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Trace Compass current architecture 
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Use case & current limitations
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● All trace files must be uploaded on the same node

● High computational power needed for trace server

● Lack of aggregated views on a cluster as a whole
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Distributed model for Trace Compass
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Prototype with 2 views
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1/ Statistics

● Multi-pass
● Simple aggregator

2/ CPU usage

● Single-pass
● Complex aggregator
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Query in details
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Aggregator example
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event/process 1 1 unit

event/process 2 2 unit

event/process 3 3 unit

event/process 2 2 unit

event/process 1 1 unit

event/process 3 3 unit

For (entry, i) in list 1

   If isEqual(entry,list 2 [i]) { // best case

       Final list [i] = sum/average/min/max

   } else // worst case

       Iterate list 2 until isEqual(entry,list 2 [j])

End for
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Benchmarks (implemented in NodeJS)
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● 2 trace server nodes (Intel Xeon E5640 16 
cores, 192gb memory

● 20 traces, each trace range 100mb ~ 1gb 
(10 traces each trace server)

● Best-case (cloned traces) vs worst-case 
(different traces)

Type of analysis Gain

Statistics 1.7x

CPU usage (XY) 1.57x

Gain = Parallel portion / nodes - network overhead - aggregator overhead

Type of analysis Gain

Statistics 1.67x

CPU usage (XY) 1.33x

Best-case Worst-case
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Future work
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● Define aggregators algorithm for other types of analyses 
using a suitable language

● Define use cases for query state machine
● Formulate network & aggregators overheads
● Measure memory footprint
● Implement the model using well-defined analysis frameworks 

(e.g Spark)
● To be tested on real-world target:

○ GPU cluster
○ MPI cluster
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Conclusion
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● Pattern for parallel computation of Trace Compass
● Define communication pattern between trace servers and 

coordinator
● Mini-framework for implementing trace coordinator
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Thank you for listening
♥
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