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Quick reminder about
Critical Path
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Reminder about critical path

» The data structure as a two-dimensional doubly
linked list, where horizontal edges are labelled with
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« The active path of execution is the execution path
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where all blocking edges are substituted by their
corresponding subtask

»  Time
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Critical path usage

Need for large distributed systems tracing
HPC systems

MPI clusters

Kubernetes and container clusters

Critical path computation not optimized
Transfer of trace files on analysis node is mandatory
Critical path unavailable in Theia and Grafana plugin
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Actual architecture
and challenges




Actual architecture in Trace Compass
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f Proposed solution :

Parallelization of the
architecture




Parallelisation of the computation : architecture
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Parallelisation of the computation : algorithm

» Pre-processing of critical path on each node

*  Onclient request, process the critical path of the
trace, and ask only the missing parts of the path to
other nodes
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» Improve algorithmto :
Compute execution graph, outbound and inbound edges of critical path of each trace
independently on computing nodes

Be able to process the full critical path from pre-processed parts on viewer node
Send minimum data between computing and viewer nodes

» Storage of critical path on disk :
Usage of state system for horizontal edges and segment store for vertical ones
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Future work and
usecases




What remains to be done ?

Implement a simple and efficient
communication pattern between trace servers
(computing and viewer nodes)

Test and characterize overhead and efficiency of
new distributed method on several usecases
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Target usecases :

MPI cluster : follow a MPI task between computing
nodes

Kubernetes cluster : follow a request in a distributed kubernetes

web application
OMQ

ZeroMQ communication : follow a message exchange
between several containers
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Parallelisation of critical path computation

Efficient communication pattern for computing
Drocess

Integration of Critical path in Trace Server
Protocol (for Theia and Grafana viewers)
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