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Introduction

= THEIA: The framework is developed in Typescript
- Frontend runs on the browser

- Backend runs on Node.js

u An interaction of the frontend with the backend:

* Is mainly a communication through a websocket connection channel that
carries json encoded messages containing the data.

» Vscode libraries are used by the backend to listen to the socket to
retrieve the data

 The data is mainly the service that must be invoked remotely, sometimes
with arguments
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Introduction

u Backend:

- Operations are executed by invocation on the backend, and the
returned results are sent back to the frontend

- The backend is therefore mainly responsible for low level operations
with the OS.

- Node.js is single threaded and uses an event loop to handle
asynchronous operations.

= Intuitively:

- Evaluating the performance of applications running on Node.js brings
complexity

- High level tracing of distributed operations can only expose
their latency in a global point of view.
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Introduction

= Definition of the problem

- Most operations and interactions from the frontend and the backend
in Theia are executed by Node.js in asynchronous ways.

- Asynchronous callbacks such as Promises, SetTimeout, etc. in
Javascript are used to handle the operations.

- Internally, there is a lot of activities responsible for delivering the final
result that increase the complexity of the performance analysis in such
context.
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Introduction

High level trace information view

Trace Name Timestamp Duration ID Process Processtags Tags
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Figl: high level trace
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Introduction

= Definition of the problem

- In the previous figure, the higher view of the latency of each operation
executed in Theia is generally exposed in the way that distributed
tracers works and do not tell much except latency.

- Although the latency represents the real time the operation took to
complete, pinpointing the source of the problem is something else in
Node.js.

- Tracing the application with distributed tracers, when such a problem
happens most of the time, cannot help pinpointing the operation
responsible of the fault propagation.

- A non optimized code, or an operation can slow down or block the
internal event-loop and consequently delay all pending operations in
the stack.
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Objective

=  Asynchronous operations

- Tracking asynchronous resources and their respective callbacks in
Node.js is very important

- Asynchronous operations go through phases in the event-loop and, at
each phase, their respective callback are executed.

- The way the event-loop will behave is a function of the operations that
it has enqueued.

- In this context, a real performance analysis of Node.js applications
must involve collecting lower internal information on its functioning for
correlation with the higher level ones.

- Such approach should result in accurate tools for performance analysis
in the Node.js environment.
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Event-loop at

Glance
Abstraction of the Event-loop
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Fig 2: event-loop abstraction|[2]
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Event-loop at

Glance
Delegation of tasks to Workers
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Fig 3. Tasks delegation to workers[2]
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Workers view

The communication event between the workers are captured in this view
(postMessage method) of the trace.
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Fig 4: Intercepting workers communication
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Event-loop at

Glance
Event-loop phases
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Fig 5. event-loop phasel[5]
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Methodology

@ Tracing Node.js internals should give more insights on application
bottlenecks

= Internal queues are sometimes responsible for high latency
propagation at higher level operations

# A common problem with asynchronous operations is that they
may enqueue other operations as a tree of operations.

@ In such scenario, it results in the event-loop stucking in the same
phase until it completes all operations.

@ This results in increasing the latency of other pending operations
in queues of other phases.
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Methodology

= Our Approach

- From high level information, track down the different operations at
lower layers and reconstruct a vertical sequence of the request

- 3 layers are considered: The application layer, the Node.js layer and
the kernel layer

- In a vertical request sequencing, latency at each layer can be identified

@ Problem

How to vertically inject the context of the trace to reconstruct
the sequences of the execution?
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Methodology

= Libuv
- Node.js relies on this library to manage asynchronous operations

- It clearly is a core Node.js 10 operations library and is responsible for
interacting with the OS

@ Instrumentation

- Libuv and Node.js internals are instrumented to obtain low level
information at the intermediate layer

- Application (Theia) is instrumented with Zipkin to obtain high level
information

- Kernel trace is collected and correlation algorithms are designed for
vertical context injection and sequence reconstruction
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Current

Results

= Algorithms for heterogeneous traces correlation and vertical
context injection

u Correlation between high level information and intermediate layer

(Node.js), and intermediate layer with Kernel layer reconstruction
of the execution sequence)

16
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Ongoing Work

= Intensive work is being done on the development of views
tailored to the performance analysis of Theia, based on the
preliminary results

=« Work on identifying the critical path is also ongoing
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Questions?

herve.kabamba-mbikayi@polymtl.ca
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