
Targeted Memory Runtime Analysis

David Piché

June 1st, 2023

Polytechnique Montreal

DORSAL Laboratory



POLYTECHNIQUE MONTREAL – David Piché

Agenda

2

1. Introduction

2. General approach

3. Our approach using Ptrace

4. Our approach using Libpatch

5. Results

6. Future Work



POLYTECHNIQUE MONTREAL – David Piché

Introduction

3

• Memory issues in C/C++ are still prevalent

• Use-after-free

• Memory leaks

• Out-of-bound writes

• And much more…



POLYTECHNIQUE MONTREAL – David Piché

The general approach

4

• We want to verify accesses to dynamically allocated objects

• This means, for the library:

1. Get control before the access

2. Verify a valid access

3. Unprotect the object

4. Perform the access

5. Re-protect the object



POLYTECHNIQUE MONTREAL – David Piché

The general approach : Getting control before access

5

• By protecting dynamically allocated objects, accesses trigger a SIGSEGV

• We can then handle that signal with a custom signal handler

• Override malloc/realloc/free functions to add/remove protection



POLYTECHNIQUE MONTREAL – David Piché

The general approach : Getting control before access

6

To protect dynamically allocated objects, we have implemented two methods:

• Pointer tainting using bits 47 to 63

• System call arguments may be tainted!

• Requires a kernel patch

• Use mmap() with PROT_NONE flag

• Currently we allocate an entire page per object



POLYTECHNIQUE MONTREAL – David Piché

The general approach : Bounds checking

7

In order to verify the access, use bounds checking

• We need information regarding the memory access:

• Which register contains the tainted address

• Information on base, index, scale, offset to compute address for 

bounds checking

• Use Capstone to disassemble instruction and retrieve relevant 

information



POLYTECHNIQUE MONTREAL – David Piché

The general approach : Challenges

8

We still have some remaining challenges:

• How can we re-protect the object after the instruction?

• When using a custom signal handler, what restrictions apply for 

disassembling code (capstone)? 



POLYTECHNIQUE MONTREAL – David Piché

Our Ptrace approach

9

Child process

Parent process

Fork Run program

Memory handling with Ptrace

• Use Ptrace with 2 different processes

• The child process runs the program with the special allocators

• The parent process takes care of memory handling

• Ptrace used for communication between processes and single-step

• Using the CLONE_VM flag with clone() to make communication between the two 

threads easier



POLYTECHNIQUE MONTREAL – David Piché

Our Libpatch approach

10

• The Libpatch library from Olivier Dion 

specializes in inserting probes at runtime

• Install patch at first encounter of 

instruction

• OLX buffer emulates instruction

• Post-probe allows us to re-protect 

address

Memory access instruction

(Replaced with jump)

Probe

Bounds checking

Unprotect register

OLX buffer

Emulate instruction

Post-Probe

Re-protect register

Return to program

Jmp

Memory access instruction

Signal handler

Disassemble instruction

Install patch

Re-execute instruction

SIGSEGV



POLYTECHNIQUE MONTREAL – David Piché

Our Libpatch approach

11

• With the patch installed, no need to disassemble the same instruction 

multiple times 

• For programs with repeated instructions with memory accesses, significant 

performance gain

• Prototype ready, ongoing development

• However, we need to install the patch in the signal handler



POLYTECHNIQUE MONTREAL – David Piché

Result

12

We use the SPEC CPU 2017 benchmarks and micro-benchmarks:

• For the 505_mcf benchmark, 11 million tainted memory accesses for only 

11k unique heap memory access instructions 

• Majority of tainted objects used in those memory accesses are very small in 

size (< 127)



POLYTECHNIQUE MONTREAL – David Piché

Future Work

13

• Finish implementation of our approach using Libpatch

• Get a clear idea of its overhead

• Targeted memory analysis

• Taint some memory allocations based on parameters (size, origin, …)


	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13

