

1

01

02

Methodology and
Implementation

03

Microservice
Environments

05
Conclusions &
Questions

Introduction
04

Results

1POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 1

Anomalies are the most

 significant obstacles to

 the system to perform

 confidently and predictably.

performance anomalies are

different from high resource

consumption.

Performance Anomaly

Anomalies are patterns in data

that do not conform to the

expected normal behavior.

 Sources

application bugs,
updates, hardware failure,

etc.

Workload

 the application imposes
 continuous and more than
expected average workload

intensity to the system.

2

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 2

3

Anomaly Detection

Anomalies make the execution flow different from the normal situation.

Performance monitoring tools do not provide any details about the applications execution flow.

It is an exhausting responsibility for human administrators to manually examine a massive
amount of low-level tracing data

Performance anomaly detection refers to the problem of finding exceptional patterns in
execution flow that do not conform to the expected normal behavior.

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 3

3

Anomaly Detection

It detects anomalous spans and events during a given trace and speeds up identifying the root cause of the
problem through more analysis of the detected anomalous behaviors.

This work aims to direct developers to the most relevant problem sites and help them look
at just a few small parts instead of the whole trace.

Timestamp

1.0

0.0

0.8

0.6

0.4

0.2

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 3

4

Microservice-based applications vs. traditional applications

Microservices are small services that are interconnected with many other microservices to present
complex services like web applications; if one service fails, the others will continue to work.

Microservices provide greater scalability and make distributing the application over
multiple physical or virtual systems possible.

Microservices are faster to develop and easier to manage. Moreover,
microservice can be written using different technologies.

01

02

03

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 4

Despite all these benefits, by increasing the degree of automation and distribution, application performance monitoring
becomes more challenging. Microservices may be replaced within seconds, and these changes could also be the cause of
anomalies.

Hence, an accurate anomaly detection framework with minimum human intervention is required.

Methodology
The methodology is based on collecting sequences of events during spans and sending them to the machine learning module.

The model learns the possible sequence of events and predicts the next event.

In the detection phase, we use this sequential information to make a prediction and compare the predicted output against the
observed value.

5

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 5

 POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 6

Distributed tracing

A microservice-based application consists of tens, hundreds, or thousands of services running across many hosts, and it is no
longer possible to rely on an individual trace.

Distributed tracing provides a view of a request's life as it travels across multiple hosts and services communicating
over various protocols.

The “span” is the primary building block of a distributed trace, representing an individual unit of work done in a
distributed system.

 OpenTracing vs. LTTng: Different in the way we collect spans.

Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Span

Start

Service 2

End

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Our Use Case

7

In order to create the training data, 12 traces with the duration of 5 to 10 minutes were obtained from
the previous stable releases of the studied software.

The latest release of the software was investigated to evaluate our methodology.

After removing incomplete spans, 61709 spans and 4028 unique keys were extracted.

We deployed the target microservice environment (developed by Ciena Co.) on a virtualized platform.

In test scenarios, significant CPU and disk stress were injected into the nodes.

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and subspans

8

Service 1

Req1,1 Resp1,1
Service 3

Service 2

In the traces we collected from the Ciena simulator, ReqResp events produce spans.

Each span initiates with a request and ends with a response.

Requests and responses that happen during a span share a unique tag for example Tag = 00.

Root span

Name: ReqResp
Type: Req
Tag: 00

Name: ReqResp
Type: Resp
Tag: 00

Time

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and subspans

8

Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Service 2 Root span

Name: ReqResp
Type: Req
Tag: 00/01

Name: ReqResp
Type: Resp
Tag: 00/01

Time

Subspan 1 Subspan 2

Name: ReqResp
Type: Req
Tag: 00/02

Name: ReqResp
Type: Resp
Tag: 00/02

Many subspans may be generated during a span's lifetime.

The tag of sub spans parent is embedded in their tag. For example, “00/01” indicates the span “00” is the parent of
sub span “01”.

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and subspans

8

Root span

Req/00 , Req/00/01 , Resp/00/01 , Req/00/02 , Resp/00/02 , Resp/00

Subspan 1 Subspan 2

Time

Subspan 1 Subspan 2

Root span

Introduction Microservice Environments Methodology Results Conclusion

Many subspans may be generated during a span's lifetime.

The tag of sub spans parent is embedded in their tag. For example, “00/01” indicates the span “00” is the parent of
sub span “01”.

Using arguments and generating keys

Tens of userspace and kernel events happen during spans. Therefore, we put these events in the right place in
the sequence.

The scope of this work is limited to the arguments that are common to all events.

We concatenate the arguments of an event and provide a single event representation (key).

Event category Arguments Type

Request/Response

Name string

Type string

Tag string

Procname string

Other

Name string

Procname string

Message string

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 9

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Dataset

10

Introduction Microservice Environments Methodology Results Conclusion

11POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Detection Module

Introduction Microservice Environments Methodology Results Conclusion

`

A limited number of events can be the result of an action. Therefore few
of the possible events can appear as the next event in the sequence.

We used an LSTM neural network to learn a model of event patterns from
normal execution.

As elements of a sequence, events follow specific patterns and grammar rules.

The fundamental intuition behind this work is natural language processing.

12

Detection Module

In prediction phase the model marks keyt as a correct predicted event if the
probability of the observed keyt is bigger than 0.5.

Otherwise, that event is flagged as misprediction.

Detection Module

Spans in which mispredictions occur frequently are classified as anomalous spans.

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 12

The model learns a probability distribution Prob(keyt=vi|{keyt−αα, keyt−α(−α1)α , ..., keyt−α1}) that
maximizes the probability of the training sequence.

14

R E U L T SS

A
B

C

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 13

15

R E U L T SS

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 14

Results

Introduction Microservice Environments Methodology Results Conclusion

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 15

16

Iman.kohyarnejadfard@polymtl.ca
https://github.com/kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca

References

17

[1] Z. Xu, X. Yu, Y. Feng, J. Hu, Z. Tari, and F. Han. A multi-module anomaly detection scheme based on system call prediction. In 2013 IEEE
8th Conference on Industrial Electronics and Applications (ICIEA), pages 1376–1381, June 2013.
[2] A. Liu, C. Martin, T. Hetherington, and S. Matzner. A comparison of system call feature representations for insider threat detection. In
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop, pages 340–347, June 2005.
[3] Michael Dymshits, Ben Myara, and David Tolpin. Process monitoring on sequences of system call count vectors. 2017 International
Carnahan Conference on Security Technology (ICCST), pages 1–5, 2017.
[4] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep learning for classification of malware system call
sequences. In Byeong Ho Kang and Quan Bai, editors, AI 2016: Advances in Artificial Intelligence, pages 137–149, Cham, 2016. Springer
Iternational Publishing.
[5] Mathieu Desnoyers and Michel Dagenais. The lttng tracer : A low impact performance and behavior monitor for gnu / linux. In OLS
Ottawa Linux Symposium, 2006.
[6] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin,
Heidelberg, 2006.
[7] Ulrich H.-G. Kre. Advances in kernel methods. chapter Pairwise Classification and Support Vector Machines, pages 255–268. MIT Press,
Cambridge, MA, USA, 1999.
[8] Du, Qingfeng, Tiandi Xie, and Yu He. "Anomaly Detection and Diagnosis for Container-Based Microservices with Performance
Monitoring." International Conference on Algorithms and Architectures for Parallel Processing. Springer, Cham, 2018.
[9] Cao, Wei, Zhiying Cao, and Xiuguo Zhang. "Research on Microservice Anomaly Detection Technology Based on Conditional Random
Field." Journal of Physics: Conference Series. Vol. 1213. No. 4. IOP Publishing, 2019.
[10] Nikiforov, Roman. "Clustering-based Anomaly Detection for microservices." arXiv preprint arXiv:1810.02762 (2018).
[11] Pahl, Marc-Oliver, and François-Xavier Aubet. "All eyes on you: Distributed Multi-Dimensional IoT microservice anomaly detection."
2018 14th International Conference on Network and Service Management (CNSM). IEEE, 2018.
[12] Nandi, Animesh, et al. "Anomaly detection using program control flow graph mining from execution logs." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

