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Introduction
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Large scale tracing challenges

● Huge number of requests results in enourmous traces

● Puts overhead in trace collection, storage, and analysis

● Not much intelligence in collecting traces

3



Thesis Statement

To improve tracing effectiveness, tracing focus should adjust and adapt to 
collecting relevant events around the issues.
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Research question

Early detection 

of problems

Problematic area 

localization

Tracing 

configuration

Adaptive Tracing

1. Can we increase the tracing effectiveness using trace adjustment methods at runtime, so that tracing is

more focused on collecting events around the issues?

2. Can we identify the possible problematic areas by analyzing workload and resource metrics?
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Where to look for issues?

1. Workload changes

2. Application behavior changes

3. Code changes

4. Configuration changes

5. …
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Where to put tracepoints in complex large systems like 

Chrome or Trace compass?
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Training Clustering Visualization

Training Clustering Visualization

Training Clustering Visualization

Case1:

✔ All modules work well individually

ꭓ Visualization module slows down If 

the number of clusters > 100

Case2:

✔ scenario1: first time building the clustering model

ꭓ scenario2: updating an existing clustering model

Existing 

model

• Too large to trace in detail

• Need a clever way to adapt and decide which events to collect



Problematic area localization

Goals

● Check if source of performance problem is internal or external to the system

● Know more precisely which module or scenario are possibly the source of an issue
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Similar workflows should perform similarly!
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Problematic area localization process
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Preliminary results
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Adaptive tracing workflow



Tracepoint event definition
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Tracepoint placement in code
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Adaptive tracing workflow



Trace analysis
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e_name,e_type,entry_ts,exit_ts,file_func,func_func,loc_func,caller_ro
w,caller_file,caller_func

masoum_ust_func:Prime_Interval,en,1642298709193087671,1642298
709193089768,Prime_Interval.cpp,Prime_Interval,11,0,prime_number
s_and_threads.cpp,main
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Extracting execution paths from the DAG

graph = nx.DiGraph()

paths_df= dag_to_branching(graph)

nx.dag_longest_path(graph)

18DAG for sample program
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Adaptive tracing workflow



Trace summary generated for each edge

caller,callee,count,mean_duration

masoum_ust_func:count_prime_numbers:Prime_Interval.cpp100count
_prime_numbers,masoum_ust_func:count_prime_numbers:Prime_Int
erval.cpp100count_prime_numbers,6,419.5
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Adaptive tracing workflow



Trace analysis- Metrics and Actions

Metrics:
● Frequency

○ Condition1: check if occurrence frequency of 
the path is within confidence interval 95 
high and low of its previous execution

● Duration
○ Condition2: check if response time

(duration) of the path is within confidence
interval 95 high and low of its previous
executions

● Ratio of frequency to whole frequency
○ Condition3: Check if frequency of the path is

more than 60% of the whole frequencies
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Adjustment actions:
★ If Condition1 | condition2:

○ enable more 
tracepoints to observe 
in detail

★ If Condition3:
○ disable tracepoint



Path frequncy analysis:

edge,mean,count,std,ci95_hi,ci95_lo

masoum_ust_func:count_prime_numbers:Prime_Interval.cpp100count_pri
me_numbersmasoum_ust_func:count_prime_numbers:Prime_Interval.cpp1
00count_prime_numbers,6.166666666666667,12,0.9374368665610919,6.6
970715053788465,5.636261827954487

Path duration analysis:

edge,mean,count,std,ci95_hi,ci95_lo

masoum_ust_func:count_prime_numbers:Prime_Interval.cpp100count_pri
me_numbersmasoum_ust_func:count_prime_numbers:Prime_Interval.cpp1
00count_prime_numbers,491.615873015873,12,144.48125154626433,573.
3638366995009,409.867909332245

23



24

Adaptive tracing workflow



Trace analysis in comparison to trace history

input_trace,edge,count,mean_duration,cnt_not_in_than_ci95,dur_not
_in_than_ci95,freq_in_whole_trace

070611.csv,masoum_ust_func:count_prime_numbers:Prime_Interval.c
pp100count_prime_numbersmasoum_ust_func:count_prime_number
s:Prime_Interval.cpp100count_prime_numbers,7,414.7142857142856
7,0,1,0
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Adapting the tracing

lttng enable-event --userspace masoum_ust_func:'*'  --filter='masoum_ust_func:is_prime"

• “is_prime” tracepoint takes most of the execution and causes the trace to
become very large

• It shows consistent response time and its frequency of execution is dependant on
the input data and can cause exponential growth in trace for some input data

• Best way here is to disable tracing this function or reduce its sampling rate
26

Frequency stats:

masoum_ust_func:is_prime:Prime_Interval.cpp38is_primemasoum_ust_func:is_prime:Prime_Interval.cpp38is_prime,10538.7,10,27541.964805

44633,27609.386644195707,-6531.986644195706

Duration stats:

masoum_ust_func:is_prime:Prime_Interval.cpp38is_primemasoum_ust_func:is_prime:Prime_Interval.cpp38is_prime,16863.981222495084,10,4

6178.043086506725,45485.428854874684,-11757.46640988452

Aggregated record:

masoum_ust_func:is_prime:Prime_Interval.cpp38is_primemasoum_ust_func:is_prime:Prime_Interval.cpp38is_prime,2225,3951.713707865169,

0,0,1



The way forward

• Provide automated pipeline for the presented method
• Test and extend the method for a more complex application with

longer execution paths
• Check other possible methods to model frequency and duration

metric
• Implement the same for other metrics like resource-related metrics

modeling in combination with UST trace metrics
• Improve performance of the code
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