
Tracing ROS 2

Christophe Bourque Bédard

Progress Report Meeting
June 4, 2021

Polytechnique Montréal
DORSAL Laboratory



Tracing ROS 2 - Christophe Bourque Bédard

Summary

1. Introduction

2. ROS 2

3. Tracing ROS 2

4. Instrumentation

5. Overhead benchmark

6. Upcoming work and conclusion

7. Questions

2



Tracing ROS 2 - Christophe Bourque Bédard

Introduction

● Robotics
○ Commercial or industrial applications
○ Safety-critical applications
○ Can be connected over a network (e.g. 5G)

● Key elements
○ Message passing and Remote Procedure Call (RPC)
○ Real-time constraints

● Robotics software development can greatly benefit from tracing

3



Tracing ROS 2 - Christophe Bourque Bédard

ROS 2

● Robot Operating System 2
○ docs.ros.org/en/galactic

● Open source framework and set of tools for robotics 

software development
○ Well-known in robotics
○ Used for NASA’s 2023 Moon rover, VIPER!

● Message passing between “nodes”
○ Publish/subscribe
○ Service/action calls (~RPCs)

● Modular
○ Each node generally accomplishes a very specific task
○ Nodes are put together to perform complex tasks

● Uses Data Distribution Service (DDS) as the middleware
○ OMG standard

● Intra-process, inter-process, and distributed

4

Figure 1. ROS 2 architecture and abstraction layers.

https://docs.ros.org/en/galactic


Tracing ROS 2 - Christophe Bourque Bédard

Tracing ROS 2

5

● LTTng instrumentation part of the ROS 2 core
○ gitlab.com/ros-tracing/ros2_tracing

● Instrumentation not part of the distributed binaries
○ Want to change that
○ Current work should help

● Closely integrated with ROS 2
○ To encourage use/adoption
○ ROS 2 CLI tools
○ ROS 2 launch/deployment system

https://gitlab.com/ros-tracing/ros2_tracing


Tracing ROS 2 - Christophe Bourque Bédard

Instrumentation

6

● Some design principles
○ Most likely similar to instrumentation for other applications

● Multiple layers of abstraction
○ Want information about each layer & the interaction between them
○ However, layers make it hard to get the full picture

● Real-time
○ Applications usually have a non-real-time initialization phase
○ We take advantage of this to collect as much information up front
○ It lowers overhead in the real-time “steady state” phase

● Publishing
○ Constant number of trace events, constant overhead (?)

● Not using DDS instrumentation here Figure 2. Workflow and instrumentation.



Tracing ROS 2 - Christophe Bourque Bédard

Overhead benchmark

7

● Goal: measure tracing overhead in a ROS 2 context
○ Mainly interested in latency overhead
○ Expecting it to be very small
○ Tool: gitlab.com/ApexAI/performance_test

● Parameters
○ Intra-process, inter-process, distributed
○ Publisher frequency
○ Message payload size
○ Number of nodes (publishers/subscribers) & graph setup
○ Quality of service settings
○ DDS implementation

● Setup
○ Ubuntu Server 20.04.2 with PREEMPT_RT (5.4.3-rt1)
○ Intel i7-3770 @ 3.40GHz
○ SMT/Hyper-threading disabled (4 cores, 1 thread/core)
○ Run for 20 minutes, discard the first 5 seconds, and use mean latency

https://gitlab.com/ApexAI/performance_test


Tracing ROS 2 - Christophe Bourque Bédard

Overhead benchmark - results

8

Figure 3. Individual results.



Tracing ROS 2 - Christophe Bourque Bédard

Overhead benchmark - results (2)

9

● Hard to conclude

● There might be too much variability in the OS 

and networking layers

● Further benchmarks/experiments
○ Distributed
○ Use median latency values

Figure 4. Overhead results.



Tracing ROS 2 - Christophe Bourque Bédard

Upcoming work and conclusion

10

● Instrumentation
○ Internal message handling
○ DDS level

● Critical path analysis for ROS 2 messages



Tracing ROS 2 - Christophe Bourque Bédard

Questions?

11

● christophe.bedard@polymtl.ca

● Links (bis)
○ docs.ros.org/en/galactic
○ nasa.gov/viper/lunar-operations#software
○ gitlab.com/ros-tracing/ros2_tracing
○ gitlab.com/ApexAI/performance_test

mailto:christophe.bedard@polymtl.ca
https://docs.ros.org/en/galactic
https://www.nasa.gov/viper/lunar-operations#software
https://gitlab.com/ros-tracing/ros2_tracing
https://gitlab.com/ApexAI/performance_test

