
Adaptive Tracing

Dorsal Lab- Polytechnique Montreal

Student: Masoumeh Nourollahi

Advisor: Michel Dagenais

Co-Advisor: Naser Ezzati

Adaptive tracing

• Solution: Adaptive tracing
• Automatic runtime instrumentation

enable/disable

• Hybrid runtime sampling rate
changes

• Problem
• Fixed tracing without considering execution

• Overhead of tracing in collection and
aggregation phase

• Resource constraints

Quality
of trace

Tracing
budget

Adaptive tracing- Progress report meeting June 2021 Page 2

✔Desired Observability Level

✔Specified Tracing

Overhead

Related work

• Measurement
○ Using Performance Variation for Instrumentation Placement in

Distributed Systems- 2019
○ Runtime latency detection and analysis- 2016

• Modeling
○ Tracey - Distributed Trace Comparison and Aggregation using NLP

techniques- 2019
○ Diagnostic Framework for Distributed Application Performance

Anomaly Based on Adaptive Instrumentation- 2020
○ Automated Analysis of Distributed Tracing: Challenges and

Research Directions- 2021
• Simulation

Adaptive tracing- Progress report meeting June 2021 Page 3

Adaptive tracing pipeline
With specified tracing budget

Application Performance/

Tracing overhead

Measurement

Application Performance

Modelling

Application Performance

PredictionFeedback to change

measurement- to adapt tracing

Adaptive tracing- Progress report meeting June 2021 Page 4

Performance Prediction Methods

Adaptive tracing- Progress report meeting June 2021 Page 5

Performance Modeling

• Methods

• Simulation

• Analytic
• Queuing models

• Execution flow models

• Models of communicating objects

• Goals:

1. Modeling expected behavior of the system according to SLAs provided or Performance
prediction of the system

2. Modeling search space for the tracer to pinpoint the area in system performance that
requires more attention

Adaptive tracing- Progress report meeting June 2021 Page 6

Knowledge-based models

•Ontology is a model for describing the world that consists of a set of entities,
properties, and relationship types.

Adaptive tracing- Progress report meeting June 2021 Page 7

Why ontologies?

• Reusability
• an ontology integrates in its definition all other ontologies of different

knowledge

• Context-awareness

• Reasoning
• Automatically check for unintended relationships between classes to

discover inconsistencies and also automatically infers implicit information
from data

Adaptive tracing- Progress report meeting June 2021 Page 8

Adaptive Tracing

Tracing Ontology Performance Ontology Metrics Ontology

Application

Ontology

Imported Ontologies Domain specific Ontologies

TracerDistributed system

Tracing performance

broker
Tracing controllerTrace aggregation and

analysis

Adaptive tracing- Progress report meeting June 2021 Page 9

Performance

context

Workload Scenario Resources

Step

1..*

Predecessorsuccessor

Local

Workload

Database-

intensive

Disk-

intensive

Memory-

intensive

Processor-

intensive

External

Workload

…

OWL:thing

Metrics

Learning

model

Probability

Utilization

LSTM

Regression

Classification

Number

Demand

Frequency

CompletedW

ork

MeanWork

Trhoughput

TimeInterval

FuncCallRepe

tition

ResponseTime

ResponseTime

+MessageSize

Workloads

Hard

Workloads

Meduim

Workloads
Light

Workloads

TraceEvent

UserSpace

KernelSpaceTimer

CPU

IO

sysCalls

LineOfCode

Function

Class

Component

node

COCON cloud
ontologies

DAML-Time
ontology

Page 10

Load Generation

An online shop application written

with Java

Deployed on Apache tom-cat server

Database: mysql

Platform: ubuntu 18.04

Tracer: LTTng

Load generation:

Workload:

1. Normal

2. View on demand

3. Shopping specific

item on demand

Scenarios:

1. Browsing the main

page of the shop

2. Browsing a specific

product

3. Add to cart

4. Finalize purchase

Measurement method:

1. Find caller and callee of each event by building paths

of length 3 of events

2. Count number of repetitions of each 3-event length

path in the specified time-interval (eg. 10 seconds)

Metric: FuncCallRepetition

Data gathering:

1. Instrument Heat-Clinic application by inserting probes

on different levels (Loc, function, …)

2. Label each event by LOC+OriginFile+Priority

3. Run different workloads on the test application

4. Gather traces by activating full userspace tracing

Actions:

Freq1: sample 1% of event X calls

Freq2: sample event X 1 time every time-interval

Freq3: sample 1% of event X calls

Freq4: disable tracepoints for event X

Freq5: no action

Freq6: disable tracepoints for event X

Tracing Adaptation

6 disjoint classes for event X in path Y:

Freq1: (priority high, freq greater than threshold1)

Freq2: (priority low, freq greater than threshold1)

Freq3: (priority high , freq between threshold 1,2)

Freq4: (priority low, freq between threshold 1,2)

Freq5: (priority high, freq less than threshold2)

Freq6: (priority low, freq less than threshold2)

Sample use case-FuncCallRepetition metric

Page 11

3 disjoint classes for call frequency of event X in path Y:

1. High-freq: In time-interval T, number of event X calls

in path Y is greater than threshold1

2. Medium-freq: In time-interval T, number of event X

calls in path Y is between threshold1 and threshold12

3. Low-freq: In time-interval T, number of event X calls in

path Y is less than threshold2

2 disjoint classes for event priority:

1. High-priority: priority of event X calls in path is high

2. Low-priority: priority of event X calls in path is low

Example OWL Class Definition

Domain

Metrics

Time Interval

Scenario

funcCallRepetition

<owl:FunctionalProperty rdf:ID=" funcCallRepetition ">
<rdfs:range rdf:resource="# timeInterval "/>
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#Scenario"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="population">
<rdfs:domain rdf:resource="#Frequncy"/>
<rdfs:range rdf:resource="#Number"/>
<rdf:type rdf:resource="&owl;ObjectProperty"/>

</owl:FunctionalProperty>

<owl:Class rdf:ID="Number">
<rdfs:subClassOfrdf:resource="#Metric"/>

</owl:Class>

Function Call Repetition metric description in

OWL

Adaptive tracing- Progress report meeting June 2021 Page 12

Event(?event) ∧
Scenario(?sce) ∧
priority(?event, ?pr) ∧
hasPath(?event, ?sce)

→ LowPriorityEvent(?event)

Rule definition LowPriorityEvent

Example OWL Metric Class
Definition

Page 13

Event(?event) ∧
Scenario(?sce) ∧
frequency(?sce, ?interval) ∧
count(?sce, ?number) ∧
hasEventScenario(?event, ? count) ∧
swrlb:greaterThan(? number, ?threshold1)

→ High-freq(?sce)

Rule definition of High-freq path call

Event(?event) ∧
Scenario(?sce) ∧
frequency(?sce, ?interval) ∧
count(?sce, ?number) ∧
hasEventScenario(?event, ? count) ∧
swrlb:lessThan(? number, ?threshold1) ∧
swrlb: greaterThan(? number, ?threshold2)

→ Medium-freq(?sce)

Rule definition of Medium-freq path call

Event(?event) ∧
Scenario(?sce) ∧
frequency(?sce, ?interval) ∧
count(?sce, ?number) ∧
hasEventScenario(?event, ? count) ∧
swrlb:lessThan(? number, ?threshold2)

→ Low-freq(?sce)

Rule definition of Low-freq path call
Event(?event) ∧
Scenario(?sce) ∧
priority(?event, ?pr) ∧
hasPath(?event, ?sce)

→ HighPriorityEvent(?event)

Rule definition HighPriorityEvent

<owl:Class rdf:ID=" FuncCallRepetition">

<rdfs:subClassOf rdf:resource="#Interval"/>

<rdfs:subClassOf>

<owl:Class>

<owl:intersectionOf rdf:parseType="collection">

<owl:Class rdf:about="# eventFequency"/>

<owl:Class rdf:about="# eventPriority"/>

</owl:intersectionOf>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

OWL definition of FuncCallRepetition

Scenario(?sce) ∧ Event(?event) ∧
isExecutedIn(?sce, ?event) ∧
hasFrequncyInTimeInterval(?sce, ?Value) ∧
hasPriority(?pr, ?value)

swrlb:greaterThan(?value, ?threshold1)

→Action:Sample 1% of event X calls (?event)

Freq1 Class Action-Rule definition

Example OWL FuncCallRepetition
Metric Class and Action Definition

Page 14

Conclusions and future work

● Modeling provides us an abstract view which facilitates
observability goal-based tracing

● “Ontology reuse” makes this abstract view flexible to work with any
tracing tool, domain and infrastructure, by considering their own
specific knowledge models

● To demonstrate modelling benefits in use we plan to implement
several use-cases to achieve observability goals like bottleneck
identification

Adaptive tracing- Progress report meeting June 2021 Page 15

References

● Flores-Contreras, J., Duran-Limon, H.A., Chavoya, A. et al. Performance prediction of parallel applications: a systematic literature review. J Supercomput77, 4014–4055 (2021).
● Al Haider N., Gaudin B., Murphy J. (2012) Execution Trace Exploration and Analysis Using Ontologies. In: Khurshid S., Sen K. (eds) Runtime Verification. RV 2011. Lecture Notes in

Computer Science, vol 7186. Springer, Berlin, Heidelberg.
● Bento, A., Correia, J., Filipe, R. et al. Automated Analysis of Distributed Tracing: Challenges and Research Directions. J Grid Computing19, 9 (2021).
● S. Zhang, D. Liu, L. Zhou, Z. Ren and Z. Wang, "Diagnostic Framework for Distributed Application Performance Anomaly Based on Adaptive Instrumentation," 2020 2nd International

Conference on Computer Communication and the Internet (ICCCI), 2020, pp. 164-169, doi: 10.1109/ICCCI49374.2020.9145997.
● Johng H., Kim D., Hill T., Chung L. (2018) Estimating the Performance of Cloud-Based Systems Using Benchmarking and Simulation in a Complementary Manner. In: Pahl C., Vukovic

M., Yin J., Yu Q. (eds) Service-Oriented Computing. ICSOC 2018. Lecture Notes in Computer Science, vol 11236. Springer, Cham
● Sturmann, Lilian. 2019. Using Performance Variation for Instrumentation Placement in Distributed Systems. Master's thesis, Harvard Extension School
● Zhang Q., Haller A., Wang Q. (2019) CoCoOn: Cloud Computing Ontology for IaaS Price and Performance Comparison. In: Ghidini C. et al. (eds) The Semantic Web – ISWC 2019. ISWC

2019. Lecture Notes in Computer Science, vol 11779. Springer, Cham.
● Williams L.G., Smith C.U. (1995) Information requirements for software performance engineering. In: Beilner H., Bause F. (eds) Quantitative Evaluation of Computing and

Communication Systems. TOOLS 1995. Lecture Notes in Computer Science, vol 977. Springer, Berlin, Heidelberg.
● Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2011. Model-Based Software Performance Analysis (1st. ed.). Springer Publishing Company, Incorporated.
● C. Guerrero, C. Juiz and R. Puigjaner, "Web Performance and Behavior Ontology," 2008 International Conference on Complex, Intelligent and Software Intensive Systems, 2008, pp.

219-225, doi: 10.1109/CISIS.2008.101.
● Lera, I., Sancho, P.P., Juiz, C. et al. Performance assessment of intelligent distributed systems through software performance ontology engineering (SPOE). Software Qual J 15, 53–67

(2007).
● Isaac Lera, Carlos Juiz, Ramon Puigjaner,"Performance-related ontologies and semantic web applications for on-line performance assessment of intelligent systems", Science of

Computer Programming, Volume 61, Issue 1, 2006, Pages 27-37, ISSN 0167-6423,
● Lera I., Juiz C., Puigjaner R. (2005) Web Operational Analysis Through Performance-Related Ontologies in OWL for Intelligent Applications. In: Lowe D., Gaedke M. (eds) Web

Engineering. ICWE 2005. Lecture Notes in Computer Science, vol 3579. Springer, Berlin, Heidelberg
● A. Desai, K. Rajan, K. Vaswani, "Critical Path based Performance Models for Distributed Queries",Microsoft Technical Report, MSR-TR-2012-121, 2012.
● Junior, Vanderlei Freitas et al. “ONTOLOGY FOR PERFORMANCE MEASUREMENT INDICATORS’ COMPARISON.” International Journal of Digital Information and Wireless

Communications 6 (2016): 87-96.
● Soergel D, Helfer O. A Metrics Ontology. An intellectual infrastructure for defining, managing, and applying metrics. Knowl Organ Sustain World Chall Perspect Cult Sci Technol Shar

Connect Soc (2016). 2016;15:333-341.

Adaptive tracing- Progress report meeting June 2021 Page 16

