

Deep Learning to Detect Novel Behaviours in Traces

Quentin Fournier

Polytechnique Montréal Laboratoire DORSAL

2 Detect novel behaviours in traces

3 Classify novel behaviours as normal or abnormal

¹On Improving Deep Learning Trace Analysis with System Call Arguments

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

Desirable Properties

- Unsupervised:
 - Labelling is time consuming and error-prone
- Robust:
 - Traces are noisy
- Transparent:
 - Models may remember the data instead of solving the task

• Labels may change over time

Systems change rapidly

• Models may fail in rare cases

Methodology

- State-of-the-art neural network called Transformer
 - Flexible enough to model complex interactions in traces
 - Memory intensive and sensitive to hyperparameters
- Considers the event arguments
 - Improves the prediction accuracy
 - Maybe improve the robustness
 - Requires more data to train

Methodology

- Unsupervised language model objective
 - Computes the likelihood of sequences
 - Detects unexpected sequences with low probability

Methodology

- Large dataset collected in a controlled environment
 - 500,000+ web requests
 - Simple enough to evaluate the methodology
 - Too simple to represent real-world use cases
- I am looking for use cases !

Preliminary Results

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

6/8 - dorsal.polymtl.ca

Preliminary Results

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier

7/8 - dorsal.polymtl.ca

Thank You

Deep Learning to Detect Novel Behaviours in Traces - Quentin Fournier