
Tracing Micro-services and Modular IDEs:
Performance evaluation in asynchronous requests context

 Hervé KABAMBA Michel Dagenais
June 11, 2021

 Polytechnique Montréal

Laboratoire DORSAL

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Agenda

Introduction

Objective

Methodology

Current Results

Ongoing work

2

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 THEIA: The framework is developed in Typescript

 – Frontend runs on the browser

 – Backend runs on Node.js

 An interaction of the frontend with the backend:

● Is mainly a communication through a websocket connection channel that
 carries json encoded messages containing the data.

● Vscode libraries are used by the backend to listen to the socket to
 retrieve the data

● The data is mainly the service that must be invoked remotely, sometimes
 with arguments

3

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Backend:

– Operations are executed by invocation on the backend, and the
 returned results are sent back to the frontend

– The backend is therefore mainly responsible for low level operations
 with the OS.

– Node.js is single threaded and uses an event loop to handle
 asynchronous operations.

 Intuitively:

 - Evaluating the performance of applications running on Node.js brings
 complexity

 - High level tracing of distributed operations can only expose
 their latency in a global point of view.

4

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Definition of the problem

– Most operations and interactions from the frontend and the backend
 in Theia are executed by Node.js in asynchronous ways.

– Asynchronous callbacks such as Promises, SetTimeout, etc. in
 Javascript are used to handle the operations.

– Internally, there is a lot of activities responsible for delivering the final
 result that increase the complexity of the performance analysis in such
 context.

5

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

6

High level trace information view

I

Fig1: high level trace

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Introduction

 Definition of the problem

– In the previous figure, the higher view of the latency of each operation
 executed in Theia is generally exposed in the way that distributed
 tracers works and do not tell much except latency.

– Although the latency represents the real time the operation took to
 complete, pinpointing the source of the problem is something else in
 Node.js.

- Tracing the application with distributed tracers, when such a problem
 happens most of the time, cannot help pinpointing the operation
 responsible of the fault propagation.

– A non optimized code, or an operation can slow down or block the
 internal event-loop and consequently delay all pending operations in
 the stack.

7

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Objective

 Asynchronous operations

– Tracking asynchronous resources and their respective callbacks in
 Node.js is very important

– Asynchronous operations go through phases in the event-loop and, at
 each phase, their respective callback are executed.

– The way the event-loop will behave is a function of the operations that
 it has enqueued.

– In this context, a real performance analysis of Node.js applications
 must involve collecting lower internal information on its functioning for
 correlation with the higher level ones.

– Such approach should result in accurate tools for performance analysis
 in the Node.js environment.

8

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Event-loop at

Glance

9

 Abstraction of the Event-loop

 Fig 2: event-loop abstraction[2]

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Event-loop at

Glance

10

Delegation of tasks to Workers

 Fig 3:Tasks delegation to workers[2]

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Workers view

11

The communication event between the workers are captured in this view
(postMessage method) of the trace.

Fig 4: Intercepting workers communication

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Event-loop at

Glance

12

 Event-loop phases

 Fig 5: event-loop phase[5]

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Methodology

 Tracing Node.js internals should give more insights on application
 bottlenecks

 Internal queues are sometimes responsible for high latency
 propagation at higher level operations

 A common problem with asynchronous operations is that they
 may enqueue other operations as a tree of operations.

 In such scenario, it results in the event-loop stucking in the same
 phase until it completes all operations.

 This results in increasing the latency of other pending operations
 in queues of other phases.

13

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Methodology

 Our Approach

– From high level information, track down the different operations at
lower layers and reconstruct a vertical sequence of the request

– 3 layers are considered: The application layer, the Node.js layer and
the kernel layer

– In a vertical request sequencing, latency at each layer can be identified

 Problem

 How to vertically inject the context of the trace to reconstruct
 the sequences of the execution?

14

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Methodology

 Libuv

– Node.js relies on this library to manage asynchronous operations

– It clearly is a core Node.js IO operations library and is responsible for
 interacting with the OS

 Instrumentation

- Libuv and Node.js internals are instrumented to obtain low level
 information at the intermediate layer

- Application (Theia) is instrumented with Zipkin to obtain high level
 information

- Kernel trace is collected and correlation algorithms are designed for
 vertical context injection and sequence reconstruction

15

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Current

Results

 Algorithms for heterogeneous traces correlation and vertical
 context injection

 Correlation between high level information and intermediate layer
 (Node.js), and intermediate layer with Kernel layer reconstruction
 of the execution sequence)

16

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Current

Results

17

Async Operations times in the event-loop

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Current

Results

18

Number of operations enqueued / 100 ms

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Ongoing Work

 Intensive work is being done on the development of views
 tailored to the performance analysis of Theia, based on the
 preliminary results

 Work on identifying the critical path is also ongoing

19

POLYTECHNIQUE MONTREAL – Hervé Kabamba

References

[1] Piero Borrelli,
https://blog.logrocket.com/a-complete-guide-to-the-node-js-event-loop/

[2] Erin Swenson-Healey,
https://blog.carbonfive.com/the-javascript-event-loop-explained/

[3] Aman Agrawal,
https://www.loginradius.com/blog/async/understanding-event-loop/

[4] Tania Rascia,
https://www.digitalocean.com/community/tutorials/understanding-the-event-l
oop-callbacks-promises-and-async-await-in-javascript

[5] https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

20

POLYTECHNIQUE MONTREAL – Hervé Kabamba

Questions?
herve.kabamba-mbikayi@polymtl.ca

