Bottleneck Analysis of
DPDK-based Applications

Adel Belkhiri Michel Dagenais
June 4, 2021

Polytechnique Montréal

DORSAL Laboratory

=
Agenda

Introduction

Investigation and use cases
* How to pinpoint a performance bottleneck ?

* Use cases

Conclusion

POLYTECHNIQUE MONTREAL - Adel Belkhiri 2

Investigation Use Cases Conclusion

DPDK - Data Plane Development Kit

» Set of libraries and polling-mode drivers which can be leveraged to implement
userspace dataplanes

* Many optimizations to accelerate packet processing (CPU affinity, huge pages,
lock-less queues, batch processing, etc.)

Linux Networking

Without DPDK With DPDK
o Application
User Space Application E
Linux Kernel Linux
Kernel Space Kernel
1\
Network Hardware NIC NIC

Source : https://telcocloudbridge.com/wp-content/uploads/2019/05/image-1.png

POLYTECHNIQUE MONTREAL - Adel Belkhiri 3

Investigation Use Cases Conclusion

Why DPDK-based apps might be bottlenecked ? (1)

* A network bottleneck is a computing or networking resource that may

limit the data flow in the network under some circumstances - obvious or
unseen.

* Bottleneck analysis is a type analysis that aims at identifying which part
of the system is causing the congestion

POLYTECHNIQUE MONTREAL - Adel Belkhiri 4

Investigation Use Cases

Conclusion

Why DPDK-based apps might be bottlenecked ? (2)

Reasons :

1) Mis-allocation of resources (Example : Traffic consumer threads are
slower producer threads)

40% busy

100% busy

bottlenck

POLYTECHNIQUE MONTREAL - Adel Belkhiri

Investigation Use Cases Conclusion

Why DPDK-based apps might be bottlenecked ? (3)

2) Contention for shared resources (Example : Contention for accessing
LLC)

3) Buggy design or implementation (Example : usage of an inadequate
scheduling mechanism — Elastic Flow Distributor library vs Eventdev library)

POLYTECHNIQUE MONTREAL - Adel Belkhiri 6

Introduction Use Cases Conclusion

Bottleneck Analysis (1)

Performance Analysis Framework for DPDK-based Applications

1) Data collection : static instrumentation (Ittng-ust, rte_trace library ?)

2) Bottleneck Analyses (Trace Compass)
> Flow classification libraries (Hash, ACL, LPM, etc.)
° Vhost-user library
°> Pipeline library
o Eventdev library (SW and DSW schedulers)

O

POLYTECHNIQUE MONTREAL - Adel Belkhiri

Introduction Use Cases Conclusion

Bottleneck Analysis (2)

Subset of computed performance metrics :

Per-flow and per-NIC Packet rate, Enqueue/Dequeue rate, drop rate

Occupancy of application buffers (NIC RX/TX queue, Software Queues,
etc.)

Latency of Software Queues

Effective RX spins metric :

NB successful calls to X_dequeue_burst() * 100

% Effective RX Spins =
Total number of calls

POLYTECHNIQUE MONTREAL - Adel Belkhiri 8

Introduction Investigation Conclusion

Use Case 1: DPDK Packet Framework

® Bottleneck analysis of the Internet Protocol (IP) pipeline application

O Super-pipeline composed of three pipelines, each executed by a thread mapped to
a single CPU core.

> Pipeline_A : Receiving and filtering packets

> Pipeline_B : Encrypting packets belonging to specific flows before forwarding
them to the next stage.

> Pipeline_C : Transmitting packets to the external network

O The three pipelines are interconnected via two software queues: SWQO and
SWQ1

Problem ! The rate of outbound traffic is lower than that of inbound traffic

POLYTECHNIQUE MONTREAL - Adel Belkhiri

Introduction Investigation Conclusion

Use Case 1: DPDK Packet Framework

net_vhost0/RX0

- Tracepoint : o
———— o librte_pipeline:rte_pipeline_create
R
PIPELNE A
PIPELINE_A_table0
Fig. 1 : Diagram generated by our 0 R
tool illustrating the super-pipeline J | . Tracepoints: |
architecture. SWQO O librte_port_sink:rte_port_sink_create
37816970 - librte_pipeline:rte_pipeline_port_out_
. create :
PIPELINE B ¢
PIPELINE_B_tablel PIPELINE_B_table0
?
25974630 25974630 37816970
crypto_aesni_gem0 SWQ1
37816970
PIPELJNE C

PIPELINE_C_table0

37816970

6’ MERMAID net_vhost1/TX0

https://github.com/mermaid-js/mermaid

POLYTECHNIQUE MONTREAL - Adel Belkhiri 10

Fig. 1 : Super-
pipeline transmission
rate is below
reception rate

Fig. 2 : Generated
traffic did not
overflow the RX/TX
buffers of vhost-user
NICs

POLYTECHNIQUE MONTREAL - Adel Belkhiri

Introduction

Use Case 1: DPDK Packet Framework

Investigation

Conclusion

| type filter text

> — buildserver—encrypted
* B net_vhosto
¥ B fd-210
¥ @ RX

1
> [OTX
1]
¥ B net_vhost1
> B fd-73
* [JRX
1
v @TX
0

#[s

(type filter text

¥ B net_vhost0
v @fd-210
¥ @ RX
1
v OTX
0
* B net_vhost1
v Bfd-73
¥ [RX
1
v@TX
0

Introduction Investigation Conclusion

Use Case 1: DPDK Packet Framework

(type filter text) 14000
SW Queue Color
¥ v buildserver—encrypted 12000 -
SWQo _
= :
e 10000+

Fig. 1 : High latency
of the software queue
SWQO0

2000
0

13:14:20 13:14:40 13:15:00 13:15:20 13:15:40 13:16:00 13:16:20 13:16:40 13:17:00 13:17:20 13:17:40

ncy (us)

Lat

[type filter text | 100+

SW Queue Color 90 |

| ,
Fig. 2 : So often, o —] Ll -- LV L
SWQO reaches its full L R L L
capacity and causes :
packets to be

dropped

13:14:20 13:14:40 13:15:00 13:15:20 13:15:40 13:16:00 13:16:20 13:16:40 13:17:00 13:17:20 13:17:40

POLYTECHNIQUE MONTREAL - Adel Belkhiri 12

Introduction Investigation Conclusion

Use Case 2: EventDev Library

® Bottleneck analysis of the Eventdev pipeline sample application

O Application : 1 RX thread, 1 TX thread, and 4 worker threads

O Pipeline with 2 stages : 2 atomic queues

Event Device

Worker 0 [\ é ;
pon‘:O (h mbufs

) Flg' 1 - Worker 2 —\O\ Queue0 (atomic) (—o— Thread RX (L
Architecture of the por? J pois
event device used ’ |

in our application

ueue1 (atomic
Worker 1 Q ()

port 1 L)
- p mbufs
E . . | out
Worker 3 port 3 Queue2 (single-link) ——O—>»| Thread TX |=—3p
| § J

Problem ! The rate of outbound traffic is lower than that of inbound traffic

POLYTECHNIQUE MONTREAL - Adel Belkhiri

13

Introduction

Investigation

Conclusion

Use Case 2: EventDev Library

(type Filter text 100

90 -

¥ B net_vhost0 80 -
> B fd-90

- 70 4
Fig. 1: The RX o

g. 1: The o —
60

(O TX E 7
buffer of the first e

vhost-user NIC is e
overflown -

TX

10 4
0
17:41:30 17:41:40 17:41:50 17:42:00 17:42:10 17:42:20 17:42:30 17:42:40 17:42:50 17:43:00 17:43:10
i type Ffilter text
Evendev Color SRy
> — eventdev-W5050-s2-w4—
- . ¥ B event_sw0 400K+
Flg. 2. ~ @ Port/0
. dequeue — 350K
Considerable
¥ & Port/1 300K
- dequeue —_—
ﬂUCtU atlon enqueue i 250K
~ [Port/2 % 1 i
. {
characterizes the e 200K] W)
enqueue
~ (7 Port/3 i f
d 150K ST CHE R {f e N HH
egueue rate o decqueue |
enqueue i |
W k 1 ~ [Port/a Jloo) BRI
Or er dequeue |
enqueue S0K A RN | IR R SRR | B B | N Y AR =
¥ [Port/5 ~ i
dequeue [. 4
enqueue
17:41:30 17:41:40 17:41:50 17:42:00 17:42:10 17:42:20 17:42:30 17:42:40 17:42:50 17:43:00 17:43:10

POLYTECHNIQUE MONTREAL - Adel Belkhiri

14

Introduction Investigation Conclusion

Use Case 2: EventDev Library

[.i. Eventdev Port Busyness Mi\.'hostRing Queue Occupancy Li, Eventdev Port Buffers Occupancy L.i, Vhost Port Packetrate | Eventdev Port Enq/Deq Rate F Flows View £ Tasks =gProgress i= State System Explorer hea g~ t=8
| type Filter text | 100+
Evendev Color

%0

v — eventdev-W5050-52-w4-

¥ @ event_sw0

Fig. 1: The Effective == 7]
RX Spins metric o

shows that the first
stage workers were
not overloaded =

;D 7 WHLMJJANM__

17:41:00 17:41:10 17:41:20 17:41:30 17:41:40 17:41:50 17:42:00 17:42:10 17:42:20 17:42:30 17:42:40 17:42:50 17:43:00 17:43:10 17:43:20 17:43:30 17:43:40

|4, Eventdev Port Busyness = “ivhostRing Queue Occupancy L%, Eventdev Port Buffers Occupancy |, Vhost Port Packet rate i, Eventdev Port Eng/Deq Rate 3 Flows View & Tasks =g Progress = State System Explorer hee F~ g =0
(kype filter text) 1004 n M M
Evendev Color 90 |
~ B event_sw0 80 J
- h Port/o —
[
Fig. 2: The same o —]
Port/2
.
metric shows that the
Port/4
Port/5 -
50
second stage .
K
orkers were

overloaded -

o L.

17:41:00 _17:41:10 _ 17:41:20 _17:41:30 _17:41:40 17:41:50 17:42:00 17:42:10 17:42:20 17:42:30 17:42:40 17:42:50 17:43:00 17:43:10 17:43:20 17:43:30 17:43:40

POLYTECHNIQUE MONTREAL - Adel Belkhiri 15

Introduction Investigation Conclusion

Use Case 2: EventDev Library

(type filter text 100+

Evendev

v — eventdev-W5050-52—w4—try-42-|

¥ 2 event_sw0 80 Moty o ! 1 . 1 EREE Mnmin 1l | .
Port/0

Fig. 1: (zoomed i
view) Second stage O pora |
workers were o -t I POttt
dequeuing packets | 5
In turn and not in

parallel !! ;

60 A 4 o

(%)

20 B e R -

T T T T T T T T T T T T T T T
' 17:41:47 17:41:48 17:41:49 17:41:50 17:41:51 17:41:52 17:41:53 17:41:54 17:41:55 17:41:56 17:41:57 17:41:58 17:41:59 17:42:00

Name 17:42:07.200 17:42:07.400 17:42:07.600 17:42:07.800 17:42:08.000 17:42:08.200 17:42:08.400 17:42:08.600
¥ eventdev-—-W5050-s2—-wd—try-4
¥ event_sw
¥ Queue\0
¥ Port\0
¥ flows
550 I T 0 0 0 T O A R A T T
- - 573
Fig. 2: The six flows e —— -
[] L] 4363

p ro C e S S e d I n t h e : Port\%:zz TR O O 00 A O AT TR A

first Stage were ———— S S S - N E—
mer g e d | n a Si n g Ie o0 7777777Wﬁw7m|'||mimimiimni[m|'|'|‘||ﬂT|'|'i|'|'|'iiiiiiim‘miﬁiﬂiiﬂiiiiﬁi_uill_'|i|'||'||'ii||W|'|'_l_IiiiiI'I'ITﬂiIiiiill_l'l'l'll'iil'l'l'l'lil'l'il'il'l' :iiim'ﬁiiii'\imﬂiﬁilﬁiiﬁiil'i\ﬁii\'ilI'iiml'iﬁl‘l AT OO
elephant flow in the e

second stage sved - —

¥ flows
0 pinned (#0) pin...

POLYTECHNIQUE MONTREAL - Adel Belkhiri 16

Introduction Investigation Use Cases

Conclusion

* Tracing is an efficient technique to monitor the performance of
DPDK-based applications and pinpoint their bottlenecks

e Data collection for less than 2% overhead

POLYTECHNIQUE MONTREAL - Adel Belkhiri 17

Questions?

adel.belkhiri@polymtl.ca

POLYTECHNIQUE MONTREAL — Adel Belkhiri

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

