
Adaptive Tracing

By Masoumeh Nourollahi
21

st
January 2022

Michel DAGENAIS, Research supervisor

Naser EZZATI-JIVAN, Research co-supervisor

Introduction

2

Large scale tracing challenges

● Huge number of requests results in enourmous traces

● Puts overhead in trace collection, storage, and analysis

● Not much intelligence in collecting traces

3

Thesis Statement

To improve tracing effectiveness, tracing focus should adjust and adapt to
collecting relevant events around the issues.

4

Research question

Early detection

of problems

Problematic area

localization

Tracing

configuration

Adaptive Tracing

1. Can we increase the tracing effectiveness using trace adjustment methods at runtime, so that tracing is

more focused on collecting events around the issues?

2. Can we identify the possible problematic areas by analyzing workload and resource metrics?

5

Where to look for issues?

1. Workload changes

2. Application behavior changes

3. Code changes

4. Configuration changes

5. …

6

Where to put tracepoints in complex large systems like

Chrome or Trace compass?

7

Training Clustering Visualization

Training Clustering Visualization

Training Clustering Visualization

Case1:

✔ All modules work well individually

ꭓ Visualization module slows down If

the number of clusters > 100

Case2:

✔ scenario1: first time building the clustering model

ꭓ scenario2: updating an existing clustering model

Existing

model

• Too large to trace in detail

• Need a clever way to adapt and decide which events to collect

Problematic area localization

Goals

● Check if source of performance problem is internal or external to the system

● Know more precisely which module or scenario are possibly the source of an issue

8

Similar workflows should perform similarly!

9

Problematic area localization process

10

Preliminary results

12

Adaptive tracing workflow

Tracepoint event definition

13

Tracepoint placement in code

14

15

Adaptive tracing workflow

Trace analysis

16

e_name,e_type,entry_ts,exit_ts,file_func,func_func,loc_func,caller_ro
w,caller_file,caller_func

masoum_ust_func:Prime_Interval,en,1642298709193087671,1642298
709193089768,Prime_Interval.cpp,Prime_Interval,11,0,prime_number
s_and_threads.cpp,main

17

Adaptive tracing workflow

Extracting execution paths from the DAG

graph = nx.DiGraph()

paths_df= dag_to_branching(graph)

nx.dag_longest_path(graph)

18DAG for sample program

19

Adaptive tracing workflow

Trace summary generated for each edge

caller,callee,count,mean_duration

masoum_ust_func:count_prime_numbers:Prime_Interval.cpp100count
_prime_numbers,masoum_ust_func:count_prime_numbers:Prime_Int
erval.cpp100count_prime_numbers,6,419.5

20

21

Adaptive tracing workflow

Trace analysis- Metrics and Actions

Metrics:
● Frequency

○ Condition1: check if occurrence frequency of
the path is within confidence interval 95
high and low of its previous execution

● Duration
○ Condition2: check if response time

(duration) of the path is within confidence
interval 95 high and low of its previous
executions

● Ratio of frequency to whole frequency
○ Condition3: Check if frequency of the path is

more than 60% of the whole frequencies

22

Adjustment actions:
★ If Condition1 | condition2:

○ enable more
tracepoints to observe
in detail

★ If Condition3:
○ disable tracepoint

Path frequncy analysis:

edge,mean,count,std,ci95_hi,ci95_lo

masoum_ust_func:count_prime_numbers:Prime_Interval.cpp100count_pri
me_numbersmasoum_ust_func:count_prime_numbers:Prime_Interval.cpp1
00count_prime_numbers,6.166666666666667,12,0.9374368665610919,6.6
970715053788465,5.636261827954487

Path duration analysis:

edge,mean,count,std,ci95_hi,ci95_lo

masoum_ust_func:count_prime_numbers:Prime_Interval.cpp100count_pri
me_numbersmasoum_ust_func:count_prime_numbers:Prime_Interval.cpp1
00count_prime_numbers,491.615873015873,12,144.48125154626433,573.
3638366995009,409.867909332245

23

24

Adaptive tracing workflow

Trace analysis in comparison to trace history

input_trace,edge,count,mean_duration,cnt_not_in_than_ci95,dur_not
_in_than_ci95,freq_in_whole_trace

070611.csv,masoum_ust_func:count_prime_numbers:Prime_Interval.c
pp100count_prime_numbersmasoum_ust_func:count_prime_number
s:Prime_Interval.cpp100count_prime_numbers,7,414.7142857142856
7,0,1,0

25

Adapting the tracing

lttng enable-event --userspace masoum_ust_func:'*' --filter='masoum_ust_func:is_prime"

• “is_prime” tracepoint takes most of the execution and causes the trace to
become very large

• It shows consistent response time and its frequency of execution is dependant on
the input data and can cause exponential growth in trace for some input data

• Best way here is to disable tracing this function or reduce its sampling rate
26

Frequency stats:

masoum_ust_func:is_prime:Prime_Interval.cpp38is_primemasoum_ust_func:is_prime:Prime_Interval.cpp38is_prime,10538.7,10,27541.964805

44633,27609.386644195707,-6531.986644195706

Duration stats:

masoum_ust_func:is_prime:Prime_Interval.cpp38is_primemasoum_ust_func:is_prime:Prime_Interval.cpp38is_prime,16863.981222495084,10,4

6178.043086506725,45485.428854874684,-11757.46640988452

Aggregated record:

masoum_ust_func:is_prime:Prime_Interval.cpp38is_primemasoum_ust_func:is_prime:Prime_Interval.cpp38is_prime,2225,3951.713707865169,

0,0,1

The way forward

• Provide automated pipeline for the presented method
• Test and extend the method for a more complex application with

longer execution paths
• Check other possible methods to model frequency and duration

metric
• Implement the same for other metrics like resource-related metrics

modeling in combination with UST trace metrics
• Improve performance of the code

27

References
[1] Tânia Esteves, Francisco Neves, Rui Oliveira, and João Paulo. 2021. CAT: content-aware tracing and analysis for distributed systems. In Proceedings of the 22nd International
Middleware Conference (Middleware '21). Association for Computing Machinery, New York, NY, USA, 223–235.

[2] S. Zhang, D. Liu, L. Zhou, Z. Ren, and Z. Wang, “Diagnostic framework for distributed application performance anomaly based on adaptive instrumentation,” in 2020 2nd
International Conference on Computer Communication and the Internet (ICCCI). IEEE, 2020, pp. 164–169.

[3]E. Ates, L. Sturmann, M. Toslali, O. Krieger, R. Megginson, A. K. Coskun, and R. R. Sambasivan, “An automated, cross-layer instrumentation framework for diagnosing
performance problems in distributed applications,” in Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 165–170.

[4] P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca, “Weighted sampling of execution traces: Capturing more needles and less hay,” in Proceedings of the ACM Symposium on
Cloud Computing, 2018, pp. 326–332.

[5] P. Las-Casas, G. Papakerashvili, V. Anand, and J. Mace, “Sifter: Scalable sampling for distributed traces, without feature engineering,” in Proceedings of the ACM Symposium on
Cloud Computing, 2019, pp. 312–324.

[6] A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, “Automated analysis of distributed tracing: Challenges and research directions,” Journal of Grid Computing, vol. 19, no. 1,
pp. 1–15, 2021.

[7] Q. Fournier, N. Ezzati-jivan, D. Aloise, and M. R. Dagenais, “Automatic cause detection of performance problems in web applications,” in 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2019, pp. 398–405.

[8] M. Dymshits, B. Myara, and D. Tolpin, “Process monitoring on sequences of system call count vectors,” in 2017 International Carnahan Conference on Security Technology
(ICCST). IEEE, 2017, pp. 1–5.

[9] F. Doray and M. Dagenais, “Diagnosing performance variations by comparing multilevel execution traces,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 2,
pp. 462–474, 2016.

[10] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing infrastructure,”
Google, Inc., Tech. Rep., 2010.

28

References

[11] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W. Ong, B. Schaller, P. Shan, B. Viscomi, V.
Venkataraman, K. Veeraraghavan, and Y. J. Song, “Canopy: An end-to-end performance tracing and analysis system,” in
Proceedings of the 26th Symposium on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 34–50.

[12] Wert, Alexander, Jens Happe, and Lucia Happe. "Supporting swift reaction: Automatically uncovering performance
problems by systematic experiments." 2013 35th International Conference on Software Engineering (ICSE). IEEE, 2013.

[13] M. Gebai et M. R. Dagenais, “Survey and analysis of kernel and userspace tracers on linux : Design, implementation, and
overhead,” ACM Comput. Surv., vol. 51, no. 2, mars 2018.

[14] S. Tjandra, “Performance model extraction using kernel event tracing,” Thèse de doctorat, Carleton University, 2019.

[15] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken, W. Wang, L. Xu et G. R. Ganger,
“Diagnosing performance changes by comparing request flows.” dans NSDI, vol. 5, 2011, p. 1–1.

[16] Du, Min, et al. "Deeplog: Anomaly detection and diagnosis from system logs through deep learning." Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. 2017.

[17] V. Cortellessa et L. Traini, “Detecting latency degradation patterns in service-based systems,” dans Proceedings of the
ACM/SPEC International Conference on Performance Engineering, 2020, p. 161–172.

[18] F. Doray et M. Dagenais, “Diagnosing performance variations by comparing multi-level execution traces,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 2, p. 462–474, 2016.

29

