
N-LANE BRIDGE 
PERFORMANCE ANTIPATTERN 
ANALYSIS USING SYSTEM-
LEVEL EXECUTION TRACING
Riley VanDonge

Naser Ezzati-Jivan

Brock University



THE PROBLEM

 Multithreading can add latency to an application when used 
incorrectly

 The cause of this latency can be difficult to diagnose

 Many possible causes: lock contention, resource pools, CPU 
preemption, etc.

 Non-deterministic nature means that it is not trivial to follow the 

program's execution



BAD SMELLS

 Surface indication of a deeper problem 
within the system

 Closely related to static analysis: the 
bad smell must be directly identifiable 
in source code

 Common examples: duplicate 
code, feature envy

 Previously, we worked on detecting 
runtime smells using execution tracing

 Examples: CPU Hog, Priority Inversion

 https://github.com/riley-v/runtime-bad-
smell-trace-metrics

 Common problem bundled with 
detection methods and common 
solutions

 Used to better describe issues in a piece 
of software

 Antipattern analysis is performed during 
the testing phase of an 
application, before delivery

 One Lane Bridge: a performance 
antipattern

 Only one, or a few, threads can 

execute at once at this place

ANTIPATTERNS



EXISTING CHALLENGES

One Lane Bridge Performance Antipattern

 Bundles a common multithreading bottleneck problem with 
detection strategies and refactoring solutions

 Two issues/gaps in existing research:

1. Do not consider bottlenecks in active resources

 Active resource: performs a physical action in the real world (eg. CPU)

 vs. passive resource: exists only virtually (eg. mutex)

2. Use imprecise metrics

 Example: overall CPU usage is used to denote application's CPU access

This Photo by Unknown Author is 
licensed under CC BY-NC-ND

https://www.flickr.com/photos/auvet/4842451684/
https://creativecommons.org/licenses/by-nc-nd/3.0/


OUR SOLUTION

 Introduce N-Lane Bridge: new category of One Lane Bridge

 Extends OLB from passive resources to active resources

 Defines a method to distinguish an NLB in the target application 

from issues due to an external application

 Introduce detection method using system-level execution 
tracing to be performed during the testing phase

 Allows for the gathering of more precise metrics

 Eliminates the need for manual instrumentation of source code with 

tracepoints



WHAT IS THE N-LANE BRIDGE 

ANTIPATTERN?

Definition:

 A performance bottleneck due to the target application's use of 
an active resource.

 Cases where the bottleneck is due to an external application's 
use of an active resource are not considered NLB's.

Probable Causes:

 Incorrect configuration of the software.

 Implementation of the software did not account for the system 
it would be running on.



WHY FOCUS ON SYSTEM-LEVEL 

TRACING?

Benefits for Multithreading:

 Concurrency is difficult to predict. Dynamic analysis eliminates 
the false alarms from abstraction found in static analysis.

 System-level tracing provides the wide visibility of executing 
threads, processes, and resources needed to accurately 
analyze multithreaded applications.

Benefits for Ease of Use:

 The tracepoints are predefined (eg. Linux kernel) so no extra 
effort or domain knowledge is needed.



DETECTION STRATEGY



DEMONSTRATION PLACEHOLDER 

SLIDE

 Talk about and demonstrate case study webpage

 For each step, explain using below slides, then demonstrate



TRACE 

COLLECTION

Stop Conditions:

1. The response time has increased 10x its 
original number

2. The application no longer supports adding 
more users

Required Tracepoints:

 Syscalls: reveal the reason for a blocked 
thread

 Interrupt syscalls: irq_handler, softirq, 
hrtimer_expire

 Request delimiters: reveal the response time 
for a request

 sched_switch: indicate when a thread 
occupying a CPU is switched for the new 
thread

 sched_wakeup: indicate when a previously 
blocked thread becomes runnable





METRIC 

EXTRACTION

Metrics Needed:

 Response times of requests

 Critical blocking times for threads 
handling the requests, as well as 
their causes

Critical Path:

 Longest series of steps before 
completion

 Can be used to find critical 
blocking times and their causes





RESPONSE 

TIME ANALYSIS

Motivation:

 Both categories of One Lane Bridge 
cause increasing response time 
latency as more users stress the 
system

Analysis Formula:

∃𝑦 ∀𝑧 (𝑅𝑇𝑧 < 𝑅𝑇𝑧+1) → 𝑃

Where:

 RTz is the average response time for 
any execution z

 Any execution z has less users than 
execution z+1

 P holds that response times increase 
after execution y

Comparison of response times is done 
using a two-tailed t-test.





LATENCY 

CAUSE 

ANALYSIS

Average Blocking Time Formula:

𝐴𝑣𝑒𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒(𝑅𝑒𝑠𝑥) = σ𝑖=𝑦
𝑛−1(𝐵𝑇𝑥 𝑖+1 − 𝐵𝑇𝑥 𝑖)

Where:

 Resx is a resource which blocks the 
target threads

 BTx i is the blocking time for resource x 
in execution I

Analysis Formula:

∃𝑅𝑒𝑠𝑥 ∀𝑅𝑒𝑠𝑧 (𝐴𝑣𝑒𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒(𝑅𝑒𝑠𝑥) > 
𝐴𝑣𝑒𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒(𝑅𝑒𝑠𝑧)) → 𝑄

Where:

 Q holds that Resx is the resource 
which contributes the most to the 
latency





ACTIVE 

RESOURCE 

CONGESTION 

ANALYSIS

Check which threads are using the 
congested resource during the 
analysis period:

1. If over a specific threshold (e.g. 
50%) of time, the target 
application holds the resource: N-
Lane Bridge

2. Otherwise: No detected problem 
in the target application





CALL STACK 

ANALYSIS

Address translation formula:

𝑇𝑟𝑎𝑐𝑒𝑝𝑜𝑖𝑛𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 − 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 
𝐸𝐿𝐹𝑆𝑦𝑚𝑏𝑜𝑙𝑇𝑎𝑏𝑙𝑒𝐸𝑛𝑡𝑟𝑦





CONCLUSIONS AND FUTURE 

WORK

We have written a paper on this subject and submitted it to the 2022 ICPC 
conference.

Future Work:

 Improvement: the metric extraction algorithm takes a significant amount of 
time. This is due to the number of critical paths that must be formed and 
examined individually. An improvement would be to form and examine the 
critical paths in batch jobs, reducing the number of times the trace must be 
iterated over.

 Addition: more performance antipatterns could be detected using system-
level tracing. Antipatterns similar to the One Lane Bridge include Traffic Jam 
and The Ramp.



THANK YOU

Email: rv18jq@brocku.ca

GitHub Repo: https://github.com/riley-v/n-lane-bridge-antipattern-

analysis

mailto:rv18jq@brocku.ca
https://github.com/riley-v/n-lane-bridge-antipattern-analysis


COST AWARE 
TRACING
AMIR HAGHSHENAS

MICHEL DAGENAIS

NASER EZZATI

PROGRESS REPORT 2022

1



CONTENT

Problem 
statement

Literature 
review

Methodology Future work References

2



COST AWARE 
TRACING

¡ Tracing generates large amount of data in 
short time

¡ It is not always possible to trace and save 
everything

¡ IoT devices

¡ Embedded systems

¡ A solution is required to choose how to 
collect as much as possible
¡ Specially in systems with limited resources

¡ The solution should consider the 
observer effect of tracing on program

¡ Execution delay

¡ Memory consumption

3



COST AWARE 
TRACING

¡ Define a budget (how much overhead is 
acceptable)

¡ How to reduce the cost

¡ Sampling

¡ Based on cost

¡ Keep the most important

4



ANALYZING TRACING OBSERVER EFFECT

5

2018

Mohamad Gebai and Michel Dagenais (2018) [1]
A survey on kernel and user space tracing and overhead
Calculated execution latency of a single trace point using 

kernel modules

2021

Indigo Orton and Alan Mycroft (2021) [2]
Analyzed effect of tracing on program concurrent 

behavior
Used configurable overhead tracer to add overhead on 

memory and cup usage
Applied a concurrent performance analysis



USING COST 
FUNCTION TO 
MODIFY 
TRACING

6

¡ Fischmeister and Lam (2010) [3]

¡ Introduced time-aware instrumentation

¡ Cost functions are execution time and instrumentation 
coverage

¡ Starts with source code analysis and naïve 
instrumentation

¡ Check execution time

¡ If violated, use integer linear programming to reduce coverage 
to meet budget.



USING COST 
FUNCTION TO 
MODIFY 
TRACING

¡ Kashif and Arafa (2013) [4]

¡ Static instrumentation model called INSTEP

¡ Support up to four extra-functional properties

¡ Instrumentation intent values

¡ Code size, execution time and detection latency

¡ Each cost model is created using an automata

¡ provided insight into pruning the search space of 
instrumentation alternatives to find a feasible 
instrumentation solution.

7



USING COST 
FUNCTION TO 
MODIFY 
TRACING

8

¡ Arafa and Kashif (2013) [5]

¡ DIME: Time-aware dynamic binary instrumentation

¡ Keep two version of the program.

¡ One is instrumented and the other one is not instrumented

¡ User should provide two elements

¡ P: Instrumentation period

¡ B: Instrumentation budget (B<P)

¡ During each period, program is instrumented only for B 
time unit and then switch to the not instrumented version.



PROJECT OBJECTIVE

Define a budget for tracing overhead and monitor the system in real time.

Define a model for cost and effectiveness of each enabled trace point

Optimize the cost and effectiveness of the trace using an optimization 
problem

9



CURRENT 
STATE OF 
PROJECT

¡ Define a cost function to analysis

¡ Execution delay

¡ Measurement

¡ Developing kernel modules to record 
trace points execution time

¡ Recording kernel counters using 
Perf_events

¡ Visualization

¡ Working on trace compass 
development environment

¡ Working on Histogram section to 
show the execution delay instead of 
event count

10



NEXT STEP

Change Histogram 
section to Cost 

analysis

Define a model for 
tracing effectiveness

Define a model for 
time budget (static or 

dynamic)

Develop an 
optimization model to 
minimize the cost and 

maximize the 
effectiveness

11



REFERENCES

¡ Gebai, M., & Dagenais, M. R. (2018). Survey and analysis of kernel and userspace tracers on linux: Design, implementation, 
and overhead. ACM Computing Surveys (CSUR), 51(2), 1-33.

¡ Orton, I., & Mycroft, A. (2021, September). Tracing and its observer effect on concurrency. In Proceedings of the 18th ACM 
SIGPLAN International Conference on Managed Programming Languages and Runtimes (pp. 88-96).

¡ S. Fischmeister and P. Lam. Time-AwareInstrumentation of Embedded Software.IEEETransactions on Industrial 
Informatics, 6(4):652–663,Nov 2010.

¡ H. Kashif, P. Arafa, and S. Fischmeister. INSTEP: AStatic Instrumentation Framework for PreservingExtra-Functional 
Properties. InIEEE 19thInternational Conference on Embedded and Real-TimeComputing Systems and Applications, 
RTCSA’13,pages 257–266, Aug 2013.

¡ P. Arafa, H. Kashif, and S. Fischmeister. DIME:Time-aware Dynamic Binary Instrumentation UsingRate-based Resource 
Allocation. InProceedings of theEleventh ACM International Conference on EmbeddedSoftware, EMSOFT’13, pages 25:1–
25:10. ACM, 2013

12



THANK YOU



Adaptive Tracing Based On Time Series Trend Detection

Mohammed Adib Khan

Supervisor: Naser Ezzati-Jivan

Department of Computer Science

Brock University



Challenges with execution tracing

2

❑ Huge size and lots of noise and irrelevant data.

• High overhead (observer effect).

❑ To many instruments: a typical Linux kernel has over 300 instruments.

• Its not easy to predict where system issues may arise and only 

conveniently keep those related instruments enabled.

• Requires manual tuning of tracepoints and instruments to make 

adjustments, which can be tedious.

❑ Pre-determined set of instruments might miss out on important tracing 

data.



Tracing methods

3

❑ Static tracing – works by using static instrumentation.

❑ Dynamic tracing – tracepoints are injected into a running system.

❑ Adaptive tracing – tracing instruments/tracepoints are controlled automatically by the framework itself to figure 

out points of interest.



What is Adaptive Tracing?

4



Some related works

5

❑ System Execution Path Profiling[1], LogMine [2], Pythia[3]:

• Using Coefficient of Variance (CoV) or any standard deviation methods on grouped data is more biased towards 

shorter requests.

• Clustering methods would always prioritize high standard deviation groups, where as there could be underlying 

consistently worse performing offenders going undetected.

• Anomaly based adaptive tracing would trigger events which are not always necessary.

❑ ADRL[4], DRAVM for Cloud Computing Environment[5], Workload Prediction Using ARIMA for Cloud 

Applications’ QoS[6]:

• Unlike cloud computing resource allocation via reinforcement learning methods, they are not feasible in tracing 

due to the lack of options to verify the actions right away.

❑ Process Monitoring on Sequences of System Call Count Vectors[7], Adaptive Performance Anomaly Detection 

in Distributed Systems Using Online SVMs[8]:

• Trend based anomaly detection can’t adapt to increasing or decreasing of the baseline resource usage.



Research questions

6

➢ How do we decide to change the tracing config? 

➢ Should we adjust trace config whenever there is an anomaly/change?

➢ What are the possible actions? How we are going to change events? 

➢ How do we evaluate the trace adjustments?

1

2

3

4

5



Proposed method

❑ Architecture / Structure:

➢ Tracing

❖ Kernel-level tracing with LTTng

➢ Metrics Monitoring Layer

❖ cpu_utilization, disk_utilization, etc.

❖ Total of 23 metrics.

➢ Trend Detection Layer

❖ Time series ARIMA, EMA, DEMA, etc.

❖ Financial market trend prediction

➢ Anomaly Monitoring Layer

❖ Maintains anomaly score

❖ Adaptive threshold

➢ Action layer

❖ Controls tracing events
7

1

2 43

5



TAT method flowchart

8



Proposed method

9

❑ Metrics monitoring layer:

➢ LTTng: Trace data collection

➢ Babeltrace: Metrics data extraction from trace files.

❑ Trend detection layer:

➢ Sampling:

• Take sample of fixed size dataset at random intervals.

• Control frequency of intervals based on anomaly scores.

➢ Use prediction model (ARIMA) to predict X+1 step.

➢ If mean of sample vs prediction is above or below anomaly threshold, 

then flag it as anomaly.



Proposed method

10

❑ Anomaly monitoring layer:

• anomalyScore = (betaVal * isAnomaly) + ((1 - betaVal) * anomalyScore)

• Auto adjust betaVal to increase or decrease anomalyScore based on frequency of the anomaly occurrence.

❑ Action layer:

• Group LTTng events based on the list of relevant monitoring metrics.

• List problematic metrics and enable related LTTng events.

• Monitor changes in anomaly list to disable back events which are not required.



Demo

11



Example analysis

12

0

5

10

15

20

25

30

35

40

45

50

1

7
5

1
4
9

2
2
3

2
9
7

3
7
1

4
4
5

5
1
9

5
9
3

6
6
7

7
4
1

8
1
5

8
8
9

9
6
3

1
0
3
7

1
1
1
1

1
1
8
5

1
2
5
9

1
3
3
3

1
4
0
7

1
4
8
1

1
5
5
5

1
6
2
9

1
7
0
3

1
7
7
7

1
8
5
1

1
9
2
5

1
9
9
9

2
0
7
3

2
1
4
7

2
2
2
1

2
2
9
5

2
3
6
9

2
4
4
3

cpu_utilization_percent

0

200000

400000

600000

800000

1000000

1200000

1400000

1

8
2

1
6
3

2
4
4

3
2
5

4
0
6

4
8
7

5
6
8

6
4
9

7
3
0

8
1
1

8
9
2

9
7
3

1
0
5
4

1
1
3
5

1
2
1
6

1
2
9
7

1
3
7
8

1
4
5
9

1
5
4
0

1
6
2
1

1
7
0
2

1
7
8
3

1
8
6
4

1
9
4
5

2
0
2
6

2
1
0
7

2
1
8
8

2
2
6
9

2
3
5
0

2
4
3
1

cpu_load_runable_state



Conclusion & future work

13

❑ Binning of metrics data so that all metrics don’t have to be processed through the trend detection layer all the 

time.

❑ Implement better method for a dynamic betaValue for the anomaly score function.

❑ Needs better correlation groupings of events and metrics list.

❑ Implement better methods to solve conflicts/overlap between events list. 

❑ Rigorous testing.



Selected references

14

1. Giraldeau, Francis, et al. “System Execution Path Profiling Using Hardware Performance Counters.” 2021 
IEEE International Systems Conference (SysCon), 2021. Crossref, 
https://doi.org/10.1109/syscon48628.2021.9447121.

2. Hamooni, Hossein, et al. “LogMine.” Proceedings of the 25th ACM International on Conference on 
Information and Knowledge Management, 2016. Crossref, https://doi.org/10.1145/2983323.2983358.

3. Ates, Emre, et al. “An Automated, Cross-Layer Instrumentation Framework for Diagnosing Performance 
Problems in Distributed Applications.” Proceedings of the ACM Symposium on Cloud Computing, 2019. 
Crossref, https://doi.org/10.1145/3357223.3362704.

4. Kardani-Moghaddam, Sara, et al. “ADRL: A Hybrid Anomaly-Aware Deep Reinforcement Learning-Based 
Resource Scaling in Clouds.” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 3, 2021, 
pp. 514–26. Crossref, https://doi.org/10.1109/tpds.2020.3025914.

5. Xiao, Zhen, et al. “Dynamic Resource Allocation Using Virtual Machines for Cloud Computing 
Environment.” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, 2013, pp. 1107–17. 
Crossref, https://doi.org/10.1109/tpds.2012.283.

https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/3357223.3362704
https://doi.org/10.1109/tpds.2020.3025914
https://doi.org/10.1109/tpds.2012.283


Selected references

15

6. Calheiros, Rodrigo N., et al. “Workload Prediction Using ARIMA Model and Its Impact on Cloud 
Applications’ QoS.” IEEE Transactions on Cloud Computing, vol. 3, no. 4, 2015, pp. 449–58. Crossref, 
https://doi.org/10.1109/tcc.2014.2350475.

7. Dymshits, Michael. “Process Monitoring on Sequences of System Call Count Vectors.” ArXiv.Org, 12 July 
2017, arxiv.org/abs/1707.03821.

8. Alvarez Cid-Fuentes, Javier, et al. “Adaptive Performance Anomaly Detection in Distributed Systems Using 
Online SVMs.” IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 5, 2020, pp. 928–41. 
Crossref, https://doi.org/10.1109/tdsc.2018.2821693.

9. Alkasem, Ameen, et al. “Cloud Computing: A Model Construct of Real-Time Monitoring for Big Dataset 
Analytics Using Apache Spark.” Journal of Physics: Conference Series, vol. 933, 2018, p. 012018. Crossref, 
https://doi.org/10.1088/1742-6596/933/1/012018.

10. Ehlers, Jens, et al. “Self-Adaptive Software System Monitoring for Performance Anomaly Localization.” 
Proceedings of the 8th ACM International Conference on Autonomic Computing - ICAC ’11, 2011. Crossref, 
https://doi.org/10.1145/1998582.1998628.

https://doi.org/10.1109/tcc.2014.2350475
https://doi.org/10.1109/tdsc.2018.2821693
https://doi.org/10.1088/1742-6596/933/1/012018


The End

Questions?

Thank you!
16


