
Benchmarking and improving performance in uftrace
Progress Report Meeting

Clément Guidi

Polytechnique Montréal

May 16, 2022

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 1 / 26

Table of contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 2 / 26

Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 3 / 26

Introduction

About uftrace: a userspace function tracer for C/C++ applications

Development efforts:
increase instrumentation coverage (new probe insertion methods)
minimize the overhead of probes
integrate with other tools (e.g. LTTng support)

Need for benchmarking tools:
to quantify performance
to identify and target performance issues
to compare the efficiency of new methods
to provide scientific measurements

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 4 / 26

Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 5 / 26

Previous work
Main contributions

LTTng integration: emit events through LTTng-UST channels
Libpatch: lightweight dynamic patching with extensive features
(external library) [Olivier Dion]
indirect jump resolution: improve patching success rate by identifying
indirect jump locations (external library) [Gabriel Pollo-Guilbert]
x86 runtime instrumentation: add and remove tracepoints at
execution using a locking mechanism and out of line execution
[Christian Harper-Cyr, Anas Balboul, Ahmad Shahnejat and Gabriel
Pollo-Guilbert]
client command: send commands to a libmcount daemon running
inside a uftrace target [Clément Guidi]

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 6 / 26

Previous work
Side work

enhance conditional compilation
build configuration flags –-without-libresolver,
–-without-libpatch, –-without-lttng and –-without-daemon

make uftrace suitable for benchmarking
add architecture dependent statistics
add –-dry-run option

follow upstream changes (rebase)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 7 / 26

Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 8 / 26

Benchmark
Structure of the benchmark

The uftrace benchmark: a tool to evaluate the performance of two
domains

instrumenting: efficiency of probe insertion
tracing: efficiency of probe execution

All in one tool for efficient deployment and reproducibility. Features:
application building (build farm with multiple versions of binaries)
instrumentation benchmarking
probe execution benchmarking
results display and archiving (work in progress)

Technical details:
build around a set of python scripts and C programs using perf events

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 9 / 26

Benchmark
Structure of the benchmark

Benchmarking uftrace on a list of ≈30 applications with mixed
characteristics:

bigger or smaller binary size
higher or lower function count
single- or multi-threaded
C or C++ code

Uftrace versions to compare:
baseline (upstream)
fully dynamic instrumentation
LTTng integration

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 10 / 26

Benchmark
Structure of the benchmark

Sample output of raw instrumentation data on AMD64:

dynamic patch stats for ’ls’
total: 478

patched: 464 (97.07%)
failed: 14 (2.92%)

total: 14
bad symbol: 0 (0.00%)

capstone: 0 (0.00%)
no detail: 0 (0.00%)

relative jump: 0 (0.00%)
relative call: 0 (0.00%)

pic: 3 (21.42%)
jump prologue: 0 (0.00%)
jump function: 11 (78.57%)
skipped: 0 (0.00%)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 11 / 26

Benchmark
Results– instrumenting

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 12 / 26

Benchmark
Results– instrumenting

Benchmarking on python binary (has REPL, useful for runtime testing)

Comments about coverage:
total of 9070 functions
patching failures due to position-independent code
patching coverage goes down with optimization

possible relative jumps
symbols missing details
function too small (need tracing?)
code optimization

fully dynamic implementation: indirect jump resolution disabled so
less coverage

Comment about performance:
fully dynamic implementation has serial synchronization step

individual patching faster
overall patching slower

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 13 / 26

Benchmark
Results– instrumenting

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 14 / 26

Benchmark
Results– instrumenting

Benchmarking on git binary

Comments about coverage:
total of 5212 functions
patching failures due to position-independent code
patching coverage goes down with optimization

possible relative jumps
symbols missing details
jumps in function prologues
function too small (need tracing?)
code optimization

Comment about performance:
same observations as before
patching measured on patching success (function count varies)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 15 / 26

Benchmark
Results– instrumenting

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 16 / 26

Benchmark
Results– instrumenting

Benchmarking on make binary

Comments about coverage:
total of 344 functions
patching failures due to position-independent code
patching coverage goes down with optimization

possible relative jumps
function too small (need tracing?)

Comment about performance:
same observations as before
fully dynamic implementation overall faster, due to patch failures

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 17 / 26

Benchmark
Results– tracing

dynamic: fully dynamic instrumentation
pg: compiled with -pg flag (mcount call)
fentry: compiled with -finstrument-functions (cyg_prof calls)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 18 / 26

Benchmark
Results– tracing

fully dynamic on par with baseline, adds a small overhead (data
lookup in hashmaps)
fully dynamic as efficient as compiler-assisted pg builds
LTTng brings a consistent overhead (no buffering in libmcount)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 19 / 26

Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 20 / 26

Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 21 / 26

Work in progress
Further benchmarking

Future work on the benchmark includes:
benchmarking memory footprint of probes
testing batch patching strategies (optimize threshold)
stress testing runtime instrumentation
benchmarking tracepoint removal
benchmarking libpatch in uftrace

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 22 / 26

Work in progress
Upstreaming

Slow progress on upstreaming: objective of the summer
fully dynamic patching
LTTng integration
indirect jump resolution (bugs to fix)

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 23 / 26

Table of Contents

1 Introduction

2 Previous work

3 Benchmark

4 Demonstration

5 Work in progress

6 Conclusion

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 24 / 26

Conclusion

benchmarks useful to identify weaknesses and prevent regressions
solutions are under development

room for improvement in current methods
more comprehensive benchmark to come

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 25 / 26

Conclusion

Find prototypes at https://github.com/dorsal-lab/uftrace

Thank you!

Clément Guidi (Polytechnique Montréal) Benchmarking uftrace May 16, 2022 26 / 26

https://github.com/dorsal-lab/uftrace

