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• Memory issues in C/C++ are still prevalent

• Use-after-free

• Memory leaks

• Out-of-bound writes

• And much more…
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• Adress Sanitizer

• Uses shadow memory 

• Memory impact is too big for embarked systems

• Datawatch

• Taint pointers stored in unused bits
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• X86_64 architecture

• Minimal approach to recreate datawatch:

• Overwrite the malloc/realloc to add a taint.

• Tainted pointers: use bits 47 to 63 for pointer tainting.

0x   001a   1ab4e62a5443

Taint Memory address
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• X86_64 architecture

• Minimal approach to recreate datawatch:

• SIGSEGV as a handler to catch the tainted address.

• For now, resume the flow of the program by removing the 

taint.
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• System call arguments can be tainted.

• However, they are not handled by our SIGSEGV handler, as the 

system call is resolved in the kernel space
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System Call Tainted Pointers: Solution
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• Kernel patching

• Light modifications: 2 functions added, and calls to that function

in 4 other files.  
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Demo
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• Allocate a 4 byte pointer (using our malloc hook)

• Read/write using this tainted pointer as our argument

• Access the tainted pointer (generates a SIGSEGV signal)
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Demo
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Results
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• Tainting pointers will not occupy more space since it uses 

unused bits

• However, tainting pointers for every memory allocation will 

significantly slow down our program.
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Future Works
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• Use the upper 16 bits to store useful information:

• Object id: identify objects more prone to memory errors

• Targeted memory analysis

• Bounds checking with Olivier’s libpatch library


