
COST
AWARE

TRACING

Amir Haghshenas
Michel Dagenais

Naser Ezzati-Jivan
Summer 2022

CONTENT
TABLE

• Previously on cost aware
tracing

• Definition of cost

• How to calculate the cost

• How to control the cost

• Future work

2

WHAT IS COST AWARE
TRACING

• Tracing can generate large amount of data in
short period of time

• Cost aware tracing is to adjust tracing based on
a defined budget

• It can be most helpful for devices with limited
resources (IoT devices)

• Only a limited amount of overhead on the
application is acceptable (budget)

3

WHAT IS COST

Cost function Description Purpose

Time Program Execution delay added by

tracing

Real time applications have very

limited time budget

Memory Capacity to store all the generated

data

Limited memory applications

cannot store all the data

Detection delay Time between execution and

recording the event

Some events should be captured

as fast as possible

Concurrent Execution Effect of tracing on concurrent

behavior of multi-threaded

applications

Program execution is not the

same on different threads

4

CALCULATION OF COST

5

FIRST STOP, FTRACE

• A kernel benchmark was developed to analyze the overhead of a trace point
with different payloads.

• Step 1: developed a series of trace points in Ftrace with various payloads
(from 4b to 2kb)

• Step 2: developed a simple kernel module to call the trace points in a loop
and calculated the overhead caused by each trace point when tracing by
Ftrace.

6

NEXT STOP, LTTNG

• Adding LTTng layer to Ftrace trace points.

• Step 1: added trace point definitions for existing Ftrace trace points in
LTTng.

• Step 2: provided the required probe in LTTng modules for the trace points.

• Step 3: tested the effect of different payloads under various conditions.

7

RESULTS
8

COST
CALCULATION
IN USER SPACE

• A benchmark was developed to calculate
trace points with similar payloads as
the kernel for user space in C.

• Function tracing a simple C application
and calculating the overhead of each
trace point at the start and end of each
function.

• Results require a bit of adjustment to be
presented.

9

COST
CONTROL

• There are two entities required for
solving such a problem

• Cost function vs objective function

• Cost functions related to time:
• Contribution of each trace point (each

function trace point) to the execution time

• Objective function related to time:
• NO specific objective (very first step)

• Variation in the number of times each trace
point is called

• Detecting a trend in the number of times
they are called.

• Detecting trend compared to normal
behavior

• Possibility of considering user intention

1 0

PRO T O T Y PI NG
T H E

S O LUT I O N

A simple prototype is developed to analyze the overhead

caused by tracing

The required data is gathered

from the user space
benchmark

Information about the trace point

are collected

An analyzer is developed to solve the optimization

problem

Goal is to just automatically suggest candidates to be

disable for the next round of tracing to satisfy the time
budget

Select the minimum cost until the time budget is satisfied.

1 1

RESULT

1 2

NEXT STEP

1 3

Using LTTng rotation, modify

tracing for the next rotation

Adding objective functions

such as variation in the

number of calls or detecting a

trend in the number of calls

More complex algorithms to

learn the normal behavior of

the system and decide

accordingly

Including user intention and

adjust tracing based on them.

REFERENCES
• Gebai, M., & Dagenais, M. R. (2018). Survey and analysis of kernel and userspace tracers on linux: Design,

implementation, and overhead. ACM Computing Surveys (CSUR), 51(2), 1-33.

• Orton, I., & Mycroft, A. (2021, September). Tracing and its observer effect on concurrency. In Proceedings of the 18th
ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes (pp. 88-96).

• S. Fischmeister and P. Lam. Time-AwareInstrumentation of Embedded Software.IEEETransactions on
Industrial Informatics, 6(4):652–663,Nov 2010.

• H. Kashif, P. Arafa, and S. Fischmeister. INSTEP: AStatic Instrumentation Framework for PreservingExtra-
Functional Properties. InIEEE 19thInternational Conference on Embedded and Real-TimeComputing Systems and
Applications, RTCSA’13,pages 257–266, Aug 2013.

• P. Arafa, H. Kashif, and S. Fischmeister. DIME:Time-aware Dynamic Binary Instrumentation UsingRate-based
Resource Allocation. InProceedings of theEleventh ACM International Conference on EmbeddedSoftware,
EMSOFT’13, pages 25:1–25:10. ACM, 2013

1 4

THANK YOU

1 5

amir.haghshenas@polymtl.ca

