Tracing Optimizationfor
Performance Modelling
and Regression Detection

| 2 \% POLYTECHNIQUE

Kaveh Shahedi, Heng Li . Q MONTREAL
Polytechnique Montreal B s D

— The

............... Problem

What is Performance Modelling?

e Num. of Inputs
e Complexity of Inputs
e fFunctions Executions

Observe
Software Behavior

What is Performance Modelling?

Observe
Software Behavior

Predict
Performance Metrics

e Num. of Inputs
e Complexity of Inputs
e fFunctions Executions

e GPU Utilization
e Execution Time
e Throughput

What is Performance Modelling?

Observe
Software Behavior

Predict
Performance Metrics

e Num. of Inputs
e Complexity of Inputs
e fFunctions Executions

e GPU Utilization
e Execution Time
e Throughput

Performance
Regression?

The performance model
MUST be able to DETECT
the performance
regressions

In this study, the performance model is a
regression model, functions tracing data
are the inputs, and the program’s execution
time is the output.

The Trade-0ff

A: GOOD

Performance Model
Precision

Using functions tracing, the
accuracy of the performance
model is great!

Performance Model

R2 Score: > 99%

Mean Error: < 5%

The Trade-0ff

A: GOOD

Performance Model
Precision

Using functions tracing, the
accuracy of the performance
model is great!

Performance Model

R2 Score: > 99%

Mean Error: < 5%

B: BAD —

The Overhead of
Tracing

The added overhead to the system
regarding the execution time and
storage usage is massive!

Resources

Mean Time Overhead: > 55%
Mean Storage Overhead: >> 1000%

But, with respect to performance
modelling, not all of the functions have
significant impact on the model
and can be removed from tracing

The
Methodology

Overall Steps

1. Data Collection

/ \ 2. Statistical and Static Analysis
/
Vanilla Build |
Prepare Store Data Calculate Determine
Programs Executions ‘ En Sy Information Significant
with Inputs -) Times I g g Metrics Functions
rofiling ;
Trace with
Enabled uftrace /

Build

4. Regression Detection 3. Performance Modelling

([Regression Regression

L l Injection Detection

Performance
Modelling

Evaluate the
Accuracy

1. Data Collection

|. Programs (Benchmarks)
A. SPEC CPU 2017: 631.deepsjeng_s (Int), 638.imagick_s (FP)
B. SPEC MPI2007: 104.milc
] C. SU2

D. PARSEC: freqmine

1. Data Collection

|. Programs (Benchmarks)
A. SPEC CPU 2017: 631.deepsjeng_s (Int), 638.imagick_s (FP)
B. SPEC MPI2007: 104.milc
] C. SU2

D. PARSEC: freqmine

Il. Input Generation -> More than 10k combinations of inputs

1. Data Collection

|. Programs (Benchmarks)
A. SPEC CPU 2017: 631.deepsjeng_s (Int), 638.imagick_s (FP) p
B. SPEC MPI2007: 104.milc
] C. SU2

D. PARSEC: freqmine

Il. Input Generation -> More than 10k combinations of inputs

[Il. Run the Programs in Vanilla Mode and Full Tracing, and Store
the Execution Times along with Storage Usage

2. Statistical and Static Analysis

|. Calculating Several Metrics of the Functions’ Executions
A. Entropy, Coefficient of Variant, and Ridge Regression Coefficients
B. Their union, intersection, or other combinations can be used

2. Statistical and Static Analysis

|. Calculating Several Metrics of the Functions’ Executions
A. Entropy, Coefficient of Variant, and Ridge Regression Coefficients
B. Their union, intersection, or other combinations can be used

Il. Finding the Significant Functions
"""""""" A. Sorting the functions based on their metrics
B. Cluster them into two groups (significant and insignificant)

2. Statistical and Static Analysis o

|. Calculating Several Metrics of the Functions’ Executions
A. Entropy, Coefficient of Variant, and Ridge Regression Coefficients
B. Their union, intersection, or other combinations can be used

Il. Finding the Significant Functions
"""""""" A. Sorting the functions based on their metrics
B. Cluster them into two groups (significant and insignificant)

lIl. Extracting Functions Characteristics
A. Complexity, LoC, Number of loops, Number of calls, etc.
B. These characteristics will be used for the further steps of this study

3. Performance Modelling

|. Vanilla Performance Model
A. Building a performance model with the fully instrumented data
B. Very precise due to the number of data and their diversity

10

3. Performance Modelling T

|. Vanilla Performance Model
A. Building a performance model with the fully instrumented data r

B. Very precise due to the number of data and their diversity
] N System’s performance

has changed significantly

10

3. Performance Modelling T

|. Vanilla Performance Model
A. Building a performance model with the fully instrumented data p
B. Very precise due to the number of data and their diversity
] N\ System’s performance
Il. Optimized Performance Model has changed significantly
"""""""" A. The created performance model only with the significant functions
B. The lost precision should be negligible

10

3. Performance Modelling T

|. Vanilla Performance Model
A. Building a performance model with the fully instrumented data
B. Very precise due to the number of data and their diversity
] N\ System’s performance
Il. Optimized Performance Model has changed significantly
"""""""" A. The created performance model only with the significant functions
B. The lost precision should be negligible

lll. Evaluating the Optimized Performance Model
A. The accuracy of the performance model itself

B. Performance regression detection
10

4. Regression Detection

1. Regression Injection

Functions Median
Number of Ca"H Cluster Into 10 GroupsH

Regression Injection in
One Function in Each
Cluster (one at a time)

l

SEE——
Constant
Delay

—

)

L >

y)

1/0 Access

—
)

Calculations

———

Lo

Trace Data
Collection

2. Regression Detection

|

Determine the There is
Corresponding Function Regression?

Calculate the Regression
Metrics (MAE, MSE, etc.)

Performance

Model

11

03

The TE——

Results —

12

1. Data Collection .

Programs Collected Data
e 631.deepsjeng_s: 9,000 executions

e 638.imagick_s: 2,350 executions
I o 104.milc: 4,650 executions
________________ o SU2:4,/00 executions
""""""""""""""" e Fregmine: 4,200 executions
Times Storage Usage Parameters Functions
Total execution times | The overhead of used | The input parameters | Self time, cumulative
of the program storage by tracing for that specific time, number of calls
(vanilla, fully traced) execution 3

2. Statistical and Static Analysis

Program: 631 _sjeng

4.01
Entropy

3.5 y

3.0

0 20 40 60 80 14
Functions (Index)

2. Statistical and Static Analysis

Program: 631 _sjeng

4.0
Entropy

3.5 mmm Smooth

0 20 40 60 80 14
Functions (Index)

2. Statistical and Static Analysis

Program: 631 sjeng

m— (y/dX

—-0.045
20 40 60 80
Functions (Index)

2. Statistical and Static Analysis

Program: 631 sjeng

Yy /dX
= = Statistical Change Point ‘

80 15

Functions (Index)

2. Statistical and Static Analysis

Program: 631 sjeng

~ : — dy/dx
—-0.010 | — = Statistical Change Point
|
~0.015 |
S |
~0.020 :

Insignificant
Functions

O, —0.025 Signiﬁcant
-o030; Functions

Functions (Index)

Mean Absolute Error

= = =
N vl ~ © N v
(6)] o (6] o (6, o

e
o

Mean Absolute Error

=== Mean Absolute Error

S o o o o o o o (T o o
(] — o m < n O ~ [oe] [e)} (@)
(7] 1] ! i !] 1 I 1 '
o o o o o (e} o (@) (] o |
— o m < Te] (e} M~ e} 8

Clusters

16

Mean Absolute Error

= = =
N vl ~ © N v
(6)] o (6] o (6, o

e
o

Mean Absolute Error

-

=== Mean Absolute Error

0.200
0.175
0.150
0.125
0.100
0.075
0.050

0.025

itself 1
0-10

10-20

20-30;

30-40-

40-50

Clusters

50-60 |

Zoomed

60-70 |

70-80

80-90 |

90-100

16

3. Regression Injection and Detection =

0.20

Mean Absolute Percentage Error

|

itself

0-10

10-20

20-30-

o o o o o o o

b mn w0 o @ o 2

o 1= o S o =) Y

m < n (Lo ~ (o] 8
Clusters

11

3. Regression Injection and Detection

Mean Absolute Percentage Error

0.20
0.15
&
20.10
=
0.05
0.00 T , , ‘
-— o o o o o o o o o o
2 b o o 3 i b U *® D S
2 <Y =} =) o o) =3 <) =3 Y
— o~ o < n [te} ~ < 8
Clusters
Mean Squared Error
600
400
w
%)
=
200
0 : - - : :
-— o o o o o o o o o o
[oW o o S 0 o i 0 2 =]
2 <) o =) = o o o =} o o
— o~ m < n o ~ o) 8

Clusters

11

The
Next Steps

Next Steps

|. Regression Detection Analysis
A. Investigate further the performance model’s accuracy .
— B. Change the injected regressions types

19

Next Steps m—

|. Regression Detection Analysis
A. Investigate further the performance model’s accuracy
— B. Change the injected regressions types

) Il. Statistical and Static Analysis of the Characteristics of the Functions
A. Check whether it is possible (and accurate) to build an optimized
performance model just through a statistical analysis of the program’s
source code
B. Compare the impact of each function metric (LoC, Loops, etc.) on the
performance model’s accuracy

19

Overall Steps

1. Data Collection

2. Statistical and Static Analysis

Profiling

Vanilla Build
Prepare Store Data Calculate Determine
Programs Executions Engiiieein Information Significant
with Inputs Times e g Metrics Functions

Trace with

Enabled uftrace

Build

4. Regression Detection

3. Performance Modelling

4. Regression Detection

1. Regression Injection

. . Regression Injection in
w:;z::zyg:;;ﬂ / |Clusler Into 10 Groups One Function in Each
| Cluster (one at a time)

Constant
I Delay I
1/0 Access

Calculations

Trace Data
Collection

2. Regression Detection

Functions (Index)

¥
Regression Regression Evaluate the Performance Determine the There is |[}alculate the i | | Performance
Injection Detection Accuracy Modelling Corresponding Function Regression?, | Metrics (MAE, MSE, etc.) | Model
I
] 7 1
T
- - - - - - - -
2. Statistical and Static Analysis 3. Regression Injection and Detection =
Program: 631_sjeng
-0.010 : — dyidx Mean Absolute Error
: 1 == Statistical Change Point m— Mean Absolute Error
—0.015 : 15.0
[! 2| o
-0.020 i S ool P Zoomed
5005 Significant Insignificant
g X \ N <
©-0.030 Functions ! Functions g 5o po
-0.035 ! =
1 0.0
—0:040 I 3 S 2 2 g 2 3 2 3 3 g
! 2 © .] 2 g] 2 S g 3
-0.045 : Clusters e
0 20 l4'0 60 80 15 16

linkedin.com/in/kavehshahedi
kaveh.shahedi@polymtl.ca

