Automated Phase
Detection for

Adaptive Tracing of
Software Systems

Madeline Janecek
mjl7th@brocku.ca

Supervisor: Naser Ezzati-Jivan

Department of Computer Science

Brock University

Problem Statement: Adaptive Tracing

Collecting all possible events:
* Results in extremely large amounts of data
* Introduces unnecessary runtime overhead
* Increases the complexity of the data’s analysis

How can we intelligently enable events to skip over redundant
information, and only record the most novel aspects of a software’s
execution?

Application Phases

* Application phases are intervals within a time >
’ . Ly e s t
software’s execution that exhibit similar .
behaviours and resource requirements o x| o | | x| x| x
* Phase-based approaches have been J
used in the past to enhance various Phase Classifier
tasks, like just-in-time compilation, ! 7 g
thread-to-core assignment, resource
. P1 P2 P2 P2 P1 P3 P3
allocation, and so forth

By identifying a software system’s common phases, we
can conversely identify its most uncommon behaviours
and learn to predict them

Method Overview

We propose a phase-based adaptive tracing solution that follows three
main stages:

1) Phase Identification

 Employ clustering techniques to identify the software system’s main
execution phases, as well as points of interest

2) Phase Prediction

* Train a prediction model to predict what phase will occur next, and enabled
more extensive tracing if it anticipates a point of interest

3) Model Adaptation

* Check if the prediction results align with what actually happens, and if
necessary, update the model

1) Phase |dentification

* Collect events using LTTng

* |tis assumed that most events are exhibiting
normal behaviour

.. . . l.5‘1 €r€3€4€5€5€7€3€9€10€12€13€14€15 ...
e Partition events into non-overlappmg I || | I

windows, where each window covers t
amount of time

. Data Preprocessing

* These windows are processed to: L :)
1. ldentify the software’s phases, including O
outlying behaviours of interest y I)

2. Represent the execution as a sequence of

. P1 P2 P3 P4 P5 P ---
phases for the Phase Prediction stage 1F2F3 Ao o

1) Phase Identification — Data Preprocessing

window 1 window 2

For each wmglow, we generate two different perspectives of e eyes0per e 61 emeroger ..
the software’s execution: | | |
1) Software Behaviour Signatures v
. . . Software Behaviour Resource Utilization
 How many times each system call was invoked during the Signature Signature
execution window o 1] .. 0 1
* Under identical circumstances, identical code will likely evoke a S0 | &1 | . | [Network [Fiie System] ..
similar set of kernel events
* Used infer what code was running during the window wlr vjr
2) Resource Utilization Signatures Bl T
* For how much time the thread used different resources to ; ‘1) ;

complete its task
* Used to infer the software’s performance, workload, etc.

1 0 1
10 | 83 | .. 0 | 64

1) Phase Identification — Data Clustering

We use the two vector formats to group together windows with similar
execution behaviours and resource requirements

* In other words, each cluster can be thought of as an application phase

We use Self-Organizing Maps (SOM) in a two-stage clustering approach

 SOMs are a type of artificial neural network (ANN) that rely on competitive learning
to gradually learn the underlying data distribution in an unsupervised manner

* SOMs provide several advantages:
* Robust to noise
* Faster than other clustering algorithms (e.g. DBSCAN) when given large datasets
e Capable of identifying clusters with varying shapes and densities

1) Phase Identification — Data Clustering

The data clustering procedure
consists of:

Stage 1) Identify windows
performing similar tasks by
clustering the Software Behaviour
Signatures

Stage 2) Identify software phases
by taking each cluster from stage 1
and clustering its windows’
Resource Utilization Signatures

The clusters from stage 2 make up
the software system’s defined
phases

1) Phase ldentification — Outlier Identification

Outlier windows, which are the
desired target for tracing, are
identified in two ways:

1. Clusters that are too small (e.g.
< 0.1% of the data) are marked as
outliers

2. The x% most outlying windows
from each second stage
clustering are marked as outliers

* Higher values of x lead to more
detailed traces

2) Phase Prediction

The phase sequences are given to an LSTM model, which is trained to predict whether
an upcoming phase will be an outlier

* |f an outlying window is anticipated, more tracepoints are enabled

* If a window within a phase is anticipated, the additional tracepoints are disabled

Events €1€263€4E565E7 €53 €961 €11 €12€13 €14 E15B15 €197 €15 -
| 1l |1 I 1 | | | 1 |
] I T r T T
Phases a b a outlier C ?

| |
:]
LSTM

10

3) Model Adaption

To account for dynamic behaviours, we constantly compare a window’s predicted
label (outlier, or one of the phases) with its assigned label from the SOM models
We define three possible outcomes:

1. True Prediction: The window’s predicted label matches its assigned label

2. Incorrect: The window is predicted to be an outlier, but it is assigned to a phase by the SOM
models

3. Unknown: The window is predicted to be in a phase, but it is determined to be an outlier by
the SOM models

If the number of incorrect windows surpasses a threshold, the prediction model must
be retrained

If the number of unknown windows surpasses a threshold, the clusters must be
redefined using updated data

11

Preliminary Results

Phase Prediction

Experimental Setup:

e System calls collected with LTTng on an
Apache Web Server

When it comes to determining if a
window will be an outlier, the LSTM
model achieves a:

* 92.035-92.362% accuracy
* 78.568-80.308% precision
* 64.887-67.074% recall

95

90

85

80

75

70

65

60

55

Phase Prediction Performance

100

200 300 400 500
Sequence Length

12

Future Work

* Method is showing promising results for adaptive tracing

* We are actively looking for more specific use cases to further test its
potential

13

Selected References

[1] T. Mizouchi, K. Shimari, T. Ishio, and K. Inoue, “Padla: A dynamic log level adapter using online phase detection,” 05 2019, pp. 135-138.

[2] E. Ates, L. Sturmann, M. Toslali, O. Krieger, R. Megginson, A. K. Coskun, and R. R. Sambasivan, “An automated, cross-layer
instrumentation framework for diagnosing performance problems in distributed applications,” in Proceedings of the ACM Symposium on
Cloud Computing, ser. SoCC’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 165-170. [Online]. Available:
https://doi.org/10.1145/3357223.3362704

[3] M.-C. Chiu and E. Moss, “Run-time program-specific phase prediction for python programs,” in Proceedings of the 15th International
Conference on Managed Languages amp; Runtimes, ser. ManLang’18. New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3237009.3237011

[4] M.-C. Chiu, B. Marlin, and E. Moss, “Real-time program-specific phase change detection for java programs,” in Proceedings of the 13th
International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools, ser.
PPPJ’16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.1145/2972206.2972221

U

[5] E. S. Alcorta and A. Gerstlauer, “Learning-based workload phase classification and prediction using performance monitoring counters,’
in 2021 ACM/IEEE 3@ Workshop on Machine Learning for CAD (MLCAD), 2021, pp. 1-6.

[6] E. S. A. Lozano and A. Gerstlauer, “Learning-based phase-aware multi-core cpu workload forecasting,” ACM Trans. Des. Autom.
Electron. Syst., vol. 28, no. 2, dec 2022. [Online]. Available: https://doi.org/10.1145/3564929

[7] K. Criswell and T. Adegbija, “A survey of phase classification techniques for characterizing variable application behavior,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 1, p. 224-236, jan 2020. [Online].Available: https://doi.org/10.1109/TPDS.2019.2929781

14

Thank you!

Madeline Janecek
mjl7th@brocku.ca

Supervisor: Naser Ezzati-Jivan

Department of Computer Science

Brock University

Brock

University

	Slide 1: Automated Phase Detection for Adaptive Tracing of Software Systems
	Slide 2: Problem Statement: Adaptive Tracing
	Slide 3: Application Phases
	Slide 4: Method Overview
	Slide 5: 1) Phase Identification
	Slide 6: 1) Phase Identification – Data Preprocessing
	Slide 7: 1) Phase Identification – Data Clustering
	Slide 8: 1) Phase Identification – Data Clustering
	Slide 9: 1) Phase Identification – Outlier Identification
	Slide 10: 2) Phase Prediction
	Slide 11: 3) Model Adaption
	Slide 12: Preliminary Results Phase Prediction
	Slide 13: Future Work
	Slide 14: Selected References
	Slide 15: Thank you!

