
Low-overhead trace collection and profiling
on GPU compute kernels

Sébastien Darche <sebastien.darche at polymtl.ca>

June 1st, 2023

Dorsal - Polytechnique Montréal

1



Introduction

• GPUs have become ubiquitous in many fields, notably HPC and
machine learning

• Multiple programming models have been developped, both low and
high level

• CUDA, HIP, OpenCL
• SYCL, OpenMP, OpenACC

• GPU programming remains a difficult task

2



Motivation

• Tooling is maturing, mostly for profiling from the host point of view
• ROC-profiler
• Intel VTune
• HPCToolkit1, ...

• Most tools rely on hardware performance counters and/or PC
sampling

• Current work on device instrumentation

• Little consideration for instrumentation noise (runtime overhead,
register pressure, . . . )

1K. Zhou, L. Adhianto, J. Anderson, et al., “Measurement and analysis of gpu-accelerated applications
with hpctoolkit,” Parallel Computing, vol. 108, p. 102 837, 2021.

3



Shortcomings of current work

• CUDAAdvisor2 proposes LLVM-based instrumentation of compute
kernels. PPT-GPU3 is similar, with dynamic instrumentation.

• little consideration for overhead (costly kernel-wide atomic
operations)

• Overhead ranging from ∼ 10× to 120×

• CUDA Flux4 introduces CFG instrumentation combined with static
analysis

• only one thread is instrumented, does not support divergence
• Overhead ranging from ∼ 1× to 151× (avg. 13.2×)

2D. Shen, S. L. Song, A. Li, et al., “Cudaadvisor: Llvm-based runtime profiling for modern gpus,” in
Proceedings of the 2018 International Symposium on Code Generation and Optimization, 2018.
3Y. Arafa, A.-H. Badawy, A. ElWazir, et al., “Hybrid, scalable, trace-driven performance modeling of
gpgpus,” in Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–15.
4L. Braun and H. Fröning, “Cuda flux: A lightweight instruction profiler for cuda applications,” in 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, 2019.

4



Method

We propose a method for instrumenting kernel execution on the GPU
with a minimal runtime overhead.

• Relies on a set of LLVM passes for the host and device IR

• Multi-stage performance analysis
• CFG counters to retrieve the control flow of the program
• Event collection for precise analysis
• Optionally, original kernel for timing data

• Knowledge of the control flow allows for pre-allocation of the buffers

• Deterministic execution is ensured by reverting memory

5



Results

• Instrumentation tested against the Rodinia benchmark5

Mean overhead Median overhead
Counters instr. (kernel) 2.3× 1.32×
Tracing instr. (kernel) 3.23× 2.34×
Program execution time 4.19× 1.68×

• Good improvements over state of the art

• Significant outliers (large kernels are challenging!)

5S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite for heterogeneous computing,” in
2009 IEEE International Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

6



What’s new

• Mostly focused on comprehensive exam (offically a PhD candidate!)

• Strong connection with partners (AMD, ANL, LLNL). Expressed
interest in precise timing information on kernels.

• Article on first research track 80% ready, needs rework

• Further reducing overhead through scalar instructions, fairly reliable
method

7



Scalar instructions

Figure 1: AMD GCN Compute unit6

• A special set of instructions and registers are shared amongst all
threads in a wavefront (SALU, SGPRs)

• Most tracepoints are at wavefront-scope and thus could benefit from
scalar insts. instead of a vector mask

• Requires handwritten assembly routines, not "LLVM IR friendly"

6Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

8



Quick example

• CFG counters can generate the total number of FLOPs

• Original run allows us to compute the Arithmetic Intensity
(FLOPs/s)

• A quick roofline plot shows we’re below theoretical maximum
performance

• We decide to collect more data for analysis with the event collection
pass

• Precise thread divergence
• If needed, obtain accessed addresses for locality analysis

9



State system analysis

Which basic block each wavefront is executing. Kernel performs a lookup
on an open-addressing hashmap.

10



Precise timing information

103 104

BBlock 3 duration (ns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
De

ns
ity

Geometry
512 threads / block
256 threads / block
128 threads / block
64 threads / block

Identify timing information in a "hotspot" of the code. How long the
lookup takes, as a function of block geometry.

11



Conclusion and future work

• Encouraging results and feedback

• Runtime event collector on the GPU is on the way
• would eliminate the need for the first CFG run
• particularily challenging to implement!

• Available freely on Github, feedback and/or use cases are more than
welcome

12


