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Introduction

About uftrace: a userspace function tracer for C/C++ applications

Development efforts:
increase instrumentation coverage (new probe insertion methods)
minimize the overhead of probes
integrate with other tools (e.g. LTTng support)

Need for benchmarking tools:
to quantify performance
to identify and target performance issues
to compare the efficiency of new methods
to provide scientific measurements
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Previous work
Main contributions

LTTng integration: emit events through LTTng-UST channels
Libpatch: lightweight dynamic patching with extensive features
(external library) [Olivier Dion]
indirect jump resolution: improve patching success rate by identifying
indirect jump locations (external library) [Gabriel Pollo-Guilbert]
x86 runtime instrumentation: add and remove tracepoints at
execution using a locking mechanism and out of line execution
[Christian Harper-Cyr, Anas Balboul, Ahmad Shahnejat and Gabriel
Pollo-Guilbert]
client command: send commands to a libmcount daemon running
inside a uftrace target [Clément Guidi]
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Previous work
Side work

enhance conditional compilation
build configuration flags –-without-libresolver,
–-without-libpatch, –-without-lttng and –-without-daemon

make uftrace suitable for benchmarking
add architecture dependent statistics
add –-dry-run option

follow upstream changes (rebase)
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Benchmark
Structure of the benchmark

The uftrace benchmark: a tool to evaluate the performance of two
domains

instrumenting: efficiency of probe insertion
tracing: efficiency of probe execution

All in one tool for efficient deployment and reproducibility. Features:
application building (build farm with multiple versions of binaries)
instrumentation benchmarking
probe execution benchmarking
results display and archiving (work in progress)

Technical details:
build around a set of python scripts and C programs using perf events
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Benchmark
Structure of the benchmark

Benchmarking uftrace on a list of ≈30 applications with mixed
characteristics:

bigger or smaller binary size
higher or lower function count
single- or multi-threaded
C or C++ code

Uftrace versions to compare:
baseline (upstream)
fully dynamic instrumentation
LTTng integration
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Benchmark
Structure of the benchmark

Sample output of raw instrumentation data on AMD64:

dynamic patch stats for ’ls’
total: 478

patched: 464 (97.07%)
failed: 14 ( 2.92%)

total: 14
bad symbol: 0 ( 0.00%)

capstone: 0 ( 0.00%)
no detail: 0 ( 0.00%)

relative jump: 0 ( 0.00%)
relative call: 0 ( 0.00%)

pic: 3 ( 21.42%)
jump prologue: 0 ( 0.00%)
jump function: 11 ( 78.57%)
skipped: 0 ( 0.00%)
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Benchmark
Results– instrumenting
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Benchmark
Results– instrumenting

Benchmarking on python binary (has REPL, useful for runtime testing)

Comments about coverage:
total of 9070 functions
patching failures due to position-independent code
patching coverage goes down with optimization

possible relative jumps
symbols missing details
function too small (need tracing?)
code optimization

fully dynamic implementation: indirect jump resolution disabled so
less coverage

Comment about performance:
fully dynamic implementation has serial synchronization step

individual patching faster
overall patching slower
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Benchmark
Results– instrumenting
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Benchmark
Results– instrumenting

Benchmarking on git binary

Comments about coverage:
total of 5212 functions
patching failures due to position-independent code
patching coverage goes down with optimization

possible relative jumps
symbols missing details
jumps in function prologues
function too small (need tracing?)
code optimization

Comment about performance:
same observations as before
patching measured on patching success (function count varies)
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Benchmark
Results– instrumenting
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Benchmark
Results– instrumenting

Benchmarking on make binary

Comments about coverage:
total of 344 functions
patching failures due to position-independent code
patching coverage goes down with optimization

possible relative jumps
function too small (need tracing?)

Comment about performance:
same observations as before
fully dynamic implementation overall faster, due to patch failures
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Benchmark
Results– tracing

dynamic: fully dynamic instrumentation
pg: compiled with -pg flag (mcount call)
fentry: compiled with -finstrument-functions (cyg_prof calls)
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Benchmark
Results– tracing

fully dynamic on par with baseline, adds a small overhead (data
lookup in hashmaps)
fully dynamic as efficient as compiler-assisted pg builds
LTTng brings a consistent overhead (no buffering in libmcount)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 19 / 26



Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 20 / 26



Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 21 / 26



Work in progress
Further benchmarking

Future work on the benchmark includes:
benchmarking memory footprint of probes
testing batch patching strategies (optimize threshold)
stress testing runtime instrumentation
benchmarking tracepoint removal
benchmarking libpatch in uftrace
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Work in progress
Upstreaming

Slow progress on upstreaming: objective of the summer
fully dynamic patching
LTTng integration
indirect jump resolution (bugs to fix)
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Conclusion

benchmarks useful to identify weaknesses and prevent regressions
solutions are under development

room for improvement in current methods
more comprehensive benchmark to come
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Conclusion

Find prototypes at https://github.com/dorsal-lab/uftrace

Thank you!
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