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Problem Statement: Adaptive Tracing

Collecting all possible events:

• Results in extremely large amounts of data

• Introduces unnecessary runtime overhead

• Increases the complexity of the data’s analysis

How can we intelligently enable events to skip over redundant 
information, and only record the most novel aspects of a software’s 

execution?
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Application Phases

• Application phases are intervals within a 
software’s execution that exhibit similar 
behaviours and resource requirements

• Phase-based approaches have been 
used in the past to enhance various 
tasks, like just-in-time compilation, 
thread-to-core assignment, resource 
allocation, and so forth
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By identifying a software system’s common phases, we 
can conversely identify its most uncommon behaviours 

and learn to predict them



Method Overview

We propose a phase-based adaptive tracing solution that follows three 
main stages:

1) Phase Identification
• Employ clustering techniques to identify the software system’s main 

execution phases, as well as points of interest

2) Phase Prediction
• Train a prediction model to predict what phase will occur next, and enabled 

more extensive tracing if it anticipates a point of interest

3) Model Adaptation
• Check if the prediction results align with what actually happens, and if 

necessary, update the model
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1) Phase Identification

• Collect events using LTTng
• It is assumed that most events are exhibiting 

normal behaviour

• Partition events into non-overlapping 
windows, where each window covers t
amount of time

• These windows are processed to:
1. Identify the software’s phases, including 

outlying behaviours of interest

2. Represent the execution as a sequence of 
phases for the Phase Prediction stage
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For each window, we generate two different perspectives of 
the software’s execution:

1) Software Behaviour Signatures 

• How many times each system call was invoked during the 
execution window
• Under identical circumstances, identical code will likely evoke a 

similar set of kernel events
• Used infer what code was running during the window

2) Resource Utilization Signatures

• For how much time the thread used different resources to 
complete its task
• Used to infer the software’s performance, workload, etc.

1) Phase Identification – Data Preprocessing



1) Phase Identification – Data Clustering
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We use the two vector formats to group together windows with similar 
execution behaviours and resource requirements

• In other words, each cluster can be thought of as an application phase

We use Self-Organizing Maps (SOM) in a two-stage clustering approach

• SOMs are a type of artificial neural network (ANN) that rely on competitive learning 
to gradually learn the underlying data distribution in an unsupervised manner

• SOMs provide several advantages:
• Robust to noise

• Faster than other clustering algorithms (e.g. DBSCAN) when given large datasets

• Capable of identifying clusters with varying shapes and densities



1) Phase Identification – Data Clustering

The data clustering procedure 
consists of:

Stage 1) Identify windows 
performing similar tasks by 
clustering the Software Behaviour
Signatures

Stage 2) Identify software phases 
by taking each cluster from stage 1 
and clustering its windows’ 
Resource Utilization Signatures

The clusters from stage 2 make up 
the software system’s defined 
phases
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Stage 1



1) Phase Identification – Outlier Identification

Outlier windows, which are the 
desired target for tracing, are 
identified in two ways:

1. Clusters that are too small (e.g.         
< 0.1% of the data) are marked as 
outliers 

2. The x% most outlying windows 
from each second stage 
clustering are marked as outliers
• Higher values of x lead to more 

detailed traces
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2) Phase Prediction
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The phase sequences are given to an LSTM model, which is trained to predict whether 
an upcoming phase will be an outlier

• If an outlying window is anticipated, more tracepoints are enabled

• If a window within a phase is anticipated, the additional tracepoints are disabled



3) Model Adaption
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To account for dynamic behaviours, we constantly compare a window’s predicted 
label (outlier, or one of the phases) with its assigned label from the SOM models

We define three possible outcomes:
1. True Prediction: The window’s predicted label matches its assigned label

2. Incorrect: The window is predicted to be an outlier, but it is assigned to a phase by the SOM 
models

3. Unknown: The window is predicted to be in a phase, but it is determined to be an outlier by 
the SOM models

If the number of incorrect windows surpasses a threshold, the prediction model must 
be retrained

If the number of unknown windows surpasses a threshold, the clusters must be 
redefined using updated data



Preliminary Results

Phase Prediction
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Experimental Setup:

• System calls collected with LTTng on an 
Apache Web Server

When it comes to determining if a 
window will be an outlier, the LSTM 
model achieves a: 

• 92.035-92.362% accuracy

• 78.568-80.308% precision

• 64.887-67.074% recall



Future Work

13

• Method is showing promising results for adaptive tracing

• We are actively looking for more specific use cases to further test its 
potential
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