Tracing Micro-services and Modular IDES:
Performance evaluation in asynchronous requests context

Hervé KABAMBA Michel Dagenais
June 11, 2021

Polytechnigue Montréal

Laboratoire DORSAL

Agenda
“ Introduction
“ Objective
u Methodology

@ Current Results

“ Ongoing work

POLYTECHNIQUE MONTREAL — Hervé Kabamba 2

Introduction

= THEIA: The framework is developed in Typescript
- Frontend runs on the browser

- Backend runs on Node.js

u An interaction of the frontend with the backend:

* Is mainly a communication through a websocket connection channel that
carries json encoded messages containing the data.

» Vscode libraries are used by the backend to listen to the socket to
retrieve the data

 The data is mainly the service that must be invoked remotely, sometimes
with arguments

POLYTECHNIQUE MONTREAL — Hervé Kabamba

Introduction

u Backend:

- Operations are executed by invocation on the backend, and the
returned results are sent back to the frontend

- The backend is therefore mainly responsible for low level operations
with the OS.

- Node.js is single threaded and uses an event loop to handle
asynchronous operations.

= Intuitively:

- Evaluating the performance of applications running on Node.js brings
complexity

- High level tracing of distributed operations can only expose
their latency in a global point of view.

POLYTECHNIQUE MONTREAL — Hervé Kabamba 4

Introduction

= Definition of the problem

- Most operations and interactions from the frontend and the backend
in Theia are executed by Node.js in asynchronous ways.

- Asynchronous callbacks such as Promises, SetTimeout, etc. in
Javascript are used to handle the operations.

- Internally, there is a lot of activities responsible for delivering the final
result that increase the complexity of the performance analysis in such
context.

POLYTECHNIQUE MONTREAL — Hervé Kabamba 5

Introduction

High level trace information view

Trace Name Timestamp Duration ID Process Processtags Tags
g"' 1 _ » > < (<6 > c
sb1.json stat 104:00:10.145 053 000 935 ps 1 d6310d38d8a55608 server {} {internal.span.format=zipkin, spanld=d6310d38d8a55608
.sb1.json stat 04:00:10.146 254 000 924 ps 393¢280da73ab711 server {} {internal.span.format=zipkin, spanld=393c280da73ab711,
‘b1 .json: stat 104:00:10.147 453 000 925 ps 1 71650fa820b8738b server {} {internal.span.format=zipkin, spanld=71650fa820b8738b,
sb1.json stat 104:00:10.148 651 000 878 s e87ed36b8cb1d36b server {} {internal.span.format=zipkin, spanid=e87ed36b8cb1d36b
:sb1.json stat 04:00:10.149 827 000 881 ps - 4eb42df36af35e7d server {} {internal.span.format=zipkin, spanid=4eb42df36af35e7d,
sb1.json gethostlogpath 104:00:10.150 948 000 5,717 ms ' 7c5da2fcfa10608a server {} {internal.span.format=zipkin, spanld=7c5da2fcfa10608a,
'sb1.json getconfigdiruri 04:00:10.152 532 000 686 ps 27f6447f89ae31b7 server {} {internal.span.format=zipkin, spanld=27f6447f89ae31b7,
sb1json stat |04:00:10.161277000 1,504ms 36013debc9896dbb server {} {internal.span.format=zipkin, spanid=36013debc9896dbb
il Histogram [Properties | i= State System Explorer 82 | [Theia Data Provider Time Graph View @ Error Log xEQEIN ~vodee Fr §=0
State System / Attribute 04:00:10.130 04:00:10.140 04:00:10.150 04:00:10.160 04:00:10.170 04:00:10.180
. \0 X . L
201 |
203] oooooOOoOoOREIOODOBEES ‘
204 []
205 |
206 1
207
209 |
210
21
212
213
» Requests
» Spans
¥ ch1 icnn

Figl: high level trace

POLYTECHNIQUE MONTREAL — Hervé Kabamba 6

Introduction

= Definition of the problem

- In the previous figure, the higher view of the latency of each operation
executed in Theia is generally exposed in the way that distributed
tracers works and do not tell much except latency.

- Although the latency represents the real time the operation took to
complete, pinpointing the source of the problem is something else in
Node.js.

- Tracing the application with distributed tracers, when such a problem
happens most of the time, cannot help pinpointing the operation
responsible of the fault propagation.

- A non optimized code, or an operation can slow down or block the
internal event-loop and consequently delay all pending operations in
the stack.

POLYTEC®NIQUE MONTREAL — Hervé Kabamba 7

Objective

= Asynchronous operations

- Tracking asynchronous resources and their respective callbacks in
Node.js is very important

- Asynchronous operations go through phases in the event-loop and, at
each phase, their respective callback are executed.

- The way the event-loop will behave is a function of the operations that
it has enqueued.

- In this context, a real performance analysis of Node.js applications
must involve collecting lower internal information on its functioning for
correlation with the higher level ones.

- Such approach should result in accurate tools for performance analysis
in the Node.js environment.

POLYTECHNIQUE MONTREAL — Hervé Kabamba 8

Event-loop at

Glance
Abstraction of the Event-loop

- Call Stack) - |riplementation-Specific (hidden from you) —
"hey Runtime, call ‘changeColor”
when someone clicks link
link addEventListener("click”, changeColor) ’-
— when someone clicks the link...
T ‘ enguelue a message
2: call its 3 poll for
callback et
MesEage
when
| gtaock
empty
global eval: init -
"click": changeColor
[|
*\ \ dequeve — Message Queue
firat *
MesEage
Event Loop

Fig 2: event-loop abstraction|[2]

POLYTECHNIQUE MONTREAL — Hervé Kabamba 9

Event-loop at

Glance
Delegation of tasks to Workers
= Main Thread - Worker A
- Call Stack ey e ¥ —Message Queue
postMessage [
. ” message message message
&
gx) Lkt.....
e tMes - Worker B
(x) & pos anunJ '
message —Message Queue N) - Message Queue
message —‘ ‘ message message
. ©

Fig 3. Tasks delegation to workers[2]

POLYTECHNIQUE MONTREAL — Hervé Kabamba 10

Workers view

The communication event between the workers are captured in this view
(postMessage method) of the trace.

04:00:38.490 04:00:38.500 04:00:38.510 04:00:38.520 04:00:38.530 04:00:38.540 04:00:38.550 04:00:38.560 04:00:38.570

i i i i i i i Ll i i

L}
i= Experiment = rpcdjson | E=rpaall ¥ |Erpcjson iEsb2json iEsbijson Erpeall = rpeSjson i sbijson =
stamp Duration 1D Process Process tags Tags
> <srch> <srch> <srche <srehs postMessage

:38.484635000;218 ps | 3006ca97a3c90ffc :rpc nternal.span.f
:38.486 193 000: 734 ps 033a3e0264043a26¢C | server
:38.487 461 000} 605 ps f15e13bb577ee2f4 iserver

:38.498 187 000: 21,228 ms: dfaeddBa69c0cb07 :server

yrmat=zipkin, method=log, span.kind=client, payload.id=182, d '-c.sewc}
Format=zipkin, spanld=033ae0264043a26¢, span.kind=server, payload.id=178, dir=srv,

=2
.
=
o
un
T
[+F]
=

Format=zipkin, spanld=F15e13bb577ee2f4, span.kind=server, payload.id=179, dir=srv,

= =
L
= o
[+F] [+F]
[]
L L
o o
=1

0
0
o
an.format=zipkin, spanld=dfaedd8a69c0cb07, span.kind=server, payload.id=180, dir=sry,
Format=zipkin, method=log, span.kind=client, payload.id=180, dir=clsend}

o

=2
.
=
[+¥]
L
T
o
=

Format=zipkin, spanld=6ed0fed47a05b0dc, span.kind=server, payload.id=181, dir=srv,

:38.541 835000 36,787 ms 2d8982536214e3d9 :rpc
:38.542 156 000: 41,018 ms: 59034b87a4a641c9 irpc
:38.546 154 000: 33,022 ms a83f066badd07aa7 i rpc
:38.562 206000:918ps | 0dad51eef0a094e3 irpc

internal.span.format=zipkin, method=postMessage, span.kind=client, payload.id=29, dir=Ispsend}
internal.span.format=zipkin, method=postMessage, span.kind=client, payload.id=30, dir=Ispsend}

1

{int

unt

{int

unt

unt

{internal.span.format=zipkin, method=log, span.kind=client, payload.id=181, dir=clsend}

{

{

{internal.span.format=zipkin, method=postMessage, span.kind=client, payload.id=31, dir=Ispsend}
1

U
i
U
U
U
138523033000} 1,005 ms | e6a310124033F11F ' rpc {
{
{
{
U

nternal.span.format=zipkin, method=stat, span.kind=client, payload.id=142, dir=clsend}

b32697974dfbec50b {internal.span.format=zipkin, method=stat, span.kind=client, payload.id=141, dir=clsend}

.567 402 000:2,995ms :920f8a1be51af18d iserver U {internal.span.format=zipkin, spanid=920f8a1be51af18d, span.kind=server, payload.id=182, dir=sry,
:38.583963000: 2,294 ms : 608417924c68(f62 :server i {internal.span.Format=zipkin, spanld=608417924c68ff62, span.kind=server, payload.id=141, dir=srv,
:38.588373000:1,988 ms :d6186090928bbbac :server i {internal.span.format=zipkin, spanld=d6186090928bbbac, span.kind=server, payload.id=142, dir=srv

Fig 4: Intercepting workers communication

POLYTECHNIQUE MONTREAL - Hervé Kabamba 11

Event-loop at

Glance
Event-loop phases

timers

pending callbacks

idle, prepare

incoming:

data, etc.

]
|
connections, |
|
!

close callbacks

Fig 5. event-loop phasel[5]

POLYTECHNIQUE MONTREAL — Hervé Kabamba 12

Methodology

@ Tracing Node.js internals should give more insights on application
bottlenecks

= Internal queues are sometimes responsible for high latency
propagation at higher level operations

A common problem with asynchronous operations is that they
may enqueue other operations as a tree of operations.

@ In such scenario, it results in the event-loop stucking in the same
phase until it completes all operations.

@ This results in increasing the latency of other pending operations
in queues of other phases.

POLYTECHNIQUE MONTREAL — Hervé Kabamba 13

Methodology

= Our Approach

- From high level information, track down the different operations at
lower layers and reconstruct a vertical sequence of the request

- 3 layers are considered: The application layer, the Node.js layer and
the kernel layer

- In a vertical request sequencing, latency at each layer can be identified

@ Problem

How to vertically inject the context of the trace to reconstruct
the sequences of the execution?

POLYTECHNIQUE MONTREAL — Hervé Kabamba 14

Methodology

= Libuv
- Node.js relies on this library to manage asynchronous operations

- It clearly is a core Node.js 10 operations library and is responsible for
interacting with the OS

@ Instrumentation

- Libuv and Node.js internals are instrumented to obtain low level
information at the intermediate layer

- Application (Theia) is instrumented with Zipkin to obtain high level
information

- Kernel trace is collected and correlation algorithms are designed for
vertical context injection and sequence reconstruction

POLYTECHNIQUE MONTREAL — Hervé Kabamba 15

Current

Results

= Algorithms for heterogeneous traces correlation and vertical
context injection

u Correlation between high level information and intermediate layer

(Node.js), and intermediate layer with Kernel layer reconstruction
of the execution sequence)

16

POLYTECHNIQUE MONTREAL — Hervé Kabamba

e —
Current

Results Async Operations times in the event-loop

[twpe Filter texkt]

Name Legend 120 k

~ Async
110 k

100 k

ok -

sok

7ok

Y Axis

sok

sok -

a0k -

30k

2ok

R e Y A e — AL i N S

03:27:15.050 03:27:15.100 03:27:15.150 03:27:15.200 03:27:15.250 03:27:15.300 03:27:15.350 03:27:15.400

| ewpe Filter text | 10k o

Name Legend

S

o9k
8,5 k |
sk
7.5 k

7k

Y Axis

6,5 k -
6k

5,5k '
5k

=l I

03:27:15.150 03:27:15.200 03:27:15.250 03:27:15.300 03:27:15.350 03:27:15.400

POLYTECHNIQUE MONTREAL — Hervé Kabamba 17

e —
Current

RESU":S Number of operations enqueued / 100 ms

| type Filter text |
34 |

il I

Name Legend

30 +

i

28

26

24 -

22 +

20 +

18

Y Axis

14 -

12 +

10 +

5] R
1 1
—

|

03:27:15.470 03:27:15.480 ! 03:27:15.490 03:27:15.500 03:27:15.510 03:27:15.520 03:27:15.530

POLYTECHNIQUE MONTREAL — Hervé Kabamba 18

Ongoing Work

= Intensive work is being done on the development of views
tailored to the performance analysis of Theia, based on the
preliminary results

=« Work on identifying the critical path is also ongoing

POLYTECHNIQUE MONTREAL — Hervé Kabamba 19

References

[1] Piero Borrelli,
https://blog.logrocket.com/a-complete-guide-to-the-node-js-event-loop/

[2] Erin Swenson-Healey,
https://blog.carbonfive.com/the-javascript-event-loop-explained/

[3] Aman Agrawal,
https://www.loginradius.com/blog/async/understanding-event-loop/

[4] Tania Rascia,

https://www.digitalocean.com/community/tutorials/understanding-the-event-|
oop-callbacks-promises-and-async-await-in-javascript

[5] https://nodejs.org/en/docs/quides/event-loop-timers-and-nexttick/

POLYTECHNIQUE MONTREAL — Hervé Kabamba 20

Questions?

herve.kabamba-mbikayi@polymtl.ca

POLYTECHNIQUE MONTREAL - Hervé Kabamba

