
Targeted Memory Runtime Analysis

David Piché

May 16th, 2022

Polytechnique Montreal

DORSAL Laboratory

POLYTECHNIQUE MONTREAL – David Piché

Agenda

2

1. Introduction
2. Related works
3. Our approach
4. System call tainted pointers

• Problem
• Solution

5. Demo
6. Results
7. Future Works

POLYTECHNIQUE MONTREAL – David Piché

Introduction

3

• Memory issues in C/C++ are still prevalent

• Use-after-free

• Memory leaks

• Out-of-bound writes

• And much more…

POLYTECHNIQUE MONTREAL – David Piché

Related Works

4

• Adress Sanitizer

• Uses shadow memory

• Memory impact is too big for embarked systems

• Datawatch

• Taint pointers stored in unused bits

POLYTECHNIQUE MONTREAL – David Piché

Our approach

5

• X86_64 architecture

• Minimal approach to recreate datawatch:

• Overwrite the malloc/realloc to add a taint.

• Tainted pointers: use bits 47 to 63 for pointer tainting.

0x 001a 1ab4e62a5443

Taint Memory address

POLYTECHNIQUE MONTREAL – David Piché

Our approach

6

• X86_64 architecture

• Minimal approach to recreate datawatch:

• SIGSEGV as a handler to catch the tainted address.

• For now, resume the flow of the program by removing the

taint.

POLYTECHNIQUE MONTREAL – David Piché

System Call Tainted Pointers: Problem

7

• System call arguments can be tainted.

• However, they are not handled by our SIGSEGV handler, as the

system call is resolved in the kernel space

POLYTECHNIQUE MONTREAL – David Piché

System Call Tainted Pointers: Solution

8

• Kernel patching

• Light modifications: 2 functions added, and calls to that function

in 4 other files.

POLYTECHNIQUE MONTREAL – David Piché

Demo

9

• Allocate a 4 byte pointer (using our malloc hook)

• Read/write using this tainted pointer as our argument

• Access the tainted pointer (generates a SIGSEGV signal)

POLYTECHNIQUE MONTREAL – David Piché

Demo

10

POLYTECHNIQUE MONTREAL – David Piché

Results

11

• Tainting pointers will not occupy more space since it uses

unused bits

• However, tainting pointers for every memory allocation will

significantly slow down our program.

POLYTECHNIQUE MONTREAL – David Piché

Future Works

12

• Use the upper 16 bits to store useful information:

• Object id: identify objects more prone to memory errors

• Targeted memory analysis

• Bounds checking with Olivier’s libpatch library

