Low-overhead trace collection and profiling on GPU compute kernels

Sébastien Darche <sebastien.darche *at* polymtl.ca> June 1st, 2023

Dorsal - Polytechnique Montréal

- GPUs have become ubiquitous in many fields, notably HPC and machine learning
- Multiple programming models have been developped, both low and high level
 - CUDA, HIP, OpenCL
 - SYCL, OpenMP, OpenACC
- GPU programming remains a difficult task

- Tooling is maturing, mostly for profiling from the host point of view
 - ROC-profiler
 - Intel VTune
 - HPCToolkit¹, ...
- Most tools rely on hardware performance counters and/or PC sampling
- Current work on device instrumentation
- Little consideration for instrumentation noise (runtime overhead, register pressure, ...)

¹K. Zhou, L. Adhianto, J. Anderson, et al., "Measurement and analysis of gpu-accelerated applications with hpctoolkit," *Parallel Computing*, vol. 108, p. 102837, 2021.

Shortcomings of current work

- CUDAAdvisor² proposes LLVM-based instrumentation of compute kernels. PPT-GPU³ is similar, with dynamic instrumentation.
 - little consideration for overhead (costly kernel-wide atomic operations)
 - + Overhead ranging from \sim 10 \times to 120 \times
- CUDA Flux⁴ introduces CFG instrumentation combined with static analysis
 - only one thread is instrumented, does not support divergence
 - Overhead ranging from $\sim 1 \times$ to 151 \times (avg. 13.2 $\times)$

²D. Shen, S. L. Song, A. Li, et al., "Cudaadvisor: Llvm-based runtime profiling for modern gpus," in *Proceedings of the 2018 International Symposium on Code Generation and Optimization*, 2018.

³Y. Arafa, A.-H. Badawy, A. ElWazir, et al., "Hybrid, scalable, trace-driven performance modeling of gpgpus," in *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, 2021, pp. 1–15.

⁴L. Braun and H. Fröning, "Cuda flux: A lightweight instruction profiler for cuda applications," in 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, 2019.

We propose a method for instrumenting kernel execution on the GPU with a minimal runtime overhead.

- Relies on a set of LLVM passes for the host and device IR
- Multi-stage performance analysis
 - CFG counters to retrieve the control flow of the program
 - Event collection for precise analysis
 - Optionally, original kernel for timing data
- Knowledge of the control flow allows for pre-allocation of the buffers
- Deterministic execution is ensured by reverting memory

 $\bullet\,$ Instrumentation tested against the Rodinia benchmark 5

	Mean overhead	Median overhead
Counters instr. (kernel)	2.3×	1.32×
Tracing instr. (kernel)	3.23×	2.34×
Program execution time	4.19×	1.68×

- Good improvements over state of the art
- Significant outliers (large kernels are challenging!)

⁵S. Che, M. Boyer, J. Meng, *et al.*, "Rodinia: A benchmark suite for heterogeneous computing," in 2009 IEEE International Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

- Mostly focused on comprehensive exam (offically a PhD candidate!)
- Strong connection with partners (AMD, ANL, LLNL). Expressed interest in precise timing information on kernels.
- Article on first research track 80% ready, needs rework
- Further reducing overhead through scalar instructions, fairly reliable method

Figure 1: AMD GCN Compute unit⁶

- A special set of instructions and registers are shared amongst all threads in a wavefront (SALU, SGPRs)
- Most tracepoints are at wavefront-scope and thus could benefit from scalar insts. instead of a vector mask
- Requires handwritten assembly routines, not "LLVM IR friendly"

⁶Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

- CFG counters can generate the total number of FLOPs
- Original run allows us to compute the Arithmetic Intensity (FLOPs/s)
 - A quick roofline plot shows we're below theoretical maximum performance
- We decide to collect more data for analysis with the event collection pass
 - Precise thread divergence
 - If needed, obtain accessed addresses for locality analysis

State system analysis

🗉 State System Explorer 🗙 🗖 Dese		GPU Cumulated	waves view 🔳 GPL		Progress					
State System / Attribute	19:28:44.999400	19:28:44.999410	19:28:44.999420	19:28:44.999430	19:28:44.999440	19:28:44.999450	19:28:44.999460	19:28:44.999470	19:28:44.999480	19:28:44.999490
v org.eclipse.tracecompass.incuba										
T waves										
								0x8		
								0x6		
▶2	1	1	1			1	1	0x8	1	
								0x4		
		-		0x5		~				-
						0.09		015		
								0x5		
► 8 E					0xS					
▶ 9 —	0x8	0x5								6
► 10		0x9								
			b6							
► 12		1					0x9			
▶ 13								0x0		
	1	1	1			1	1	0x8	i -	
▶ 15								0x0		
► 16 ► 17								0x4		
▶ 17 ▶ 18							0x5	0.004		
► 18 ► 19							0.5	0.4		
≥ 19 ≥ 20		20						0.04		019
► 21		~		And Total State				0.9		
▶ 22		1			-	1		0x4		
▶ 23		1						0x8		

Which basic block each wavefront is executing. Kernel performs a lookup on an open-addressing hashmap.

Precise timing information

Identify timing information in a "hotspot" of the code. How long the lookup takes, as a function of block geometry.

Conclusion and future work

- Encouraging results and feedback
- Runtime event collector on the GPU is on the way
 - would eliminate the need for the first CFG run
 - particularily challenging to implement!
- Available freely on Github, feedback and/or use cases are more than welcome

