
Tracing tools for low latency

microservices

Eya-Tom Augustin SANGAM

Polytechnique Montréal

DORSAL Laboratory

June 2023

Title – Tracing tools for low latency microservices

Agenda

• Context and goal

• Related work

• Considerations

• Proposed solution

• Benchmarks

• Current and future work

• Conclusion

POLYTECHNIQUE MONTRÉAL

2/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Context and goal

We have :

• C Microservices communicating with each other
using ZeroMQ

We want to collect telemetry data (TD) :

• Application logs
• Application and host metrics

• Requests traces (aka spans)

POLYTECHNIQUE MONTRÉAL

3/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Related Work : LTTng and LTTng-UST

• LTTng can help collect host metrics (CPU, RAM usage etc.)
• LTTng-UST can help collect applications metrics,

applications logs and requests traces
• Advantage: Record or not specific TD at runtime

• Problem: We need to define a protocol over the standard
LTTng-UST logging library for trace collection, metrics
collection and context propagation
• OpenTelemetry Specification already does that

POLYTECHNIQUE MONTRÉAL

4/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Related Work : OpenTelemetry

• OpenTelemetry (OTel) is becoming the industry
standard for creating and collecting TD

• OTel specification describes cross-language

requirements and expectations for all OTel
implementations.

• Many visualisation tools like Jaeger,
Prometheus support OTel data schemas out of the

box

• OTel created the OTel Collector which is a vendor-

agnostic way to receive, process and export TD

POLYTECHNIQUE MONTRÉAL

5/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Considerations (1/2)

• We want to do cross-hosts TD analysis
• We need to bring all TD together at some point

• Some hosts have limited hard drive storage
• A filtering mechanism is required to minimize the

amount of data saved on the disk

• e.g., we should be able to decide at runtime whether
we want to save heartbeat traces or not

POLYTECHNIQUE MONTRÉAL

6/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Considerations (2/2)

• Some applications run on hosts with limited resources

• Installing OTel collector or an observability
backend may highly affect the application behaviour

• Live monitoring is not required.

POLYTECHNIQUE MONTRÉAL

7/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Proposed solution (1/2)

Online part
(When application runs)

• LTTng is used to collect host metrics

• We use OTel instrumentation
• TD generated is logged to LTTng-UST

and saved in CTF files

• We can control what runtime data
we save this way

POLYTECHNIQUE MONTRÉAL

8/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Proposed solution (2/2)

Offline part
(Only when we want to do analysis)

• CTF files are copied from the host

• Host metrics could be viewed in Trace
Compass directly

• The OTel Replay System reads TD and

sends them to the OTel collector which
will send them later to observability

backends (Jaeger, Prometheus, etc.)

POLYTECHNIQUE MONTRÉAL

9/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Solution

• Otel C wrapper
• https://github.com/augustinsangam/opentelemetry-c

• Simple ZeroMQ client, proxy and server application traced
using opentelemetry-c
• https://github.com/augustinsangam/opentelemetry-c-demo

• OTel Replay System which reads the telemetry data and send them to the
OTel collector which will send them later to observability backends (Jaeger,
Prometheus, etc.)
• https://github.com/augustinsangam/otel-replayer

• Benchmarks
• https://github.com/augustinsangam/opentelemetry-c-performance
• Deep dive doc

POLYTECHNIQUE MONTRÉAL

10/16 – dorsal.polymtl.ca

https://github.com/augustinsangam/opentelemetry-c
https://github.com/augustinsangam/opentelemetry-c-demo
https://github.com/augustinsangam/otel-replayer
https://github.com/augustinsangam/opentelemetry-c-performance
https://polymtlca0-my.sharepoint.com/:w:/r/personal/eya-tom-augustin_sangam_polymtl_ca/_layouts/15/Doc.aspx?sourcedoc=%7B9F3E9E8C-4D34-481C-A34E-5207457A3D57%7D&file=LTTng%20%2B%20OpenTelemetry%20Benchmarks.docx&wdOrigin=OFFICECOM-WEB.MAIN.SEARCH&ct=1685538732130&action=default&mobileredirect=true%20​

Title – Tracing tools for low latency microservices

Trace Benchmarks (1/3)

• Scenario : Start a span and end it right away. Measure the time to do the

operation.

• Multiple configurations tested :
• LTTng configuration: No LTTng session running (NLS), LTTng

session without recording (LSWR), LTTng session recording UST

telemetry data (LSRU), LTTng remote session recording UST

telemetry data (LRSRU)

• Type of instrumentation: No instrumentation (NI), OpenTelemetry
(OTel)

• Type of exporter: LTTng Exporter (LE), Local OTel collector (LOC),

Remote OTel collector (ROC)

• OTel Traces Processor (applies only for traces benchmarks): Simple

(SP), Batching processor (BP)

POLYTECHNIQUE MONTRÉAL

11/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

• Exporting spans one by one as they are created using remote OpenTelemetry
collector vs using Local Lttng exporter vs Exporting one by one to remote LTTng

POLYTECHNIQUE MONTRÉAL

12/16 – dorsal.polymtl.ca

Test cases NLS-OTel-
ROC-SP

LSRU-OTel-
LE-SP

LRSRU-OTel-
LE-SP

n spans 5,000 20,000 20,000

min (ns) 1,931,562 94,947 61,689

mean (ns) 2,945,936 288,689 287,596

max (ns) 15,251,23 957,472 1,512,586

median (ns) 2,796,951 305,975 283,274

std (ns) 478,621 22,681 23,003

real (ms) 65,391 208,483 208,473

user (ms) 8,079 6,029 5,969

sys (ms) 369 407 461

When using simple processor, spans

are processed synchronously after
they are created. In this situation,

using LTTng to log spans should be

preferred over sending traces overs
the network

Trace Benchmarks (2/3)

Title – Tracing tools for low latency microservices

• Same comparison but we export traces every 5s in batch of a maximum of 512
spans in a background thread

POLYTECHNIQUE MONTRÉAL

13/16 – dorsal.polymtl.ca

• In production, the remote

collector could be in a different
network, which could make these
results vary

• The preferred solution should be
logging all traces locally to

LTTng. This avoids running an
OTel collector and dealing with

all the network communications

troubles it could add

Test cases NLS-OTel-
ROC-BP

LSRU-OTel-
LE-BP

LRSRU-OTel-
LE-BP

n spans 20,000 20,000 20,000

min (ns) 21,101 23,063 43,641

mean (ns) 116,657 117,143 116,836

max (ns) 455,129 536,921 396,297

median (ns) 117,134 113,691 131,189

std (ns) 9,668 9,394 9,482

real (ms) 204,911 205,077 205,048

user (ms) 3,663 3,259 3,268

sys (ms) 330 405 379

Trace Benchmarks (3/3)

Title – Tracing tools for low latency microservices

• Pattern: We measure the time to do an operation without collecting any kind of

metrics. And we repeat the same operation while exporting metrics every 500/1000
ms.

• Comparison: No metrics vs exporting metrics to a remote Otel collector vs exporting
metrics to a local LTTng session vs exporting metrics to a remote LTTng session

POLYTECHNIQUE MONTRÉAL

14/16 – dorsal.polymtl.ca

Metrics Benchmarks

Scenarios NI NLS-OTel-ROC LSRU-OTel-LE LRSRU-OTel-LE

Export delay (ms) 500 1000 500 1000 500 1000 500 1000

duration (ms) 114,541 114,539 115,290 115,030 114,712 114,681 114,649 114,572

overhead (%) 0.654 0.656 0.149 0.151 0.094 0.096

cpu time (ms) 114,537 114,535 115,816 115,348 114,836 114,749 114,776 114,650

cpu time
overhead (%)

1.116 0.71 0.261 0.187 0.208 0.1

For all configurations, the execution time overhead is less than 1.2% and the larger the export interval,
the lower the overhead.
LTTng Metrics exporter is approximatively 50% faster than the remote exporter but the CPU time
spent in user space is similar for the two configurations.

Title – Tracing tools for low latency microservices

Current and future work

• Analyse Otel userspace traces
directly in Tracecompass

without having to use any
telemetry backend

• Add Spans view : Support Otel
schemas, trace synchronisation
and add filtering capabilities

• Metrics view : Add counters
view and support basic query

language (ex : metric1 +
metric2)

POLYTECHNIQUE MONTRÉAL

15/16 – dorsal.polymtl.ca

Title – Tracing tools for low latency microservices

Thanks !

POLYTECHNIQUE MONTRÉAL

16/16 – dorsal.polymtl.ca

Questions, ideas, remarks ?

Appendix : Different ways of collecting telemetry data

17

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17 Appendix : Different ways of collecting telemetry data

