Benchmarking and improving performance in uftrace
Progress Report Meeting

Clément Guidi

Polytechnique Montréal

May 16, 2022

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 1/26

Table of contents

@ Introduction

© Previous work
© Benchmark

@ Demonstration
© Work in progress

© Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace

May 16, 2022

2/26

Table of Contents

@ Introduction

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 3/26

Introduction

About uftrace: a userspace function tracer for C/C++ applications

Development efforts:
@ increase instrumentation coverage (new probe insertion methods)
@ minimize the overhead of probes

@ integrate with other tools (e.g. LT Tng support)

Need for benchmarking tools:
@ to quantify performance
@ to identify and target performance issues
@ to compare the efficiency of new methods

@ to provide scientific measurements

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 4/26

Table of Contents

© Previous work

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 5/26

Previous work

Main contributions

@ LTTng integration: emit events through LTTng-UST channels
o Libpatch: lightweight dynamic patching with extensive features
(external library) [Olivier Dion]

@ indirect jump resolution: improve patching success rate by identifying
indirect jump locations (external library) [Gabriel Pollo-Guilbert]

@ x86 runtime instrumentation: add and remove tracepoints at
execution using a locking mechanism and out of line execution
[Christian Harper-Cyr, Anas Balboul, Ahmad Shahnejat and Gabriel
Pollo-Guilbert]

@ client command: send commands to a libmcount daemon running
inside a uftrace target [Clément Guidi]

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 6/26

Previous work
Side work

@ enhance conditional compilation

e build configuration flags ——without-libresolver,
--without-libpatch, ——without-1ttng and ——without-daemon

@ make uftrace suitable for benchmarking

e add architecture dependent statistics
e add --dry-run option

o follow upstream changes (rebase)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 7/26

Table of Contents

© Benchmark

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 8/26

Benchmark

Structure of the benchmark

The uftrace benchmark: a tool to evaluate the performance of two
domains

@ instrumenting: efficiency of probe insertion

@ tracing: efficiency of probe execution

All in one tool for efficient deployment and reproducibility. Features:
@ application building (build farm with multiple versions of binaries)
@ instrumentation benchmarking
@ probe execution benchmarking

@ results display and archiving (work in progress)

Technical details:

@ build around a set of python scripts and C programs using perf events

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 9/26

Benchmark

Structure of the benchmark

Benchmarking uftrace on a list of ~30 applications with mixed
characteristics:

@ bigger or smaller binary size

@ higher or lower function count
@ single- or multi-threaded

@ Cor C++ code

Uftrace versions to compare:
@ baseline (upstream)
o fully dynamic instrumentation
@ LTTng integration

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 10 /26

Benchmark

Structure of the benchmark

Sample output of raw instrumentation data on AMD64:

dynamic patch stats for ’1s’

total: 478
patched: 464 (97.07%)
failed: 14 (2.92%)
total: 14
bad symbol: 0 C 0.00%)
capstone: 0 (0.00%)
no detail: 0 (0.00%)
relative jump: 0 (0.00%)
relative call: 0 (0.00%)
pic: 3 (21.42%)
jump prologue: 0 (0.00%)
jump function: 11 (78.57%)
skipped: 0 (0.00%)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 11/26

Benchmark

Results— instrumenting

app python baseline full dynamic
gec flag -00 -03 -00 -03
total 9079 9079 9079 9079
patched 99.94%| 97.31%| 98.86%| 90.18%
failed 0.05% 1.05% 1.13% 8.19%
no detail 9.15%
relative jump 1.85% 4.85%| 88.55%
coverage pic | 100.00%| 89.00%| 95.15%| 11.45%
jump prologue
skipped 1.62% 1.62%
cold 22.90% 22.90%
min size 77.10% 77.10%
latency (u§mean 34 50 31 46
median 16 23 16 24
. std 148 215 101 128
time min 2 2 3 3
max 9368 12142 5674 4891
total time (ms) 320 261 352 276
Benchmarking uftrace May 16, 2022

12 /26

Benchmark

Results— instrumenting

Benchmarking on python binary (has REPL, useful for runtime testing)

Comments about coverage:
o total of 9070 functions
@ patching failures due to position-independent code
@ patching coverage goes down with optimization
e possible relative jumps
e symbols missing details
o function too small (need tracing?)
e code optimization
o fully dynamic implementation: indirect jump resolution disabled so
less coverage
Comment about performance:
o fully dynamic implementation has serial synchronization step

e individual patching faster
e overall patching slower

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 13 /26

Benchmark

Results— instrumenting

app git baseline full dynamic
gec flag -00 -03 -00 -03
total 5212 5212 5212 5212
patched 99,92% 94.43%| 99.38%| 92.49%
failed 0,07% 3.95% 0.61% 5.89%
no detail 66.51%
coverage relative jump 87.50%| 77.53%
pic | 100.00%| 32.52%| 12.50%| 21.82%
jump prologue 0.97% 0.65%
skipped 1.61% 1.61%
cold 19.05% 19.05%
min size 80.95% 80.95%
latency (usmean 32 66 32 64
median 16 28 16 28
. std 73 174 71 165
time min 2 2 3 3
max 2758 2628 2534 2533
total time (ms) 389 342 425 356
Benchmarking uftrace May 16, 2022

14 /26

Benchmark

Results— instrumenting

Benchmarking on git binary

Comments about coverage:
@ total of 5212 functions

@ patching failures due to position-independent code
@ patching coverage goes down with optimization

possible relative jumps

symbols missing details

jumps in function prologues
function too small (need tracing?)
code optimization

Comment about performance:
@ same observations as before

@ patching measured on patching success (function count varies)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 15 /26

Benchmark

Results— instrumenting

app make baseline full dynamic
gec flag -00 -03 -00 -03
total 344 344 344 344
patched 99.48% 90.69% 96.03%| 87.79%
failed 0.51% 2.03% 3.06% 4.94%
no detail
relative jump 71.43%| 83.34%| 88.24%
coverage pic | 100.00%| 28.57%| 16.66%| 11.76%
jump prologue
skipped 7.26% 7.26%
cold
min size 100.00% 100.00%
latency (usmean 82 77 70 74
median 30 31 29 30
. std 198 192 159 187
time min 3 3 3 4
max 2152 2194 1756 2251
total time (ms) 33 25 29 26
Benchmarking uftrace May 16, 2022

16 /26

Benchmark

Results— instrumenting

Benchmarking on make binary

Comments about coverage:
@ total of 344 functions
@ patching failures due to position-independent code
@ patching coverage goes down with optimization

e possible relative jumps
o function too small (need tracing?)

Comment about performance:
@ same observations as before

o fully dynamic implementation overall faster, due to patch failures

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 17 /26

Benchmark

Results— tracing

@ dynamic: fully dynamic instrumentation

e pg: compiled with -pg flag (mcount call)

e fentry: compiled with ~finstrument-functions (cyg_prof calls)

baseline full dynamic Ittng
dynamic |pg cygprof |dynamic |pg cygprof |dynamic |pg cygprof
overhead (ns) 2389 2400 4768 2405 2395 4787 4834 4847 9655
branch misses 5 4 7 5 4 7 7 6 11]
instruction count 1439 1413 2819, 1583 1465 3015 4799 4673 9419
Benchmarking uftrace May 16, 2022 18 /26

Benchmark

Results— tracing

e fully dynamic on par with baseline, adds a small overhead (data
lookup in hashmaps)

o fully dynamic as efficient as compiler-assisted pg builds

@ LTTng brings a consistent overhead (no buffering in libmcount)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 19 /26

Table of Contents

@ Demonstration

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 20/26

Table of Contents

© Work in progress

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 21/26

Work in progress

Further benchmarking

Future work on the benchmark includes:
@ benchmarking memory footprint of probes
e testing batch patching strategies (optimize threshold)
@ stress testing runtime instrumentation
@ benchmarking tracepoint removal

@ benchmarking libpatch in uftrace

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 22/26

Work in progress

Upstreaming

Slow progress on upstreaming: objective of the summer
o fully dynamic patching
@ LTTng integration

e indirect jump resolution (bugs to fix)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 23/26

Table of Contents

© Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 24 /26

Conclusion

@ benchmarks useful to identify weaknesses and prevent regressions
e solutions are under development

@ room for improvement in current methods

@ more comprehensive benchmark to come

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 25/26

Conclusion

Find prototypes at https://github.com/dorsal-lab/uftrace

Thank you!

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 26 /26

https://github.com/dorsal-lab/uftrace

