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Performance
Regression?

The performance model
MUST be able to DETECT
the performance
regressions



In this study, the performance model is a
regression model, functions tracing data
are the inputs, and the program’s execution
time is the output.
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Performance Model

R2 Score: > 99%
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B: BAD —

The Overhead of
Tracing

The added overhead to the system
regarding the execution time and
storage usage is massive!

Resources

Mean Time Overhead: > 55%
Mean Storage Overhead: >> 1000%




But, with respect to performance
modelling, not all of the functions have
significant impact on the model
and can be removed from tracing
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|. Programs (Benchmarks)
A. SPEC CPU 2017: 631.deepsjeng_s (Int), 638.imagick_s (FP) p
B. SPEC MPI2007: 104.milc
] C. SU2

D. PARSEC: freqmine

Il. Input Generation -> More than 10k combinations of inputs

[Il. Run the Programs in Vanilla Mode and Full Tracing, and Store
the Execution Times along with Storage Usage
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|. Calculating Several Metrics of the Functions’ Executions
A. Entropy, Coefficient of Variant, and Ridge Regression Coefficients
B. Their union, intersection, or other combinations can be used

Il. Finding the Significant Functions
"""""""" A.  Sorting the functions based on their metrics
B. Cluster them into two groups (significant and insignificant)

lIl. Extracting Functions Characteristics
A.  Complexity, LoC, Number of loops, Number of calls, etc.
B. These characteristics will be used for the further steps of this study
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3. Performance Modelling T

|. Vanilla Performance Model
A.  Building a performance model with the fully instrumented data
B. Very precise due to the number of data and their diversity
] N\ System’s performance
Il. Optimized Performance Model has changed significantly
"""""""" A. The created performance model only with the significant functions
B. The lost precision should be negligible

lll. Evaluating the Optimized Performance Model
A. The accuracy of the performance model itself

B. Performance regression detection
10



4. Regression Detection

1. Regression Injection

Functions Median
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1. Data Collection .

Programs Collected Data
e 631.deepsjeng_s: 9,000 executions

e 638.imagick_s: 2,350 executions
I o 104.milc: 4,650 executions
________________ o SU2:4,/00 executions
""""""""""""""" e Fregmine: 4,200 executions
Times Storage Usage Parameters Functions
Total execution times | The overhead of used | The input parameters |  Self time, cumulative
of the program storage by tracing for that specific time, number of calls
(vanilla, fully traced) execution 3
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3. Regression Injection and Detection =
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3. Regression Injection and Detection

Mean Absolute Percentage Error
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Next Steps m—

|. Regression Detection Analysis
A. Investigate further the performance model’s accuracy
— B. Change the injected regressions types

) Il. Statistical and Static Analysis of the Characteristics of the Functions
A.  Check whether it is possible (and accurate) to build an optimized
performance model just through a statistical analysis of the program’s
source code
B. Compare the impact of each function metric (LoC, Loops, etc.) on the
performance model’s accuracy
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