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Adaptive tracing

• Solution: Adaptive tracing
• Automatic runtime instrumentation 

enable/disable

• Hybrid runtime sampling rate 
changes

• Problem
• Fixed tracing without considering execution

• Overhead of tracing in collection and 
aggregation phase

• Resource constraints

Quality 
of trace

Tracing 
budget
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✔Desired Observability Level

✔Specified Tracing 

Overhead



Related work

• Measurement
○ Using Performance Variation for Instrumentation Placement in

Distributed Systems- 2019
○ Runtime latency detection and analysis- 2016

• Modeling
○ Tracey - Distributed Trace Comparison and Aggregation using NLP

techniques- 2019
○ Diagnostic Framework for Distributed Application Performance

Anomaly Based on Adaptive Instrumentation- 2020
○ Automated Analysis of Distributed Tracing: Challenges and

Research Directions- 2021
• Simulation
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Adaptive tracing pipeline 
With specified tracing budget

Application Performance/ 

Tracing overhead 

Measurement

Application Performance 

Modelling

Application Performance 

PredictionFeedback to change 

measurement- to adapt tracing
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Performance Prediction Methods
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Performance Modeling

• Methods

• Simulation

• Analytic
• Queuing models

• Execution flow models

• Models of communicating objects

• Goals:

1. Modeling expected behavior of the system according to SLAs provided or Performance
prediction of the system

2. Modeling search space for the tracer to pinpoint the area in system performance that
requires more attention
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Knowledge-based models

•Ontology is a model for describing the world that consists of a set of entities, 
properties, and relationship types.
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Why ontologies?

• Reusability
• an ontology integrates in its definition all other ontologies of different

knowledge

• Context-awareness

• Reasoning
• Automatically check for unintended relationships between classes to

discover inconsistencies and also automatically infers implicit information
from data
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Adaptive Tracing

Tracing Ontology Performance Ontology Metrics Ontology

Application

Ontology

Imported Ontologies Domain specific Ontologies

TracerDistributed system

Tracing performance 

broker
Tracing controllerTrace aggregation and 

analysis
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Load Generation

An online shop application written 

with Java

Deployed on Apache tom-cat server

Database: mysql

Platform: ubuntu 18.04

Tracer: LTTng

Load generation:

Workload:

1. Normal

2. View on demand

3. Shopping specific 

item on demand

Scenarios:

1. Browsing the main 

page of the shop

2. Browsing a specific 

product

3. Add to cart

4. Finalize purchase

Measurement method:

1. Find caller and callee of each event by building paths

of length 3 of events

2. Count number of repetitions of each 3-event length

path in the specified time-interval (eg. 10 seconds)

Metric: FuncCallRepetition

Data gathering:

1. Instrument Heat-Clinic application by inserting probes

on different levels (Loc, function, …)

2. Label each event by LOC+OriginFile+Priority

3. Run different workloads on the test application

4. Gather traces by activating full userspace tracing

Actions:

Freq1: sample 1% of event X calls 

Freq2: sample  event X 1 time every time-interval

Freq3: sample 1%  of  event X  calls 

Freq4: disable tracepoints for event X 

Freq5: no action 

Freq6: disable tracepoints for event X 

Tracing Adaptation

6 disjoint classes for event X in path Y:

Freq1: (priority high, freq greater than threshold1)

Freq2: (priority low, freq greater than threshold1)

Freq3: (priority high , freq between threshold 1,2)

Freq4: (priority low, freq between threshold 1,2)

Freq5: (priority high, freq less than threshold2)

Freq6: (priority low, freq less than threshold2)

Sample use case-FuncCallRepetition metric
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3 disjoint classes for call frequency of event X in path Y:

1. High-freq: In time-interval T, number of event X calls

in path Y is greater than threshold1

2. Medium-freq: In time-interval T, number of event X

calls in path Y is between threshold1 and threshold12

3. Low-freq: In time-interval T, number of event X calls in

path Y is less than threshold2

2 disjoint classes for event priority:

1. High-priority: priority of event X calls in path is high

2. Low-priority: priority of event X calls in path is low



Example OWL Class Definition

Domain

Metrics

Time Interval

Scenario

funcCallRepetition

<owl:FunctionalProperty rdf:ID=" funcCallRepetition "> 
<rdfs:range rdf:resource="# timeInterval "/>
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Scenario"/> 

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="population"> 
<rdfs:domain rdf:resource="#Frequncy"/>
<rdfs:range rdf:resource="#Number"/>
<rdf:type rdf:resource="&owl;ObjectProperty"/> 

</owl:FunctionalProperty>

<owl:Class rdf:ID="Number">
<rdfs:subClassOfrdf:resource="#Metric"/>

</owl:Class>

Function Call Repetition metric description in 

OWL
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Event(?event) ∧
Scenario(?sce) ∧
priority(?event, ?pr) ∧
hasPath(?event, ?sce)

→ LowPriorityEvent(?event)

Rule definition LowPriorityEvent

Example OWL Metric Class 
Definition
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Event(?event) ∧
Scenario(?sce) ∧
frequency(?sce, ?interval) ∧
count(?sce, ?number) ∧
hasEventScenario(?event, ? count) ∧
swrlb:greaterThan(? number, ?threshold1) 

→ High-freq(?sce)

Rule definition of High-freq path call

Event(?event) ∧
Scenario(?sce) ∧
frequency(?sce, ?interval) ∧
count(?sce, ?number) ∧
hasEventScenario(?event, ? count) ∧
swrlb:lessThan(? number, ?threshold1) ∧
swrlb: greaterThan(? number, ?threshold2)

→ Medium-freq(?sce)

Rule definition of Medium-freq path call

Event(?event) ∧
Scenario(?sce) ∧
frequency(?sce, ?interval) ∧
count(?sce, ?number) ∧
hasEventScenario(?event, ? count) ∧
swrlb:lessThan(? number, ?threshold2) 

→ Low-freq(?sce)

Rule definition of Low-freq path call
Event(?event) ∧
Scenario(?sce) ∧
priority(?event, ?pr) ∧
hasPath(?event, ?sce)

→ HighPriorityEvent(?event)

Rule definition HighPriorityEvent



<owl:Class rdf:ID=" FuncCallRepetition">

<rdfs:subClassOf rdf:resource="#Interval"/>

<rdfs:subClassOf>

<owl:Class>

<owl:intersectionOf rdf:parseType="collection"> 

<owl:Class rdf:about="# eventFequency"/>

<owl:Class rdf:about="# eventPriority"/>

</owl:intersectionOf>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

OWL definition of FuncCallRepetition

Scenario(?sce) ∧ Event(?event) ∧
isExecutedIn(?sce, ?event) ∧
hasFrequncyInTimeInterval(?sce, ?Value) ∧
hasPriority(?pr, ?value)

swrlb:greaterThan(?value, ?threshold1) 

→Action:Sample 1% of event X calls (?event)

Freq1 Class Action-Rule definition

Example OWL FuncCallRepetition
Metric Class and Action Definition
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Conclusions and future work

● Modeling provides us an abstract view which facilitates
observability goal-based tracing

● “Ontology reuse” makes this abstract view flexible to work with any
tracing tool, domain and infrastructure, by considering their own
specific knowledge models

● To demonstrate modelling benefits in use we plan to implement
several use-cases to achieve observability goals like bottleneck
identification
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