Targeted Memory Runtime Analysis

David Piché
June 1st 2023

Polytechnique Montreal

DORSAL Laboratory

o
Agenda

Introduction

General approach

Our approach using Ptrace
Our approach using Libpatch

Results

o kA w hoE

Future Work

POLYTECHNIQUE MONTREAL - David Piché

Introduction

* Memory issues in C/C++ are still prevalent
* Use-after-free
e Memory leaks
* Qut-of-bound writes

e And much more...

POLYTECHNIQUE MONTREAL - David Piché

The general approach

 We want to verify accesses to dynamically allocated objects

 This means, for the library:
1. Get control before the access
2. \Verify a valid access
3. Unprotect the object
4. Perform the access
5

Re-protect the object

POLYTECHNIQUE MONTREAL - David Piché

The general approach : Getting control before access

By protecting dynamically allocated objects, accesses trigger a SIGSEGV

 We can then handle that signal with a custom signal handler

* Override malloc/realloc/free functions to add/remove protection

POLYTECHNIQUE MONTREAL - David Piché

The general approach : Getting control before access

To protect dynamically allocated objects, we have implemented two methods:
* Pointer tainting using bits 47 to 63
e System call arguments may be tainted!
 Requires a kernel patch
 Use mmap() with PROT_NONE flag

 Currently we allocate an entire page per object

POLYTECHNIQUE MONTREAL - David Piché 6

The general approach : Bounds checking

In order to verify the access, use bounds checking
* We need information regarding the memory access:
 Which register contains the tainted address

* Information on base, index, scale, offset to compute address for

bounds checking

 Use Capstone to disassemble instruction and retrieve relevant

information

POLYTECHNIQUE MONTREAL - David Piché 7

The general approach : Challenges

We still have some remaining challenges:

* How can we re-protect the object after the instruction?
 When using a custom signal handler, what restrictions apply for

disassembling code (capstone)?

POLYTECHNIQUE MONTREAL - David Piché

Our Ptrace approach

 Use Ptrace with 2 different processes

* The child process runs the program with the special allocators

 The parent process takes care of memory handling

* Ptrace used for communication between processes and single-step

 Using the CLONE_VM flag with clone() to make communication between the two

threads easier

Fork Child process Run program

Parent process Memory handling with Ptrace

POLYTECHNIQUE MONTREAL - David Piché 9

Our Libpatch approach

Memory access instruction

 The Libpatch library from Olivier Dion Memory access instruction (Replaced with jump)
l SIGSEGV lJmp
specializes in inserting probes at runtime
Signal handler Probe
. Disassemble instruction Bounds checking
* Install patch at first encounter of Install patch Unproteot register
instruction l I
] .) i OLX buffer
 OLX buffer emulates instruction Re-execute instruction Emulate instruction
* Post-probe allows us to re-protect !
Post-Probe
Re-protect register
address

|

Return to program

POLYTECHNIQUE MONTREAL - David Piché 10

Our Libpatch approach

 With the patch installed, no need to disassemble the same instruction

multiple times

* For programs with repeated instructions with memory accesses, significant
performance gain
 Prototype ready, ongoing development

* However, we need to install the patch in the signal handler

POLYTECHNIQUE MONTREAL - David Piché 11

Result

We use the SPEC CPU 2017 benchmarks and micro-benchmarks:

* For the 505 mcf benchmark, 11 million tainted memory accesses for only

11k unique heap memory access instructions

 Majority of tainted objects used in those memory accesses are very small in

size (< 127)

POLYTECHNIQUE MONTREAL - David Piché 12

e —
Future Work

* Finish implementation of our approach using Libpatch

e Get aclearidea of its overhead

 Targeted memory analysis

 Taint some memory allocations based on parameters (size, origin, ...)

POLYTECHNIQUE MONTREAL - David Piché

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13

