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Investigation Use Cases Conclusion

DPDK - Data Plane Development Kit

» Set of libraries and polling-mode drivers which can be leveraged to implement
userspace dataplanes

* Many optimizations to accelerate packet processing (CPU affinity, huge pages,
lock-less queues, batch processing, etc.)
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Source : https://telcocloudbridge.com/wp-content/uploads/2019/05/image-1.png
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Investigation Use Cases Conclusion

Why DPDK-based apps might be bottlenecked ? (1)

* A network bottleneck is a computing or networking resource that may

limit the data flow in the network under some circumstances - obvious or
unseen.

* Bottleneck analysis is a type analysis that aims at identifying which part
of the system is causing the congestion
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Investigation Use Cases

Conclusion

Why DPDK-based apps might be bottlenecked ? (2)

Reasons :

1) Mis-allocation of resources (Example : Traffic consumer threads are
slower producer threads)

40% busy

100% busy

bottlenck
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Investigation Use Cases Conclusion

Why DPDK-based apps might be bottlenecked ? (3)

2) Contention for shared resources (Example : Contention for accessing
LLC)

3) Buggy design or implementation (Example : usage of an inadequate
scheduling mechanism — Elastic Flow Distributor library vs Eventdev library)
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Introduction Use Cases Conclusion

Bottleneck Analysis (1)

Performance Analysis Framework for DPDK-based Applications

1) Data collection : static instrumentation (Ittng-ust, rte_trace library ?)

2) Bottleneck Analyses (Trace Compass)
> Flow classification libraries (Hash, ACL, LPM, etc.)
° Vhost-user library
°> Pipeline library
o Eventdev library (SW and DSW schedulers)

O
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Introduction Use Cases Conclusion

Bottleneck Analysis (2)

Subset of computed performance metrics :

Per-flow and per-NIC Packet rate, Enqueue/Dequeue rate, drop rate

Occupancy of application buffers (NIC RX/TX queue, Software Queues,
etc.)

Latency of Software Queues

Effective RX spins metric :

NB successful calls to X_dequeue_burst() * 100

% Effective RX Spins =
Total number of calls
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Introduction Investigation Conclusion

Use Case 1: DPDK Packet Framework

® Bottleneck analysis of the Internet Protocol (IP) pipeline application

O Super-pipeline composed of three pipelines, each executed by a thread mapped to
a single CPU core.

> Pipeline_A : Receiving and filtering packets

> Pipeline_B : Encrypting packets belonging to specific flows before forwarding
them to the next stage.

> Pipeline_C : Transmitting packets to the external network

O  The three pipelines are interconnected via two software queues: SWQO and
SWQ1

Problem ! The rate of outbound traffic is lower than that of inbound traffic
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Introduction Investigation Conclusion

Use Case 1: DPDK Packet Framework
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https://github.com/mermaid-js/mermaid

POLYTECHNIQUE MONTREAL - Adel Belkhiri 10




Fig. 1 : Super-
pipeline transmission
rate is below
reception rate

Fig. 2 : Generated
traffic did not
overflow the RX/TX
buffers of vhost-user
NICs
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Introduction Investigation Conclusion

Use Case 1: DPDK Packet Framework
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Introduction Investigation Conclusion

Use Case 2: EventDev Library

® Bottleneck analysis of the Eventdev pipeline sample application

O Application : 1 RX thread, 1 TX thread, and 4 worker threads

O Pipeline with 2 stages : 2 atomic queues

Event Device

Worker 0 [\ é ;
pon‘:O ( h mbufs

) Flg' 1 - Worker 2 —\O\ Queue0 (atomic) (—o— Thread RX (L
Architecture of the por? J pois
event device used ’ |

in our application

ueue1 (atomic
Worker 1 Q ( )

port 1 L )
- p mbufs
E . . | out
Worker 3 port 3 Queue2 (single-link) ——O—>»| Thread TX |=—3p
| § J

Problem ! The rate of outbound traffic is lower than that of inbound traffic
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Use Case 2: EventDev Library
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Introduction Investigation Conclusion

Use Case 2: EventDev Library
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Introduction Investigation Conclusion

Use Case 2: EventDev Library
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Introduction Investigation Use Cases

Conclusion

* Tracing is an efficient technique to monitor the performance of
DPDK-based applications and pinpoint their bottlenecks

e Data collection for less than 2% overhead
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Questions?

adel.belkhiri@polymtl.ca
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