
Automated Phase
Detection for
Adaptive Tracing of
Software Systems

Madeline Janecek

mj17th@brocku.ca

Supervisor: Naser Ezzati-Jivan

Department of Computer Science

Brock University

1

Problem Statement: Adaptive Tracing

Collecting all possible events:

• Results in extremely large amounts of data

• Introduces unnecessary runtime overhead

• Increases the complexity of the data’s analysis

How can we intelligently enable events to skip over redundant
information, and only record the most novel aspects of a software’s

execution?

2

Application Phases

• Application phases are intervals within a
software’s execution that exhibit similar
behaviours and resource requirements

• Phase-based approaches have been
used in the past to enhance various
tasks, like just-in-time compilation,
thread-to-core assignment, resource
allocation, and so forth

3

By identifying a software system’s common phases, we
can conversely identify its most uncommon behaviours

and learn to predict them

Method Overview

We propose a phase-based adaptive tracing solution that follows three
main stages:

1) Phase Identification
• Employ clustering techniques to identify the software system’s main

execution phases, as well as points of interest

2) Phase Prediction
• Train a prediction model to predict what phase will occur next, and enabled

more extensive tracing if it anticipates a point of interest

3) Model Adaptation
• Check if the prediction results align with what actually happens, and if

necessary, update the model

4

1) Phase Identification

• Collect events using LTTng
• It is assumed that most events are exhibiting

normal behaviour

• Partition events into non-overlapping
windows, where each window covers t
amount of time

• These windows are processed to:
1. Identify the software’s phases, including

outlying behaviours of interest

2. Represent the execution as a sequence of
phases for the Phase Prediction stage

5

6

For each window, we generate two different perspectives of
the software’s execution:

1) Software Behaviour Signatures

• How many times each system call was invoked during the
execution window
• Under identical circumstances, identical code will likely evoke a

similar set of kernel events
• Used infer what code was running during the window

2) Resource Utilization Signatures

• For how much time the thread used different resources to
complete its task
• Used to infer the software’s performance, workload, etc.

1) Phase Identification – Data Preprocessing

1) Phase Identification – Data Clustering

7

We use the two vector formats to group together windows with similar
execution behaviours and resource requirements

• In other words, each cluster can be thought of as an application phase

We use Self-Organizing Maps (SOM) in a two-stage clustering approach

• SOMs are a type of artificial neural network (ANN) that rely on competitive learning
to gradually learn the underlying data distribution in an unsupervised manner

• SOMs provide several advantages:
• Robust to noise

• Faster than other clustering algorithms (e.g. DBSCAN) when given large datasets

• Capable of identifying clusters with varying shapes and densities

1) Phase Identification – Data Clustering

The data clustering procedure
consists of:

Stage 1) Identify windows
performing similar tasks by
clustering the Software Behaviour
Signatures

Stage 2) Identify software phases
by taking each cluster from stage 1
and clustering its windows’
Resource Utilization Signatures

The clusters from stage 2 make up
the software system’s defined
phases

8

Stage 2

Stage 1

1) Phase Identification – Outlier Identification

Outlier windows, which are the
desired target for tracing, are
identified in two ways:

1. Clusters that are too small (e.g.
< 0.1% of the data) are marked as
outliers

2. The x% most outlying windows
from each second stage
clustering are marked as outliers
• Higher values of x lead to more

detailed traces

9

x=10

x=20

x=30

2) Phase Prediction

10

The phase sequences are given to an LSTM model, which is trained to predict whether
an upcoming phase will be an outlier

• If an outlying window is anticipated, more tracepoints are enabled

• If a window within a phase is anticipated, the additional tracepoints are disabled

3) Model Adaption

11

To account for dynamic behaviours, we constantly compare a window’s predicted
label (outlier, or one of the phases) with its assigned label from the SOM models

We define three possible outcomes:
1. True Prediction: The window’s predicted label matches its assigned label

2. Incorrect: The window is predicted to be an outlier, but it is assigned to a phase by the SOM
models

3. Unknown: The window is predicted to be in a phase, but it is determined to be an outlier by
the SOM models

If the number of incorrect windows surpasses a threshold, the prediction model must
be retrained

If the number of unknown windows surpasses a threshold, the clusters must be
redefined using updated data

Preliminary Results

Phase Prediction

12

55

60

65

70

75

80

85

90

95

100 200 300 400 500

Sequence Length

Phase Prediction Performance

Accuracy Precision Recall

Experimental Setup:

• System calls collected with LTTng on an
Apache Web Server

When it comes to determining if a
window will be an outlier, the LSTM
model achieves a:

• 92.035-92.362% accuracy

• 78.568-80.308% precision

• 64.887-67.074% recall

Future Work

13

• Method is showing promising results for adaptive tracing

• We are actively looking for more specific use cases to further test its
potential

Selected References

14

[1] T. Mizouchi, K. Shimari, T. Ishio, and K. Inoue, “Padla: A dynamic log level adapter using online phase detection,” 05 2019, pp. 135–138.

[2] E. Ates, L. Sturmann, M. Toslali, O. Krieger, R. Megginson, A. K. Coskun, and R. R. Sambasivan, “An automated, cross-layer
instrumentation framework for diagnosing performance problems in distributed applications,” in Proceedings of the ACM Symposium on
Cloud Computing, ser. SoCC ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 165–170. [Online]. Available:
https://doi.org/10.1145/3357223.3362704

[3] M.-C. Chiu and E. Moss, “Run-time program-specific phase prediction for python programs,” in Proceedings of the 15th International
Conference on Managed Languages amp; Runtimes, ser. ManLang’18. New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3237009.3237011

[4] M.-C. Chiu, B. Marlin, and E. Moss, “Real-time program-specific phase change detection for java programs,” in Proceedings of the 13th
International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools, ser.
PPPJ ’16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.1145/2972206.2972221

[5] E. S. Alcorta and A. Gerstlauer, “Learning-based workload phase classification and prediction using performance monitoring counters,”
in 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), 2021, pp. 1–6.

[6] E. S. A. Lozano and A. Gerstlauer, “Learning-based phase-aware multi-core cpu workload forecasting,” ACM Trans. Des. Autom.
Electron. Syst., vol. 28, no. 2, dec 2022. [Online]. Available: https://doi.org/10.1145/3564929

[7] K. Criswell and T. Adegbija, “A survey of phase classification techniques for characterizing variable application behavior,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 1, p. 224–236, jan 2020. [Online].Available: https://doi.org/10.1109/TPDS.2019.2929781

Thank you!

Madeline Janecek

mj17th@brocku.ca

Supervisor: Naser Ezzati-Jivan

Department of Computer Science

Brock University

15

	Slide 1: Automated Phase Detection for Adaptive Tracing of Software Systems
	Slide 2: Problem Statement: Adaptive Tracing
	Slide 3: Application Phases
	Slide 4: Method Overview
	Slide 5: 1) Phase Identification
	Slide 6: 1) Phase Identification – Data Preprocessing
	Slide 7: 1) Phase Identification – Data Clustering
	Slide 8: 1) Phase Identification – Data Clustering
	Slide 9: 1) Phase Identification – Outlier Identification
	Slide 10: 2) Phase Prediction
	Slide 11: 3) Model Adaption
	Slide 12: Preliminary Results Phase Prediction
	Slide 13: Future Work
	Slide 14: Selected References
	Slide 15: Thank you!

