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Software Bugs

• It is almost impossible to ship a
bug-less software.

• Software may crash due to bugs.
• Error reporting systems were

created to gather crash reports
anonymously.

Mozilla Crash Reporter [1]
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Duplicate Bug reports

• Popular applications receive a high volume of bug reports.
• ex. Mozilla Core:

• Average of 3 361.15 bug reports submitted per month [5].
• 24.70% of the reports are duplicates [5].

• It takes, on average, 17 days less to fix bugs with crash reports
grouped together [6].
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Methods used

• Stacktrace Alignment Based [2–4; 13–15; 17].
• Finds a candidate stacktrace that requires the least amount of

edits to turn into a query stacktrace.
• TF-IDF and Graph Based [7; 8; 10; 11; 16; 18].

• Uses term frequency and function call interaction to find best
candidate.
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S3M: Siamese Stack (Trace) Similarity Measure [9]

• Siamese network and function name trimming.
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S3M trimming

• Function names trimmed :
• trim = 0 : com.company.Class1.method2
• trim = 1 : com.company.Class1
• trim = 2 : com.company
• trim = 3 : com
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Training

• Training is done by ranking the similarity between good and bad
candidates in regards to the query stack trace.

• Good candidates are picked at random from stack traces in the
same group.

• Bad candidates are picked from the 50 most similar stacktraces
not in the group based on TF-IDF [12].
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Lack of ground truth

• Programmers use their knowledge of the code base to group
stack together.

• We only have access to the grouped stacks.
• We don’t know why a specific report is in a certain group.
• We can only provide a approximate sense of direction for

training.
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Similarity must be a complex function

• Embedding networks generated through training become
intricate.

• Computing similarity between embeddings cannot be done using
simple distance functions (cosine or euclidean distance).

• Blocks the use of embedding databases (eg. FAISS ) and
embedding space search algorithms.
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Separation between training and use case

• The model training aims to rank better the all good reports
compared to bad reports.

• Real world usage relies on the best suggestion.
• The separation between the goals leads to worst recall rates as

training progresses.
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Evolving Dataset

• After a set number of epochs, bad candidates are picked from
the top 50 wrong predictions using the model.

• This mitigates the overfitting of the model and gives better
results.
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Better recursion removal

• Multi-pass recursion removal.
• Can remove nested recursions.
• Can simplify AAABCBCBBBBC → ABC.
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Comparison Against State of the Art

• Better results than state of the art.

Using Neural Networks for Stacktrace Deduplication – Adem Aber Aouni 13/15 – dorsal.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Motivation Issues Solutions Conclusion

Next Steps

• Explore non-supervised machine learning methods.
• Mix clustering methods with neural networks.
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Questions

?
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