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Problem Statement: Adaptive Tracing

Collecting all possible events:
* Results in extremely large amounts of data
* Introduces unnecessary runtime overhead
* Increases the complexity of the data’s analysis

How can we intelligently enable events to skip over redundant
information, and only record the most novel aspects of a software’s
execution?



Application Phases
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By identifying a software system’s common phases, we
can conversely identify its most uncommon behaviours
and learn to predict them



Method Overview

We propose a phase-based adaptive tracing solution that follows three
main stages:

1) Phase Identification

 Employ clustering techniques to identify the software system’s main
execution phases, as well as points of interest

2) Phase Prediction

* Train a prediction model to predict what phase will occur next, and enabled
more extensive tracing if it anticipates a point of interest

3) Model Adaptation

* Check if the prediction results align with what actually happens, and if
necessary, update the model



1) Phase |dentification

* Collect events using LTTng

* |tis assumed that most events are exhibiting
normal behaviour
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. Data Preprocessing

* These windows are processed to: L : )
1. ldentify the software’s phases, including O
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2. Represent the execution as a sequence of
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1) Phase Identification — Data Preprocessing
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1) Phase Identification — Data Clustering

We use the two vector formats to group together windows with similar
execution behaviours and resource requirements

* In other words, each cluster can be thought of as an application phase

We use Self-Organizing Maps (SOM) in a two-stage clustering approach

 SOMs are a type of artificial neural network (ANN) that rely on competitive learning
to gradually learn the underlying data distribution in an unsupervised manner

* SOMs provide several advantages:
* Robust to noise
* Faster than other clustering algorithms (e.g. DBSCAN) when given large datasets
e Capable of identifying clusters with varying shapes and densities



1) Phase Identification — Data Clustering

The data clustering procedure
consists of:

Stage 1) Identify windows
performing similar tasks by
clustering the Software Behaviour
Signatures

Stage 2) Identify software phases
by taking each cluster from stage 1
and clustering its windows’
Resource Utilization Signatures

The clusters from stage 2 make up
the software system’s defined
phases




1) Phase ldentification — Outlier Identification

Outlier windows, which are the
desired target for tracing, are
identified in two ways:

1. Clusters that are too small (e.g.
< 0.1% of the data) are marked as
outliers

2. The x% most outlying windows
from each second stage
clustering are marked as outliers

* Higher values of x lead to more
detailed traces




2) Phase Prediction

The phase sequences are given to an LSTM model, which is trained to predict whether
an upcoming phase will be an outlier

* |f an outlying window is anticipated, more tracepoints are enabled

* If a window within a phase is anticipated, the additional tracepoints are disabled
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3) Model Adaption

To account for dynamic behaviours, we constantly compare a window’s predicted
label (outlier, or one of the phases) with its assigned label from the SOM models
We define three possible outcomes:

1.  True Prediction: The window’s predicted label matches its assigned label

2. Incorrect: The window is predicted to be an outlier, but it is assigned to a phase by the SOM
models

3. Unknown: The window is predicted to be in a phase, but it is determined to be an outlier by
the SOM models

If the number of incorrect windows surpasses a threshold, the prediction model must
be retrained

If the number of unknown windows surpasses a threshold, the clusters must be
redefined using updated data
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Preliminary Results

Phase Prediction

Experimental Setup:

e System calls collected with LTTng on an
Apache Web Server

When it comes to determining if a
window will be an outlier, the LSTM
model achieves a:

* 92.035-92.362% accuracy
* 78.568-80.308% precision
* 64.887-67.074% recall
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Future Work

* Method is showing promising results for adaptive tracing

* We are actively looking for more specific use cases to further test its
potential
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