DISTRIBUTED
COMPUTATION OF
CRITICAL PATH

Pierre-Frédérick DENYS S 4
Friday 21 January 2022
2

Introduction

Challenges about critical path computation
Proposed solution
Future work and usecases

Conclusion

I

Quick reminder about
Critical Path

Trace

Client
=Thread 1

Server
=Thread 1

BD
=Thread 1

Reminder about critical path

» The data structure as a two-dimensional doubly
linked list, where horizontal edges are labelled with

WORK

I

BLOCKED

\

between tasks (either a wake-up or a network
packet)

/1 L task states, and where vertical edges are signals

BLOCKED

J

WORK

BLOCKED |

WORK |

BLOCKED |

1.

/

« The active path of execution is the execution path

BLOCKED

|

WORK

[

BLOCKED

where all blocking edges are substituted by their
corresponding subtask

» Time

D

Critical path usage

Need for large distributed systems tracing
HPC systems

MPI clusters

Kubernetes and container clusters

Critical path computation not optimized
Transfer of trace files on analysis node is mandatory
Critical path unavailable in Theia and Grafana plugin

D

Actual architecture
and challenges

Actual architecture in Trace Compass

. A
@ hreadia Client
L

Node 1
Trace files Critical path
” " G mrrln;auigi?un
Iﬁ
' Trace file upload
. - —
()
Node2 (1)

‘ “LTTng

Trace server =

f Proposed solution :

Parallelization of the
architecture

Parallelisation of the computation : architecture

.'--E'L'rf.}g
L]

@

Application servers
with embedded
trace server

Client

.n—|—

Graph
elements

Critical
path data

Trace server
(viewer node)

O

ﬁ B
LT T EBH
W LT :B .

For
ES
=
ED

Application servers

Trace server
(computing node)

Critical
path data

Trace server

(computing node)

Client

o lllllllll_ll.lll_l

Trace server
(viewer node)

Parallelisation of the computation : algorithm

» Pre-processing of critical path on each node

* Onclient request, process the critical path of the
trace, and ask only the missing parts of the path to
other nodes

@ Thread id Client

» Distributed processing, suitable for large number of

Node 1 (7) Do of 3
parts o
———c crtcal path [B) | crtcatpatn Trace nodes, less network load
ca path ‘ ‘ computation »
” n each trace @ U’ 4
T LTTng 4V €
L (N ﬁ /ll'ace server \
TR\, Client \
@ Blocking >Thread1] WORK | BLOCKED | WORK |
Node 2 Trace server edges ? E_i"- &
4 o \ L3 A €
m Pre-processing Server \ /
P =Thread 1 BLOCKED WORK BLOCKED WORK BLOCKED
(N~
Trace server Reqiient. {[E1,t11[E2,t2]) = ([E1" 1] [E2"127T)
A

» Improve algorithmto :
Compute execution graph, outbound and inbound edges of critical path of each trace
independently on computing nodes

Be able to process the full critical path from pre-processed parts on viewer node
Send minimum data between computing and viewer nodes

» Storage of critical path on disk :
Usage of state system for horizontal edges and segment store for vertical ones

D

Future work and
usecases

What remains to be done ?

Implement a simple and efficient
communication pattern between trace servers
(computing and viewer nodes)

Test and characterize overhead and efficiency of
new distributed method on several usecases

D

Target usecases :

MPI cluster : follow a MPI task between computing
nodes

Kubernetes cluster : follow a request in a distributed kubernetes

web application
OMQ

ZeroMQ communication : follow a message exchange
between several containers

D

Parallelisation of critical path computation

Efficient communication pattern for computing
Drocess

Integration of Critical path in Trace Server
Protocol (for Theia and Grafana viewers)

D

