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Anomalies    are   the   most     

   significant  obstacles  to        

     the  system  to perform       

 confidently and predictably. 

performance anomalies are 

different from high resource 

consumption.

Performance Anomaly

Anomalies are patterns in data 

that do not conform to the 

expected normal behavior.

                Sources

application  bugs, 
updates, hardware failure, 

etc.

Workload

  
  the  application imposes 
  continuous and more than 
expected average workload 

intensity to the system.
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Anomaly Detection

Anomalies make the execution flow different from the normal situation. 

Performance monitoring tools do not provide any details about the applications execution flow. 

It is an exhausting responsibility for human administrators to manually examine a massive 
amount of low-level tracing data

Performance anomaly detection refers to the problem of finding exceptional patterns in 
execution flow that do not conform to the expected normal behavior.
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Anomaly Detection

It detects anomalous spans and events during a given trace and speeds up identifying the root cause of the 
problem through more analysis of the detected anomalous behaviors.

This work aims to direct developers to the most relevant problem sites and help them look 
at just a few small parts instead of the whole trace.
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Microservice-based applications vs. traditional applications

Microservices are small services that are interconnected with many other microservices to present 
complex services like web applications; if one service fails, the others will continue to work.

Microservices provide greater scalability and make distributing the application over 
multiple physical or virtual systems possible.

Microservices are faster to develop and easier to manage. Moreover, 
microservice can be written using different technologies.
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Despite all these benefits, by increasing the degree of automation and distribution, application performance monitoring 
becomes more challenging. Microservices may be replaced within seconds, and these changes could also be the cause of 
anomalies.

  

Hence, an accurate anomaly detection framework with minimum human intervention is required.



Methodology
The methodology is based on collecting sequences of events during spans and sending them to the machine learning module.

The model learns the possible sequence of events and predicts the next event.

In the detection phase, we use this sequential information to make a prediction and compare the predicted output against the 
observed value. 
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Distributed tracing 

A microservice-based application consists of tens, hundreds, or thousands of services running across many hosts, and it is no 
longer possible to rely on an individual trace.

Distributed tracing provides a view of a request's life as it travels across multiple hosts and services communicating 
over various protocols.

The “span” is the primary building block of a distributed trace, representing an individual unit of work done in a 
distributed system.

   OpenTracing vs. LTTng: Different in the way we collect spans.

Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Span

Start

Service 2

End
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Our Use Case
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In order to create the training data, 12 traces with the duration of 5 to 10 minutes were obtained from 
the previous stable releases of the studied software.

The latest release of the software was investigated to evaluate our methodology.

After removing incomplete spans, 61709 spans and 4028 unique keys were extracted.

We deployed the target microservice environment (developed by Ciena Co.) on a virtualized platform.

In test scenarios, significant CPU and disk stress were injected into the nodes.
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Extracting spans and subspans
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Service 1

Req1,1 Resp1,1
Service 3

Service 2

In the traces we collected from the Ciena simulator, ReqResp events produce spans.

Each span initiates with a request and ends with a response.

Requests and responses that happen during a span share a unique tag for example Tag = 00.

Root span

Name: ReqResp
Type: Req
Tag: 00

Name: ReqResp
Type: Resp
Tag: 00

Time
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Extracting spans and subspans
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Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Service 2 Root span

Name: ReqResp
Type: Req
Tag: 00/01

Name: ReqResp
Type: Resp
Tag: 00/01

Time

Subspan 1 Subspan 2

Name: ReqResp
Type: Req
Tag: 00/02

Name: ReqResp
Type: Resp
Tag: 00/02

Many subspans may be generated during a span's lifetime.

The tag of sub spans parent is embedded in their tag. For example, “00/01” indicates the span “00” is the parent of  
sub span “01”.
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Extracting spans and subspans
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Root span

Req/00 , Req/00/01 , Resp/00/01 , Req/00/02 , Resp/00/02 , Resp/00

Subspan 1 Subspan 2

Time

Subspan 1 Subspan 2

Root span
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Using arguments and generating keys

Tens of userspace and kernel events happen during spans. Therefore, we put these events in the right place in 
the sequence.

The scope of this work is limited to the arguments that are common to all events.

We concatenate the arguments of an event and provide a single event representation (key).

Event category Arguments Type

Request/Response

Name string

Type string

Tag string

Procname string

Other

Name string

Procname string

Message string
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Dataset
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Detection Module
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A limited number of events can be the result of an action. Therefore few 
of the possible events can appear as the next event in the sequence.

We used an LSTM neural network to learn a model of event patterns from 
normal execution.

As elements of a sequence, events follow specific patterns and grammar rules.

The fundamental intuition behind this work is natural language processing.
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Detection Module

In prediction phase the model marks keyt as a correct predicted event if the 
probability of the observed keyt is bigger than 0.5.

Otherwise,  that event is flagged as misprediction. 

Detection Module

Spans in which mispredictions occur frequently are classified as anomalous spans.
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The model learns a probability distribution Prob(keyt=vi|{keyt−αα, keyt−α( −α1)α , ..., keyt−α1}) that 
maximizes the probability of the training sequence.
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R E U L T SS

A
B

C
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Results
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Iman.kohyarnejadfard@polymtl.ca
https://github.com/kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca
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