
Enhanced Statistical Debugging for

Adaptive Monitoring

Mohammed Adib Khan

ak19qp@brocku.ca

Department Of Computer Science

 Brock University, Canada

Dr. Naser Ezzati-Jivan

nezzati@brocku.ca

Dr. Morteza Noferesti

mnoferesti@brocku.ca

Introduction

2

❑ Monitoring and debugging functions is essential, particularly when kernel-level operations experience

long wait times.

❑ Some examples of kernel-levelwaiting time metrics could drive from:

➢ Syscalls

➢ Block_rqs

➢ Sched_Switch

➢ Irq_handler

❑ Prolonged delays in kernel-level operations can severely impact overall system performance and could

potentially lead to system failures.

❑ Statistical debugging techniques offer powerful solutions.

Problem Statement & Objectives

3

❑ The primary goal is to identify candidate functions and function paths for adaptive or selective tracing,

crucial for diagnosing performance issues.

❑ To achieve this, we have two key objectives:

➢ Identifying problematic functions

➢ Determining potential problematic function paths

Objective 1 – Identifying Problematic Functions

4

❑ The first step involves pinpointing the functions responsible for kernel-level activity delays by

examining correlation.

❑ Our focus lies on detecting application-related bugs within specific functions.

❑ If a function and a performance bug shows a high correlation, our method will identify that function.

Objective 2 – Determining Function Paths

5

❑ Simply identifying the functions does not suffice for our ultimate objective.

❑ The next step is to ascertain the function path leading to these problematic or intriguing functions.

❑ This path is indispensable for adaptive tracing, as merely tracing the function itself would lack sufficient

context for effective analysis.

Background – Statistical Debugging

6

❑ Statistical debugging is a method that identifies

defects by examining the correlation between

program states and failures.

❑ It collects program execution data, isolating elements

most related to failures by comparing 'successful' and

'failing' runs.

❑ Typically, it focuses on line-code level and conditions

within the code.

❑ It is effective for consistently reproducible issues,

aiding in bug localization in complex and large

codebases.

❑ It provides vital clues to developers to understand

and fix the defects.

Image credits: Jones and Harrold 2005

Background – Enhanced Statistical Debugging

7

❑ Enhanced Statistical Debugging is our refined version of traditional statistical debugging.

❑ Traditional statistical debugging analyses bug correlations at a line-code level, examining conditional

constructs within the program code.

❑ In contrast, our Enhanced Statistical Debugging shifts focus to a function level, examining the

correlation between specific function execution and performance issues.

❑ This function-level analysis aids in identifying potential bottlenecks, offering a more precise tool for

diagnosing and resolving performance concerns.

Methodology – Monitoring Kernel Trace

8

❑ Our approach includes monitoring prolonged activities in the kernel trace of our application, such as

waiting times (for net, disk, CPU, etc.), syscalls, interrupts, etc.

❑ For each protracted activity, we ensure to gather enough stack trace data to perform meaningful

analysis on them.

Methodology – Enhanced Statistical Debugging

9

❑ These stack trace samples undergo analysis using statistical debugging.

❑ We accumulate ample data for both faulty and successful activities.

❑ Then, via statistical debugging, we strive to identify any correlation between the application's functions

and these lengthy or faulty activities.

❑ We define fail runs as wait times exceeding mean + std, and the opposite for success. Other thresholds

could also be used depending on the activity.

❑ Success/fail predicates correspond to the last function in the call stack.

❑ Success(observed) and failed(observed) corresponds to the functions which are observable at any

place in the call stack.

Methodology – Function Path Sequence Mining

10

❑ Upon identification of the functions, we conduct further analysis (path sequence mining) to locate the

most common paths leading to these kernel-level metrics delays.

❑ These functions, together with their associated paths, become candidates for tracing/logging.

❑ This targeted approach to tracing allows us to effectively concentrate our resources, negating the need

for comprehensive tracing.

Image credits: Hassani, Marwan, et al. 2019

Methodology – Adaptive Monitoring

11

❑ Adaptive monitoring uses a dynamic, targeted approach to system tracing and debugging.

❑ It builds on insights from statistical debugging and path mining to focus on problematic functions and

paths.

❑ Unlike exhaustive logging, this method saves resources by tracing only areas of interest.

❑ By reducing data volume and overhead, it prevents crucial information from being overlooked.

Case Study – Firefox

12

❑ We applied our methodology to a case

study of a performance bug in Firefox.

❑ Our method successfully identified the

correct function paths causing the bug.

Case Study – Firefox

13

Conclusion

14

❑ Our study demonstrated the effectiveness of statistical debugging techniques in identifying

performance issues.

❑ The results have significant implications for improving system call performance and can be applied to

other systems.

Future Work & Questions

15

❑ Future work includes refining these techniques, advancing sequence pattern mining and exploring

broader applications.

❑ We are looking forward to discussing and receiving use-cases from our industrial partners.

❑ Special thanks to CINEA for their sponsoring of this project.

❑ Any questions or feedback?

Mohammed Adib Khan

ak19qp@brocku.ca

Dr. Naser Ezzati-Jivan

nezzati@brocku.ca

Dr. Morteza Noferesti

mnoferesti@brocku.ca

	Welcome
	Slide 1: Enhanced Statistical Debugging for Adaptive Monitoring
	Slide 2: Introduction
	Slide 3: Problem Statement & Objectives
	Slide 4: Objective 1 – Identifying Problematic Functions
	Slide 5: Objective 2 – Determining Function Paths
	Slide 6: Background – Statistical Debugging
	Slide 7: Background – Enhanced Statistical Debugging
	Slide 8: Methodology – Monitoring Kernel Trace
	Slide 9: Methodology – Enhanced Statistical Debugging
	Slide 10: Methodology – Function Path Sequence Mining
	Slide 11: Methodology – Adaptive Monitoring
	Slide 12: Case Study – Firefox
	Slide 13: Case Study – Firefox
	Slide 14: Conclusion
	Slide 15: Future Work & Questions

