.com/blog/2019/02/08/linux-restartable-sequences/

