
Message Flow Analysis for
Distributed ROS 2 Systems

Christophe Bourque Bédard

Progress Report Meeting
May 16, 2022

Polytechnique Montréal
DORSAL Laboratory

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Summary

1. Introduction

2. ROS 2

3. ROS 2 executor & scheduling

4. Message flow analysis

5. Experiments

6. Runtime overhead evaluation

7. Conclusion and future work

8. Questions

2

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Introduction

● Robotics
○ Commercial or industrial applications
○ Safety-critical applications
○ Can be distributed and connected over a network (e.g., 5G)

● Key elements
○ Message passing (publish-subscribe) and Remote Procedure Call (RPC)
○ Performance targets, real-time constraints
○ Higher-level scheduling of tasks is challenging

● Robotics software development can greatly benefit from tracing

3

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

ROS 2

● Robot Operating System 2
○ docs.ros.org/en/humble

● Open source framework and set of tools for robotics software development
○ Well-known in robotics
○ Used as Space ROS for NASA's 2023 Moon rover, VIPER 🚀🌙

● Message passing between “nodes”
○ Publish/subscribe
○ Service/action calls (~RPCs)

● Modular
○ Each node generally accomplishes a very specific task
○ Nodes are put together to perform complex tasks

● Uses Data Distribution Service (DDS) as the middleware
○ OMG standard

● Intra-process, inter-process, and distributed

4

Figure 1. ROS 2 architecture and orchestration.

https://docs.ros.org/en/humble/

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

ROS 2 executor & scheduling

● Executor
○ High-level task scheduler
○ Fetches new messages from underlying middleware
○ Executes user-provided timer and subscription callbacks

● Challenges
○ Prioritizes timers first, then subscriptions
○ Scheduling on top of the OS scheduler can be inefficient & non-deterministic

● Possible solutions
○ Other executor designs, depending on the application/requirements
○ Optimize scheduling policies and priorities

● Need to study and compare executors
○ And optimize overall application performance

5

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Trace data processing

6

● Distributed systems
○ Combine traces
○ Synchronize traces using NTP, PTP, or offline sync using Trace Compass

● Modeling ROS 2 objects and instances from trace data
○ Using pointers as unique IDs
○ Combine with PID and host ID

● Model
○ Objects: nodes, publishers, subscriptions, timers, etc.
○ Instances: message publications, timer & subscription callbacks, etc.

● Can use this pre-processed data to extract further metrics or provide other views

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Message flow analysis

● Graph of the path of a message across a distributed ROS 2 system
○ Combine multiple segments and links

● Subscription and timer callbacks

● Message publication instances

● Transport links

● Causal message links: primarily based on message data

7

Figure 2. Simplified representation of a message flow graph.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Message flow analysis (2)

8

● Transport link
○ Link between publication instance and corresponding subscription callback

● Includes more than just network time
○ Delay between message reception and callback execution

● One-to-many link
○ 1 publisher → N subscriptions

Figure 3. Transport link from one host to another host.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Message flow analysis (3)

9

● Direct causal link
○ Message publication during subscription callback for message

● Can be inferred automatically
○ No need for additional information or instrumentation

Figure 4. Direct causal link.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Message flow analysis (4)

10

● Indirect causal link: asynchronous
● Requires additional user-level annotation

○ Collected using simple tracepoints

Figure 5. Indirect causal link: timer callback uses last received messages.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Message flow analysis (5)

11

● Message flow graph

● Can extract
○ End-to-end latency
○ Intermediate latencies

● Can visually understand execution
○ Find bottlenecks

Figure 6. Message flow analysis result example.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Executor state

12

● Green/orange: executing/waiting for new messages or timer trigger

● Some executor instances are busier than others

● Causes message processing delays, leads to bottlenecks

● Possible solutions: multi-threaded executor, thread priorities

Figure 7. View showing state of executor instances (threads) over time.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Runtime overhead evaluation

13

● Extrapolating from previous overhead results
○ Should be very small

● Execute pipeline of nodes, without & with tracing
○ Total end-to-end latency of ~260 ms

● Overhead is the difference
○ Difference of means : 0.1597 ms
○ Difference of medians: 0.0521 ms

● Likely challenging to measure on more complex systems

Figure 8. End-to-end latency comparison.

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Conclusion and future work

14

● Tracking messages across nodes
○ Building a message flow graph using this information
○ Using user-level annotation to find more complex indirect causal links

● Computing end-to-end latency

● Study and improve performance of an application and ROS 2 itself

● Future work
○ Resolve wait dependencies resulting from asynchronous causal links
○ Critical path analysis at the ROS 2 level
○ Augment graph with other information: application-level or kernel-level

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Questions?

15

● christophe.bedard@polymtl.ca

● Links
○ docs.ros.org/en/humble
○ gitlab.com/ros-tracing/ros2_tracing
○ ROS 2 message flow paper (in review)

■ Message Flow Analysis with Complex Causal Links for Distributed ROS 2 Systems
■ arxiv.org/abs/2204.10208

○ ros2_tracing paper in IEEE Robotics and Automation Letters
■ ros2_tracing: Multipurpose Low-Overhead Framework for Real-Time Tracing of ROS 2
■ ieeexplore.ieee.org/document/9772997
■ arxiv.org/abs/2201.00393

● Other relevant links
○ Presentation at a ROS conference in 2021

■ vimeo.com/652633418 (slides)

mailto:christophe.bedard@polymtl.ca
https://docs.ros.org/en/humble/
https://gitlab.com/ros-tracing/ros2_tracing
https://arxiv.org/abs/2204.10208
https://ieeexplore.ieee.org/document/9772997
https://arxiv.org/abs/2201.00393
https://vimeo.com/652633418
https://gitlab.com/ros-tracing/ros2_tracing/-/raw/master/doc/2021-10-20_ROS_World_2021_-_Tracing_ROS_2_with_ros2_tracing.pdf

Message Flow Analysis for Distributed ROS 2 Systems - Christophe Bourque Bédard

Tracing ROS 2

16

● Tools part of the ROS 2 core
○ gitlab.com/ros-tracing/ros2_tracing

● LTTng instrumentation in ROS 2
○ Message publication & reception
○ Subscription & timer callbacks
○ Etc.
○ Constant number of trace events, constant overhead (?)

● And some LTTng instrumentation for a DDS implementation

● Tracing tools closely integrated with ROS 2
○ ROS 2 CLI tools
○ ROS 2 launch/orchestration system

Figure 9. ROS 2 architecture and orchestration.

https://gitlab.com/ros-tracing/ros2_tracing

