
Using .debug line for optimized probe

regions with kprobe
Preliminary results

Olivier Dion

Polytechnique Montréal
Dorsal laboratory



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Summary

1 Context
How kprobe works
Using DWARF’s .debug line

2 Hypothesis

3 Methodology

4 Results

5 Conclusion

Using .debug line for optimized probe regions with kprobe – Olivier Dion 2/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Summary

1 Context
How kprobe works
Using DWARF’s .debug line

2 Hypothesis

3 Methodology

4 Results

5 Conclusion

Using .debug line for optimized probe regions with kprobe – Olivier Dion 3/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

How kprobe works

• INT3 at probe region

• Possible optimization with jump
• No interruption means less overhead

• Limitations
• Regions must be at least five bytes (x86)
• Instructions of the region must be executed out of line
• No jump can be made into the region
• No indirect jump instruction in the function
• No exception thrown by the function

Using .debug line for optimized probe regions with kprobe – Olivier Dion 4/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

How kprobe works

• INT3 at probe region
• Possible optimization with jump

• No interruption means less overhead

• Limitations
• Regions must be at least five bytes (x86)
• Instructions of the region must be executed out of line
• No jump can be made into the region
• No indirect jump instruction in the function
• No exception thrown by the function

Using .debug line for optimized probe regions with kprobe – Olivier Dion 4/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

How kprobe works

• INT3 at probe region
• Possible optimization with jump

• No interruption means less overhead

• Limitations
• Regions must be at least five bytes (x86)
• Instructions of the region must be executed out of line
• No jump can be made into the region
• No indirect jump instruction in the function
• No exception thrown by the function

Using .debug line for optimized probe regions with kprobe – Olivier Dion 4/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Using DWARF’s .debug line

• DWARF defines the line program in .debug line

• Interpreted by a consumer (e.g. GDB, kprobe)
• The program generates a matrix

• Where rows are instructions
• Where columns are attributes

• The basic block attribute
• A boolean indicating that the current instruction is the

beginning of a basic block
• Can improve the indirect jump limitation of kprobe

Using .debug line for optimized probe regions with kprobe – Olivier Dion 5/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Using DWARF’s .debug line

• DWARF defines the line program in .debug line

• Interpreted by a consumer (e.g. GDB, kprobe)

• The program generates a matrix
• Where rows are instructions
• Where columns are attributes

• The basic block attribute
• A boolean indicating that the current instruction is the

beginning of a basic block
• Can improve the indirect jump limitation of kprobe

Using .debug line for optimized probe regions with kprobe – Olivier Dion 5/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Using DWARF’s .debug line

• DWARF defines the line program in .debug line

• Interpreted by a consumer (e.g. GDB, kprobe)
• The program generates a matrix

• Where rows are instructions
• Where columns are attributes

• The basic block attribute
• A boolean indicating that the current instruction is the

beginning of a basic block
• Can improve the indirect jump limitation of kprobe

Using .debug line for optimized probe regions with kprobe – Olivier Dion 5/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Using DWARF’s .debug line

• DWARF defines the line program in .debug line

• Interpreted by a consumer (e.g. GDB, kprobe)
• The program generates a matrix

• Where rows are instructions
• Where columns are attributes

• The basic block attribute
• A boolean indicating that the current instruction is the

beginning of a basic block
• Can improve the indirect jump limitation of kprobe

Using .debug line for optimized probe regions with kprobe – Olivier Dion 5/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Summary

1 Context
How kprobe works
Using DWARF’s .debug line

2 Hypothesis

3 Methodology

4 Results

5 Conclusion

Using .debug line for optimized probe regions with kprobe – Olivier Dion 6/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Hypothesis

For the check of jumps into a potential optimized region of a
kprobe’s probe, the usage of the basic block attribute of the
DWARF line program yield considerably better success rate than
the current check of indirect jumps by kprobe.

Using .debug line for optimized probe regions with kprobe – Olivier Dion 7/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Summary

1 Context
How kprobe works
Using DWARF’s .debug line

2 Hypothesis

3 Methodology

4 Results

5 Conclusion

Using .debug line for optimized probe regions with kprobe – Olivier Dion 8/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Methodology

• Tool using Dyninst
• Emit per function f

• Number of instructions If
• Number of instructions Kf currently optimizable by kprobe
• Number of instructions Bf optimizable using the line program

• Only check for indirect jump in functions
• Only emit for functions with more than 1 instruction
• Does not work on a kernel image

• A corollary of this is that Kf = Bf or Kf = 0
• Which means our results are overestimated

• We use the following formulas

Overall gain =

∑
Bf − Kf∑

If

Average gain per function =
1

N

∑ Bf − Kf

If

Using .debug line for optimized probe regions with kprobe – Olivier Dion 9/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Methodology

• Tool using Dyninst
• Emit per function f

• Number of instructions If
• Number of instructions Kf currently optimizable by kprobe
• Number of instructions Bf optimizable using the line program

• Only check for indirect jump in functions
• Only emit for functions with more than 1 instruction
• Does not work on a kernel image

• A corollary of this is that Kf = Bf or Kf = 0
• Which means our results are overestimated

• We use the following formulas

Overall gain =

∑
Bf − Kf∑

If

Average gain per function =
1

N

∑ Bf − Kf

If

Using .debug line for optimized probe regions with kprobe – Olivier Dion 9/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Methodology

• Tool using Dyninst
• Emit per function f

• Number of instructions If
• Number of instructions Kf currently optimizable by kprobe
• Number of instructions Bf optimizable using the line program

• Only check for indirect jump in functions
• Only emit for functions with more than 1 instruction
• Does not work on a kernel image

• A corollary of this is that Kf = Bf or Kf = 0
• Which means our results are overestimated

• We use the following formulas

Overall gain =

∑
Bf − Kf∑

If

Average gain per function =
1

N

∑ Bf − Kf

If

Using .debug line for optimized probe regions with kprobe – Olivier Dion 9/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Summary

1 Context
How kprobe works
Using DWARF’s .debug line

2 Hypothesis

3 Methodology

4 Results

5 Conclusion

Using .debug line for optimized probe regions with kprobe – Olivier Dion 10/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Results

Executable kprobe success rate (%) Our success rate (%) Overall gain (%) Average gain per function (%)

firefox 68.63 86.22 17.59 3.35
gcc 72.66 87.02 14.37 2.81
guix 74.39 87.15 12.75 2.65

kcachegrind 76.07 87.28 11.21 3.96
lttng 67.75 85.64 17.89 4.73

Average 71.90 86.66 14.76 3.50

Using .debug line for optimized probe regions with kprobe – Olivier Dion 11/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Summary

1 Context
How kprobe works
Using DWARF’s .debug line

2 Hypothesis

3 Methodology

4 Results

5 Conclusion

Using .debug line for optimized probe regions with kprobe – Olivier Dion 12/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Conclusion

• We’ve estimate the gain of using the line program for kprobe
• It’s an overestimation
• We don’t know the memory usage cost of the line program

• The line program can be consumed by different agents
• LTTng
• GDB
• Dynamic instrumentation of uftrace from our other works

• What lies ahead?
• Merge the basic block attribute of .debug line in GCC
• Reproduce the experiment
• Check the memory usage overhead
• Integrate with tracing tools

Using .debug line for optimized probe regions with kprobe – Olivier Dion 13/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Conclusion

• We’ve estimate the gain of using the line program for kprobe
• It’s an overestimation
• We don’t know the memory usage cost of the line program

• The line program can be consumed by different agents
• LTTng
• GDB
• Dynamic instrumentation of uftrace from our other works

• What lies ahead?
• Merge the basic block attribute of .debug line in GCC
• Reproduce the experiment
• Check the memory usage overhead
• Integrate with tracing tools

Using .debug line for optimized probe regions with kprobe – Olivier Dion 13/13 – www.polymtl.ca



POLYTECHNIQUE MONTRÉAL
Context Hypothesis Methodology Results Conclusion

Conclusion

• We’ve estimate the gain of using the line program for kprobe
• It’s an overestimation
• We don’t know the memory usage cost of the line program

• The line program can be consumed by different agents
• LTTng
• GDB
• Dynamic instrumentation of uftrace from our other works

• What lies ahead?
• Merge the basic block attribute of .debug line in GCC
• Reproduce the experiment
• Check the memory usage overhead
• Integrate with tracing tools

Using .debug line for optimized probe regions with kprobe – Olivier Dion 13/13 – www.polymtl.ca


	Context
	How kprobe works
	Using DWARF's .debug_line

	Hypothesis
	Methodology
	Results
	Conclusion

