
Distributed model
for Trace Compass

Quoc-Hao Tran

Friday 28 January 2022

Agenda

01 Background & challenges

2

02 Proposed solution

03 Future work

04 Conclusion

#
#
#
#

Trace Compass current architecture

3

1

Trace server

State
system

Trace files

Analysis
modules

Data
Provider

Trace Server
Protocol (TSP)

Client (Eclipse,
Theia

extension,...etc.)

#
#
#
#

Use case & current limitations

4

1

Trace files
upload

TSP

Trace server

● All trace files must be uploaded on the same node

● High computational power needed for trace server

● Lack of aggregated views on a cluster as a whole

Application
servers

#
#
#
#

Distributed model for Trace Compass

5

2

Mini
cluster

Mini
cluster

Mini
cluster

Trace servers
Trace

coordinator

TSP TSP

aggregators

traces

#
#
#
#

Prototype with 2 views

6

2

1/ Statistics

● Multi-pass
● Simple aggregator

2/ CPU usage

● Single-pass
● Complex aggregator

#
#
#
#

Query in details

7

2
Trace server

Trace
coordinator Client

TSP query
Partial TSP query,

query ID, number of
pass, begin

Partial response
(e.g Total event)

aggregator
(e.g sum total event)

query done ?

Prepare &
caching next

step Partial TSP query,
query ID, next step

Partial response
(e.g events table)

aggregator
Response

Query state
machine

#
#
#
#

Aggregator example

8

2

event/process 1 1 unit

event/process 2 2 unit

event/process 3 3 unit

event/process 2 2 unit

event/process 1 1 unit

event/process 3 3 unit

For (entry, i) in list 1

 If isEqual(entry,list 2 [i]) { // best case

 Final list [i] = sum/average/min/max

 } else // worst case

 Iterate list 2 until isEqual(entry,list 2 [j])

End for

#
#
#
#

Benchmarks (implemented in NodeJS)

9

2

● 2 trace server nodes (Intel Xeon E5640 16
cores, 192gb memory

● 20 traces, each trace range 100mb ~ 1gb
(10 traces each trace server)

● Best-case (cloned traces) vs worst-case
(different traces)

Type of analysis Gain

Statistics 1.7x

CPU usage (XY) 1.57x

Gain = Parallel portion / nodes - network overhead - aggregator overhead

Type of analysis Gain

Statistics 1.67x

CPU usage (XY) 1.33x

Best-case Worst-case

#
#
#
#

Future work

10

3

● Define aggregators algorithm for other types of analyses
using a suitable language

● Define use cases for query state machine
● Formulate network & aggregators overheads
● Measure memory footprint
● Implement the model using well-defined analysis frameworks

(e.g Spark)
● To be tested on real-world target:

○ GPU cluster
○ MPI cluster

#
#
#
#

Conclusion

11

4

● Pattern for parallel computation of Trace Compass
● Define communication pattern between trace servers and

coordinator
● Mini-framework for implementing trace coordinator

#
#
#
#

Thank you for listening
♥

12

#
#
#
#

