
Polytechnique Montréal - May 2022

LTTng and Related Projects Updates

● LTTng 2.14 (ongoing development)
‒ Aggregation Maps and Trace Hit Counters

● LTTng 2.15 and Babeltrace 2.1 (ongoing development)
‒ Common Trace Format 2 (CTF 2)

● Restartable Sequences
‒ Virtual CPU IDs

2

Outline

● New in LTTng 2.14: Aggregation Maps and Trace Hit Counters

3

LTTng 2.14 (Ongoing Development)

Tracing vs Aggregation (1/3)

Tracing

[18:21:19.648266565] (+0.001025307) raton my_app:adjust_sensor: { cpu_id = 1 }, { id = 3 }

[18:21:19.648278383] (+0.000001329) raton my_app:curr_temp: { cpu_id = 1 } { temp = 53, status = OK }

[18:21:19.648277054] (+0.000010489) raton my_app:empty: { cpu_id = 2 }, { }

[18:21:19.648278948] (+0.000000565) raton my_app:curr_temp: { cpu_id = 5 }, { temp = 64, status = OK }

[18:21:19.648279875] (+0.000000317) raton my_app:curr_temp: { cpu_id = 1 }, { temp = 98, status = OK }

[18:21:19.648283004] (+0.000000571) raton my_app:temp_too_high: { cpu_id = 1 }, { temp = 103, status = OVERHEATING }

4

Tracing vs Aggregation (2/3)

Aggregation

5

+-----------------------+-------+

| name | count |

+-----------------------+-------+

| my_app:adjust_sensor | 6 |

| my_app:curr_temp | 53 |

| my_app:temp_too_high | 1 |

+-----------------------+-------+

Tracing vs Aggregation (3/3)

Tracing

● Event ordering

● Precise timing

● Payload recording

6

Aggregation

● Event counting

● Event grouping

● High level view

● Report the number of times an event occurred

7

Concrete examples (1/2)

+---------+-------+
| name | count |
+---------+-------+
event_1	571
event_2	4163
event_3	7
+---------+-------+

● Report event occurrence by subsystem

8

Concrete examples (2/2)

+----------------+-------+
| name | count |
+----------------+-------+
data_thread	853
ui_thread	190
control_thread	5621
+----------------+-------+

● Maps are key-value stores
○ string -> signed integer
○ are part of tracing sessions

● Configuration options:
○ Domain,
○ Buffer type,
○ Bucket size,
○ Number of buckets.

9

Maps

Trace Hit Counter

● Similar to regular LTTng events,
● Apply on a specific session and map,
● Arbitrary key,
● Exposed through the LTTng Trigger interface,

○ `on-event` condition,
○ One or more `incr-value` actions.

10

CLI - Typical Workflow

● Create a `on-event` and `incr-value` trigger

● Create session

● Create map

● Start session

● Run workload

● Stop session

● Visualize the map
11

CLI - incr-value action

$ lttng add-trigger \

 --condition on-event --userspace "tp:*" \

 --action incr-value \

--session my_session \

--map my_map \

--key 'my_incr_value_${EVENT_NAME}'

12

Arbitrary keys created using the key syntax:
● Literal string,
● Event (name or provider).

Examples:
● --key "Event category #2"

● --key "${EVENT_NAME}_postfix"

CLI - add-map

13

Maps offer multiple configuration options:
$ lttng add-map \

 --userspace \

 --session mysession \

 --per-uid \

 --bitness 32 \

 --max-key-count 4096 \

 mymap

CLI - list

$ lttng status

Or
$ lttng list my_session

[...]

Maps:

- my_map (enabled)

Attributes:

 Bitness: 32

 Counter type: per-uid

 Boundary policy: OVERFLOW

 Bucket count: 4096

 Coalesces hits: TRUE
14

Maps are listed in the existing `list` and `status`
commands:

CLI - view-map

15

The content of a map can be viewed using the `view-map` command.

Shows the value, the underflow(uf) and overflow(of) flags for each key.

$ lttng view-map my_map

Session: 'my_session', map: 'my_map', map bitness: 64
UID: 1000, CPU: ALL
+-------------------+-----+----+----+
| key | val | uf | of |
+-------------------+-----+----+----+
| Event category #2 | 20 | 0 | 0 |
+-------------------+-----+----+----+
| tp_tptest1 | 10 | 0 | 0 |
+-------------------+-----+----+----+
| tp_tptest5 | 10 | 0 | 0 |
+-------------------+-----+----+----+
| tptest1:postfix | 10 | 0 | 0 |
+-------------------+-----+----+----+
| tptest5:postfix | 10 | 0 | 0 |
+-------------------+-----+----+----+

CLI - view-map

16

The value of a specific key can accessed using the `--key` option:

$ lttng view-map my_map --key 'tptest1:postfix'

Session: 'my_session', map: 'my_map', map bitness: 64
UID: 1000, CPU: ALL
+-----------------+-----+----+----+
| key | val | uf | of |
+-----------------+-----+----+----+
| tptest1:postfix | 10 | 0 | 0 |
+-----------------+-----+----+----+

Future avenues

17

● `decr-value` action,
○ Decrement the value of a map bucket,
○ Account entry and exit of functions or syscalls,

● Aggregate based on event payload fields,
● Increment based on event payload fields.
● Ring buffer usage accounting mode,

○ Estimate memory needed of a tracing workload,
○ Based on event occurrence and size.

Summary - Aggregation Maps

18

Aggregation allows for cheap and quick overview and
analysis.

Aggregation is useful to tune tracing configuration for a
given workload.

Aggregation allows for easy extraction of metrics.

● “Common Trace Format”
● Self-described binary trace format
● CTF 1 specified in 2010-2011
● Focused on producer’s performance, supporting:

○ Big-endian and little-endian fields
○ Bit fields
○ Custom field alignments
○ Multiple data streams

19

Common Trace Format (CTF)

● One metadata
stream

● Zero or more data
streams

20

Anatomy of a CTF Trace

● Metadata language is hard to consume
● Metadata language is hard to extend
● Missing useful/needed field types:

○ Bit array
○ Variable-length integer
○ Boolean
○ Optional
○ BLOB

● Hard to attach data to a specific trace

21

Limitations of CTF 1: Summary

22

Common Trace Format 2 (CTF 2) Timeline
Date Event

October 2016 Specification proposal 1.0

November 2016 DiaMon conference call about CTF2

October 2017 “Introduction to CTF2” talk @ Tracing Summit

November 2020 Specification proposal 2.0

November 2021 Specification RC 1.0

December 2021 Specification RC 2.0, RC 3.0

March, April 2022 Specification RC 4.0, RC 5.0

● Trace metadata now expressed as JSON rather
than custom DSL,

● Require explicit references and descriptions to
simplify trace consumers,

● Remove type aliases (not much used in CTF 1),
● Keep semantic compatibility with TSDL:

○ A tracer producing a CTF 1.8 data stream can move
to CTF 2 just by changing the metadata format.

23

CTF 2: What’s New ?

● Introduce user-attributes property in selected
metadata objects:

○ Field classes, event record classes, data stream
classes, trace class, and the rest.

● User attributes are part of a specific namespace
(trace vendor, specification, etc) to avoid conflicts.

24

CTF 2: What’s New ? (2)

● Introduce new field types:
○ Fixed-length bit array field class,
○ Variable-length integer and enumeration field classes:

■ Use LEB128 encoding.
○ Fixed-length boolean field class,
○ “Optional” field class,

■ Optional field dynamically enabled by a boolean/integer
selector field,

■ Occupies 0 data stream bits if disabled.
○ Static-length and dynamic-length BLOB field classes:

■ Similar to array field classes, but with more constraints,
■ Has an IANA media type (MIME).

25

CTF 2: What’s New ? (3)

● New in CTF2-SPECRC-5.0:
○ An auxiliary stream becomes a data stream which has

a namespace and name.
■ Auxiliary stream example content: The specific

environment of the trace (TSDL env block).

26

CTF 2: What’s New ? (4)

● Babeltrace (source and sink): v2.1
● LTTng: v2.15

○ Plan to produce CTF2 by default, with a “legacy”
option to produce CTF1.8.

● barectf: as needed
● Trace Compass: EfficiOS collaborates with the

Ericsson Trace Compass team to ensure timely
CTF2 support.

27

CTF 2: Planned Adoption

● Linux kernel rseq system call merged in Linux 4.18
(in August 2018),

● Support for restartable sequences released with
glibc 2.35 (February 2022):

○ Accelerate sched_getcpu(3)
● Will eventually enable fast per-cpu data accesses:

○ LTTng-UST ring buffer
○ LTTng-UST aggregation maps
○ Memory allocators (tcmalloc, jemalloc, libc malloc)

● Working on a librseq library to provide rseq support
for applications linked against older glibc.

28

Restartable Sequences (RSEQ)

● Extending restartable sequences with virtual CPU IDs
○ https://lwn.net/Articles/885818/

● Expose vCPU IDs within the possible CPUs range,
● Based on the number of concurrently running threads

per memory space, eventually per-namespace,
● Scales the amount of memory required for per-CPU

data structures based on scheduler knowledge of the
number of concurrently running threads,

● NUMA-aware: vCPU ID is uniquely assigned to a
NUMA node within memory space or namespace.

29

RSEQ: Virtual CPU IDs

https://lwn.net/Articles/885818/

● LTTng project: https://lttng.org
● CTF website: https://diamon.org/ctf/
● CTF 2 specification RC:

○ http://diamon.org/ctf/files/CTF2-SPECRC-5.0.html
● EfficiOS blog post:

○ “The 5-year journey to bring restartable sequences to
Linux”

○ https://www.efficios.com/blog/2019/02/08/linux-restart
able-sequences/

30

Resources

https://lttng.org
https://diamon.org/ctf/
http://diamon.org/ctf/files/CTF2-SPECRC-5.0.html
https://www.efficios.com/blog/2019/02/08/linux-restartable-sequences/
https://www.efficios.com/blog/2019/02/08/linux-restartable-sequences/

