
Low Overhead Transparent Microservices
Tracing in Event Based Nodejs

Progress Report Meeting

 Hervé KABAMBA

 PhD Candidate

Supervisor: Michel Dagenais

June 01, 2023

 Polytechnique Montréal

Département de Génie Informatique et Génie Logiciel

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Agenda

2

1. Introduction

2. Our Approach

3. Some results

4. Conclusion

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

3

 Tracing microservices

- Observability is achieved to understand the behavior and the performance
 of microservices

- Telemetry data is obtained to monitor and identify problems in the system

- A lot of monitoring and tracing tools are available and achieve such
 requirements

- In this case, distributed tracers are used

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(2)

7POLYTECHNIQUE MONTREAL – Hervé Kabamba 4

Transparent Tracing?

- Developers should focus on the development of new features and the
 deployment of new components

- Instrumentation can sometimes be complex and time consuming

- Compromises are sometimes done between the need of observability and
 the modification of the application behavior brought by tracing

- Above all, the resulting overhead must be addressed carefully

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(3)

5

Transparent microservices tracing in Nodejs

- Nodejs is a single-threaded environment orchestrating execution through
 an event-loop

- Low level socket communication can be captured to monitor the
 microservices interactions

- The available tools achieving transparency in microservices systems use
 such approach

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction (4)

6

Problem:

Capturing interactions is simple through low level socket communication

However, transparently correlating requests and replies in asynchronous systems is
a real challenge

Existing techniques in the literature are based on context horizontal propagation
using distributed tracers. No transparency

Those that address transparency, intercept messages trough proxies, but can’t
address correlation without injecting at the proxy level metadata and context
information.

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(5)

7

Problem (2):

Nodejs is a single-threaded system, everything is externally seen as a black box.

Internally, to track the life-cycle of registered callbacks, it uses AsyncHooks to
ensure internal context propagation throughout objects life-cycle.

Asynchooks API is exposed at the Javascript land for context handling.

However, enabling Asynchooks brings a very large overhead overhead, especially
for promises obejcts, that need to cross barrier from Javascript to C++ and back.

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(6)

8

Source: https://github.com/bmeurer/async-hooks-performance-impact

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction(7)

9

 Putting every together:

- Achieving transparency in such environment must be addressed differently

- Correlating requests is challenging in Nodejs. The only way to do it is to use
 Asynchooks, but with no transparency and a compromise on the overhead induced.

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our Approach

10

Transparent tracing of Nodejs microservices

- We address transparency differently

- We deal with the V8 engine of Nodejs.

- We track the internal mechanisms of the V8 engine that handle asynchronous and
 context propagation

- LTTng tracepoints are then injected within them

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our Approach

11

Context reconstruction

- Instead of propagating context information that is costly as distributed tracers and
 other approaches do,

- We introduce the internal context reconstruction approach which achieve low
 overhead

- Therefore, from an experiment of n microservices traces, we reconstruct the context
 based on the tracking mechanisms of Nodejs

- A 6.8 % overhead is obtained outperforming existing transparency approaches for
 microservices tracing and context handling

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our Approach

12

Example of a configuration file needed to run our analysis

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our approach

13

Example the state system view capturing microservices
interactions

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our approach

14

Symptomatic execution of the system

Faulty request. Returns an error, spans no other
microservices

We use the

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Our approach

15

Some other available views

Incoming and outgoing request flow

Queued requests

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Conclusion & Ongoing work

16

- Any Nodejs Restful microservice can be run transparently with our tool

- Docker images of Nodejs V16, V17, V18 are available with the instrumentation

- Very low overhead is achieved

- The analysis may be apply to any distributed Nodejs applications

- Low level correlation with kernel events

- Docker name-space metadata inclusion for event correlation and complex
 analysis

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Thank you

17

